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US/AMTP05                              Integral Calculus Sem V                Revised Syllabus 2016-17 
Paper - I                  Evaluation of double and triple integrals                    Practical -1 

Objective Questions  

1. An expression for + +   Ą(þ, ÿ)ĂÿĂþ√ý2√ý10  in which the order of integration is reversed is  

(a) + + Ą(þ, ÿ)ĂþĂÿ.þ22þ2121                                                  (b) + + Ą(þ, ÿ)ĂþĂÿ.1þ2121   

(c) a sum of two integrals.                                                 (d) None of these. 

2. � = + + þÿ  ĂÿĂþ.1+ý12ý10  Then � is   
(a) Undefined                   (b) + + þÿ  ĂþĂÿ.þ010                   (c) 0                  (d) None of these. 

3. � = + +   þĄ(ÿ)  ĂÿĂþýý210   where Ą is continuous function defined on [0, 1]. Then � is  

(a) 
12 + (ÿ 2 ÿ2) Ą(ÿ)Ăÿ10                                                     (b) independent of Ą(ÿ). 

(c)  
12 + (ÿ2 2 ÿ) Ą(ÿ)Ăÿ10                                                     (d) Ą(þ) 

4. The value of the double integral + + ăý210121 sin ÿ ĂþĂÿ  is equal to 

(a) 2 cos 1  + ăý210 Ăþ.               (b) 22 cos 1  + ăý210 Ăþ               (c) 0                (d) does not exist. 

5. The double integral + + þ  ĂÿĂþý010   reduces to 

(a) 
12 + (1 2 ÿ)Ăÿ10                 (b) + + þ  ĂþĂÿþ010                    (c) + + þ  ĂþĂÿ1þ10            (d) 

12 + þ Ăþ10  

6. If Ą(þ, ÿ) = ý, ý constant and  ý = [ÿ, Ā] × [ā, Ă] then + + ý Ăýý   equals 

(a) ý(Ā 2 ÿ)(Ă 2 ā)         (b) ý(ā 2 ÿ)(Ă 2 Ā)        (c) ý(Ā 2 ā)(Ă 2 ÿ)        (d) data insufficient  

7. Let � = {(þ, ÿ): þ2 + ÿ2 ≤ Ā}  and Ą(þ, ÿ) = þ2 + ÿ. Then + + ĄĂý�  lies in between 

(a) 216� ÿÿĂ 4�              (b) 22 ÿÿĂ 2                  (c) 28�  ÿÿĂ 24�                (d) 24�  ÿÿĂ 8� 

8. The iterated integral + + (þ2 + ÿ2)2ýý220  ĂÿĂþ  represents 

(a)  The area of the region in the þÿ-plane bounded by the line ÿ = 2þ and the parabola ÿ = þ2 

(b) Volume of the solid that lies under the paraboloid Ā = þ2 + ÿ2 and above the region in the þÿ-plane 

bounded by the line þ = ÿ/2 and þ = √ÿ 

(c) Volume of the solid the lies under the paraboloid Ā = þ2 + ÿ2 and above the region in the þÿ-plane 

bounded by ÿ2 = þ and þ = √ÿ  

(d) None of the above. 

9. The volume of the region bounded by Ā = þ + ÿ, Ā = 6, þ = 0, ÿ = 0, Ā = 0 is  

(a) 36 cubic units                  (b) 30 cubic units               (c) 2/6 cubic units               (d) None of these.  

10. The volume of the solid given by þ2 + ÿ2 ≤ 1 and Ăÿÿ21 þý ≤ Ā ≤ 2�  is 

(a) �                                  (b) �2                              (c) 1                               (d) None of these. 

11. Let � be the volume of the solid that lies under the paraboloid Ā = þ2 + ÿ2 and above the region in the þÿ-

plane bounded by the line ÿ = 2þ and the parabola ÿ = þ2. 
Let  ý = + + (þ2 + ÿ2)  ĂÿĂþ,                              þ = + + + ĂĀĂþĂÿ.ý2+þ20√þþ/2402ýý220  Then  

(a) � = ý but � b þ    (b) � = ý = þ              (C) � b ý but � = þ              (d) � b ý, � b þ 

 

12. , ÿ sin(þÿ)ĂþĂÿý  where ý = [1,2] × [0, �] equals          
(a) �                                       (b) 2�                            (c) 0                                         (d) 1   

13. If Ą: [0,1] → ℝ is continuous then , Ą(ÿ)ăýĂþĂÿ, þ = [0, 1] × [0, 1]þ  ăÿăÿþā 

(a) (ă 2 1) + Ą(ÿ)Ăÿ10           (b) ă + Ą(ÿ)Ăÿ10             (c) (�22 2 ă) + Ą(ÿ)Ăÿ10            (d) None of these. 
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14. , ăý/þĂþĂÿþ  ý/ăĀă þ = {(þ, ÿ) ∈  ℝ2: 1 ≤ ÿ ≤ 2, ÿ ≤ þ ≤ ÿ3} equals  
(a)  

�22 2 �2                              (b) 
�42 2 �22                       (c) 

�2212                                    (d) None of these. 

15. , ăsin ý cos þĂþĂÿþ  ý/ăĀă þ = {(þ, ÿ) ∈  ℝ2: þ2 + ÿ2 ≤ 4} lies between 

(a) 4�ă2and 4�ă3                (b) ă� and ă2�               (c) 
4��  and 4�ă                        (d) None of these.    

16. Ą is continuous on [0,1] and + Ą(þ)Ăþ = 0,10  then + + Ą(þ)Ą(ÿ)ĂÿĂþý0  10   

(a) Depends on Ą(ÿ)                 (b) 
12                                  (c) 0                                      (d) cannot be evaluated. 

17. , (þ 2 3ÿ2)ĂþĂÿþ  where þ = [0,2] × [1,2] equals 

(a) 12                                         (b) -12                                (c) 6                                             (d) 0  

18. Let ý(þ) = + Ą(þ, ÿ)Ăÿ20  and þ(ÿ) = + Ą(þ, ÿ)Ăþ10  where Ą(þ, ÿ) =  þ2ÿ3, then 

(a) ý(þ) = 3þ2, þ(ÿ) = ÿ4/4                                         (b) ý(þ) = þ4, þ(ÿ) = ÿ3 

(c) ý(þ) = 4þ2, þ(ÿ) = ÿ3/3                                          (d) None of the above.      

 

19. The value of the integral , √þ2 + ÿ2ý  Ăþ Ăÿ  where R= {(þ, ÿ) ∈  ℝ2: þ ≤ þ2 + ÿ2 ≤ 2þ}is 

(a) 0                                         (b) 7/9                                 (c) 14/9                                       (d) 28/9 

 

20. If ý = [0,1] × [0,1], then , ă2ý22þ2ĂþĂÿý  lies between 

(a) 21 and 0                               (b) 0 and 
1�2                         (c) 1/ă and 1                       (d) None of these.  

21. Ą is continuous on [0, 1] and +  Ą(þ)Ăþ = 0,10  then + +  Ą(þ)Ą(ÿ)ĂÿĂþý010  is  

      (a) depends on Ą(ÿ)              (b) 
12                  (c) 0                (d) cannot be evaluated  

22.  Ą(þ, ÿ) = {2            1 ≤ þ < 3              0 ≤ ÿ ≤ 23            3 ≤ þ ≤ 4              0 ≤ ÿ ≤ 2       then,  

(a) Ą is not integrable on [1, 4] × [0, 2] 
(b) + +  Ą = 5.4120  

(c) + +  Ą = 14.4120  

(d) None of these. 

23. Let Ą(þ, ÿ) = sin ( 1ý+þ) , ą(þ, ÿ) = 1ý+þ and � = {(þ, ÿ): þ2 + ÿ2 ≤ 1}.  
Then which of the following statement is true. 

(a) Ą and ą are Riemann integrable over �. 
(b) Ą is Riemann integrable over �, but ą is not Riemann integrable over �. 
(c) ą  is Riemann integrable over �, but Ą is not Riemann integrable over �. 
(d) Both Ą and ą are not Riemann integrable over �.  

 

24. Ą(þ, ÿ) = {0  ÿĄ þ, ÿ ∈ ℚ ∩ ý3   ÿĄ ĀĂ/ăĀýÿāă      where ý = [0, 1] × [0, 1]. Then  

(a) Ą is continuous at (0, 0)                                  (b) lim(ý,þ)→(0,0)  Ą(þ, ÿ) does not exist 

(c) Ą is integrable over ý                                      (d) Ą is not integrable over ý 

 

25. If Ą(ÿ) = + sin �ýý�2�  Ăþ   then Ą′(ÿ) is 

   

(a)  +  � cos �ýý�2�  Ăþ                                                    (b) + cos ÿþ Ăþ�2�                    

(c) + cos ÿþ Ăþ + 2 sin ÿ3 2 sin �2� .�2�                        (d) None of the above  
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26. If ą(þ) = + sin ýþþ10  Ăÿ on any interval [ÿ, Ā] not containing zero then ą′(þ) equals  

(a) 
cos ýý                   (b) 

sin ýý                           (c) 
cos þþ                     (d) None of the above. 

 

27. Ą(þ, ÿ) = {ý�ÿýý0    þ b 0ĀĂ/ăĀýÿāă         

(a) , Ąý  = 1 

(b) , Ąý  = cos 1- 1 

(c) , Ąý  = 1- cos 1 

(d) None of these. 

 

28. The triple integral + + + Ă��  where � is he region bounded by the paraboloid ÿ = þ2 + Ā2 and the plane           ÿ = 4 can be expressed as an iterated integral in the order ĂÿĂĀĂþ as 

(a) 2 + + + ĂÿĂĀĂþ4ý2+ÿ2√42ý2020                                        (b) + + + ĂÿĂĀĂþ4ý2+ÿ2√42ý22√42ý2222   

(c)  2 + + + ĂĀĂÿĂþ4ý2+ÿ2√42ý2020                                         (d) None of these. 

 

29. The triple integral + + + þÿ2Ā3ĂþĂÿĂĀþ0ý010   

(a) 
190               (b)     

150                  (c)  
145                 (d)  

110                   

30. The value of + (þ + Ă)2 Ăþ10  is  

(a) 
(þ+1)33             (b) Ă2 + Ă 2 1/3              (c) Ă2 2 2Ă 2 1/3      (d) None of these. 

31.  The value of + log(þĂ)Ăþ  ÿā 10  

(a) log(1 + Ă)                (b) 2 log Ă                   (c) log Ă                  (d) None of these   

32. If ą(þ) = + log(þ2 + ÿ2)Ăÿ     þ b 0.10  then ą′(þ) equals  

(a) 0                      (b) 1                  (c) 2Ăÿÿ21  1ý                      (d) does not exist.   

 

 

Descriptive Questions 

(I) Use Fubinis theorem to evaluate ,  Ąþ  . Sketch the region þ of integration. Write both the iterated 

integrals. 

1. Ą(þ, ÿ) = þ2ÿ and þ is bounded by the lines þ = 2, þ = 4, þ = 2ÿ and þ = ÿ2. 
2. Ą(þ, ÿ) = þ + ÿ and þ is defined by the parabola ÿ = þ2 and ÿ = 1 2 þ2. 
3. Ą(þ, ÿ) = þ + ÿ and þ is bounded by the lines þ + ÿ = 1, þ + ÿ = 3 and co-ordinate axes.  

4. Ą(þ, ÿ) = þ + ÿ and þ is defined by þ = {(þ, ÿ): |þ| ≤ 1, 0 ≤ ÿ ≤ 1 + |þ|}. 
5. Ą(þ, ÿ) = (1 + þ) sin ÿ and þ is the trapezoid with vertices (0,0), (1, 0), (1,2) and (0, 1). 

6. Ą(þ, ÿ) = 2ý1+ý2+þ2 and þ is the region in the first quadrant defined by þ2 = 2ÿ and þ = 2. 
7. Ą(þ, ÿ) = þ sin ÿ and þ is given by þ = {(þ, ÿ): 0 ≤ þ ≤ cos ÿ, 0 ≤ ÿ ≤ �}. 
8. Ą(þ, ÿ) = þ3ÿ2 and þ is the disk þ2 + ÿ2 ≤ ÿ2. 

9. Ą(þ, ÿ) = þÿ2 and þ is the region above the lines ÿ = 1 2 þ and inside the circle þ2 + ÿ2 = 1. 
10. Ą(þ, ÿ) = þ2 2 þÿ and þ is the region enclosed by ÿ = þ and ÿ = 3þ 2 þ2. 
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11.   Ą(þ, ÿ) = þ 2 ÿ   and S is the region above ÿ-axis bounded by ÿ2 = 3þ and ÿ2 = 4 2 þ. 

12.   Ą(þ, ÿ) = 1√2þ2þ2  is the region in the first quadrant bounded by þ2 = 4 2 2ÿ. 

 

 

(II) Evaluate the following integrals by reversing the order of integration. Sketch the region of integration.  

1. + + sin �þ3ĂþĂÿ3√þ90                                   

2.  + +  ăþ2ĂþĂÿ1þ220             

3. + + ÿă(ý21)2  ĂþĂÿ51+þ220                           

4.  + + (þ2 + 4ÿ2)ĂÿĂþ√4−ý22020  

5. + + (ÿ2 2 ÿ2)3/2 ĂÿĂþ√�22ý20�0                

6.  + +   √1 + ÿ3 ĂÿĂþ1√ý10  

7. + +  1þ2  ăý/√þ ĂÿĂþ2ý2√21                             

8. + + ăþ3ĂÿĂþ3√ý10  

9. + +  ý(ý2+þ2)3/2  ĂÿĂþ√3ý√31                        

10. + +  �(ý2−2ý)ý+1   ĂþĂÿ3√þ91  

11.  + +    (þ + ÿ)Ăþ Ăÿ√42þ130   

12. + +  ăþ3ĂÿĂþ2√42ý40  

 

(III) Using double integration, find the area of the region þ in ℝ2, in the following examples:  

1. þ is bounded by the parabola ÿ = þ2 and line ÿ = 2þ + 3. 
2. þ is bounded by the parabola ÿ = 9 2 þ2 and  ÿ = þ2 + 1. 
3. þ is bounded by the circle þ2 + ÿ2 = 16 and the parabola ÿ2 = 6þ. 
4. þ is the interior of the quadrilateral with the vertices (1, 0), (4,1), (3,3) and (2, 2). 
5. þ is bounded by the parabolas ÿ = þ2 and ÿ = 4þ 2 þ2. 
6. þ is bounded by ÿ = sin þ and ÿ = cos þ for 0 ≤ þ ≤ �4.  

IV. Evaluate the following Triple integrals 

1.  + + +   6þĀĂÿĂþĂĀý+ÿ0ÿ010    

2.  + + +    þăþĂÿĂþ�Ā�ÿ0ý2ý31  

3.  + + +    ĂĀĂþĂÿ82ý22þ2ý2+3þ23þ0√20    

4.  + + +    1ýþÿ ĂþĂÿĂĀ�1�1�1  

5.   + + +    ĂĀĂÿĂþ323ý2þ0323ý010    

6.  + + +    ĂĀĂÿĂþþ+10√12ý22√12ý2121  
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(IV) Evaluate the following triple integrals.  

1. - Āþ sin þÿĂ�þ  where þ  is the parallelepiped between the graphs of Ā = 0  and Ā = 2  on the 

rectangular region ý in the ÿĀ-plane bounded by the lines þ = 16 , þ = 1, ÿ = 0 and ÿ = �. 
2.  - þÿĀĂ�þ   where þ is the bounded by the three co-ordinate planes and the plane þ + ÿ + Ā = 1. 
3. - (þ + 1)Ă�þ  where þ is the solid region between the graphs of the surface  Ā = 2ÿ2 and Ā = þ2 

on the region ý in the ÿĀ-plane bounded by ÿ = 0 and ÿ = þ for 0 ≤ þ ≤ 1. 
4. - þÿ sin ÿþĂ�þ  where þ  is the rectangular box defined by the inequalities 0 ≤ þ ≤ �, 0 ≤ ÿ ≤1, 0 ≤ Ā ≤ �6.  
5. - þÿĀĂ�þ  where þ is the solid in the first octant bounded by the parabolic cylinder  Ā = 2 2 þ2 

and the planes  Ā = 0, ÿ = 0, ÿ = þ. 
6. - ĀÿĂ�þ  where þ  is the solid bounded above by the plane Ā = 1  and below by the cone Ā =√þ2 + ÿ2. 
7. - ĀĂ�þ  where þ is the solid region bounded above by the sphere þ2 + ÿ2 + Ā2 = 9, below by the 

plane Ā = 0 and on the sides by the plane þ = 21, þ = 1, ÿ = 21 and ÿ = 1. 
8. - ÿĂ�þ  where þ is the solid enclosed by the planes Ā = 0, Ā = ÿ and the parabolic cylinder ÿ =1 2 þ2. 
9. - ÿĂ�þ  where þ is the solid defined by the inequalities 

�6 ≤ ÿ ≤ �2 , ÿ ≤ þ ≤ �2 , 0 ≤ Ā ≤ þÿ. 
10. - þÿĀĂ�þ  where þ is the portion of the sphere þ2 + ÿ2 + Ā2 = ÿ2 lying in the first octant.  

 

 

 

 

 

 



1 | P a g e                 I n t e g r a l  C a l c u l u s                     P r a c t i c a l  2  

 

US/AMTP05                              Integral Calculus Sem V                Revised Syllabus 2016-17 
 

Paper - I           Change of Variables in Double and Triple Integrals         Practical -2 

Objective Questions  

1. D is the closed region in the ÿĀ plane bounded by Ć = √1 2 ą2  and the ą-axis.If ý is the region in the ÿ 2 � 

plane whose image is � under the transformation ą = ÿ cos �, Ć = ÿ sin � then ý is  

(a) {(ÿ, �)/0 < ÿ < √2, 0 f � f 2ÿ}                              (b) {(ÿ, �)/0 < ÿ < 1, 0 f � f 2ÿ} 

(c)  {(ÿ, �)/0 < ÿ < 1, 0 f � f ÿ/2}                               (d) {(ÿ, �)/0 < ÿ < 1, 0 f � f ÿ} 

 

2. The double integral + + ÿ(ą, Ć) ýąýĆþ  where þ = {(ą, Ć)/ą2 +  Ć2 f 2ą}, expressed as an iterated integral in 

polar coordinates is 

(a) + + ÿ(ÿ cos �, ÿ sin �)ÿ  ýÿý�2 cos �02ÿ0                            (b) + + ÿ(ÿ cos �, ÿ sin �)  ýÿý�2 cos �02ÿ0  

(c)  + + ÿ(ÿ cos �, ÿ sin �)ÿ  ýÿý�2 cos �0�20                               (d) + + ÿ(ÿ cos �, ÿ sin �)ÿ  ýÿý�2 cos �0�22�2  

3. þ = {(ą, Ć)/ÿ2 f ą2 + Ć2 f Ā2} with 0 < ÿ < Ā. Then + + ÿ(ą, Ć) ýąýĆþ   expressed in polar coordinates is  

(a) + + ÿ(ÿ cos �, ÿ sin �)ÿ  ýÿý�ÿĀ2ÿ0                                      (b) + + ÿ(ÿ cos �, ÿ sin �)ÿ  ýÿý�Āÿ2ÿ0  

(c)  2 + + ÿ(ÿ cos �, ÿ sin �)ÿ  ý�ýÿÿ0Āÿ                                    (d)  None of these. 

4. The integral + + ÿ(√ą2 + Ć2)    ýĆýąý √3ý20   in polar coordinates is  

(a) +   + ÿ(ÿ)ÿ  ýÿý�2 sec �0ÿ/40                                   (b) +   + ÿ(ÿ)ÿ  ýÿý�2 sec �0ÿ/30   

(c) +   + ÿ(ÿ)ÿ  ýÿý�2 sec �0ÿ/3ÿ/4                                    (d) +   + ÿ(ÿ)ÿ  ýÿý�2 cos �0ÿ/3ÿ/4   

5. The area of the ellipse 4ą2 + 9Ć2 = 36  is 

(a) + + ÿýÿý�6/√4+5Āÿ�2 �0ÿ/20                                             (b) 2 + + ÿýÿý�6/√4+5Āÿ�2 �0ÿ/20  

(c)  4 + + ÿýÿý�6/√4+5Āÿ�2 �0ÿ/20                                          (d) None of these. 

6. The volume of the region bounded by ć = ą2 + Ć2, ć = 0, ą = 2ÿ, Ć = ÿ  and Ć = 2ÿ  is 

(a) 
4ÿ43                                (b) 

8ÿ43                                  (c) 
16ÿ43                             (d) None of these. 

7. The volume � of the solid above the region ý = {(ÿ, �)/1 f ÿ f 3, 0 f � f ÿ/4} and under the surface ć =þý2+þ2
  is 

(a) ÿþ                               (b) ÿþ(þ 2 1)                          (c) 
ÿ8 (þ9 2 þ)                        (d) 

ÿ8 þ. 
8. If � is a plate defined by 1 f ą f 2, 0 f Ć f 1 and the density is Ćþýþ, then mass of the plate is 

(a) e                       (b) 
þ22                      (c) 

þ22 2 þ               (d) 
þ22 2 þ + 12 

9. The centroid of the region bounded above by the line Ć = 1 and bounded below by the curve Ć = ą2/4  is 

(a) (0, 3/5)                          (b) (1, 3/5)                          (c) (2, 3/5)                  (d) (21, 3/5) 

10. The centroid of the rectangle bounded by the co-ordinate axes and the lines ą = ÿ and Ć = Ā has its centroid at 

(a) (ÿ/4,   Ā/4)                      (b) (ÿ/2, Ā/2)                    (c) (ÿ/2, Ā/4)                 (d) None of these.  

11.  The moment of inertia of a homogeneous disk D, center at origin and radius a with density Ā about the origin 

is 
ÿĀÿ42 . Then the moment of inertia of this disk about Ć-axis is 

(a) 0                                 (b) 
ÿĀÿ42                                    (c) 

ÿĀÿ44                                   (d) 
ÿĀÿ48  
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12. The density Ā of a region � is given by Ā(ą, Ć) = �, � constant. Then the center of mass � 

(a) depends on Ā for some value of �                                 (b) depends on Ā for any value of �   

(c) does not depends on Ā                                                    (d) is located at (0, 0) 

 

13. The volume of the solid bounded by the elliptic paraboloid ą2 + 2Ć2 + ć = 16, the planes ą = 2, Ć = 2 and 

the three co-ordinate planes is given by the expression 

(a) + + (16 2 ą2 2 2Ć2) ýąýĆ424424                              (b) + + (16 2 ą2 2 2Ć2) ýąýĆ222222   

(c)  + + (16 2 ą2 2 2Ć2) ýąýĆ2020                                 (d) + + (16 2 ą2 2 2Ć2) ýąýĆ4040  

14. The iterated triple integral + + + (ą2 + Ć2 ) ýćýĆýą2√ý2+þ2√42ý22√42ý2222   in cylindrical coordinates is 

(a) + + + ÿ3 ýćýÿý�ÿ0202ÿ0                                                     (b) + + + ÿ2 ýćýÿý�2ÿ202ÿ0   

(c)  + + + ÿ3 ýćýÿý�2ÿ202ÿ0                                                     (d) + + +   ÿ  ýćýÿý�2ÿ202ÿ0  

 

15. A region ý bounded by the coordinate axes and ą + Ć = 1 in the first quadrant is the image of a region þ lying 

in the Ăă plane under the transformation Ă = ą + Ć, ă = ą 2 Ć. Then the area of the region þ is  

(a) 1                                (b)  1/2                              (c) √2                          (d) Data insufficient   

 

16. S is the region in the first quadrant bounded by the curve ąĆ = 1, ąĆ = 2, Ć = ą, Ć = 4ą.                                
           If Ă = ąĆ, ă =  Ć ą⁄ . Then , ÿ (ą, Ć) ýąýĆþ   becomes 

(a) + +   ÿ (ÿ)Ā  ýăýĂ4121                     (b) + +   ÿ (ÿ)2Ā  ýăýĂ4121 ( 

(c) log 2  +   ÿ(ă) ýă.21                  (d) log 2  +   ÿ(Ă) ýĂ.21       

 

17. þ =  { ( ą , Ć )/|ą| + |Ć| f 1 }. If Ă = ą + Ć, ă = 2ą + Ć, ā/þ� , ÿ(ą + Ć)ýąýĆþ  equals. 

(a) +  +   ÿ(Ă)ýăýĂ121121                  (b) +  +   ÿ(ÿ)4 ýăýĂ121121  

              (c) 4 +  +   ÿ(Ă)ýăýĂ1010                  (d) +   ÿ(Ă)ýĂ121  

18. The expression for mass of a solid inside the cylinder ą2 + Ć2 = ÿ2 and between the planes ć = 0 and ć = / in the first octant with density ą is  

              (a) + + +  Ć  ýąýĆýć√ÿ22þ20ÿ0/0                                         (b) + + +  ą  ýąýĆýć√ÿ22þ20ÿ0/0                         

              (c) + + +  ą2  ýąýĆýć√ÿ22þ20ÿ0/0                                       (d) + + +  Ć2  ýąýĆýć√ÿ22þ20ÿ0/0                                                    

19. The expression for moment of inertia about the ć-axis of homogeneous tetrahedron bounded by the 
planes ć = ą + Ć, ą = 0, Ć = 0, ć = 1 with volume density � is  

               (a) � + + +  (ą2 + Ć2) ýćýąýĆ1ý+þ12þ010                                 (b) � + + +  ýćýąýĆ1ý+þ12þ010  

               (c) � + + +  ć2 ýćýąýĆ1ý+þ12þ010                                              (d) None of the above. 

20. The integral expression for each mass of the solid in the first octant bounded by the cylinder ą2 +Ć2 = 1 and the plane Ć = ć, ą 2 0 and ć = 0 with density Ā(ą, Ć, ć) = 1 + ą + Ć + ć is  

               (a) + + +  (1 + ą + Ć + ć) ýćýąýĆý0√12þ2010                               (b) + + +  (1 + ą + Ć + ć) ýćýąýĆþ0√12ý2010  

                    (c) + + +  (1 + ą + Ć + ć) ýćýąýĆ10√12þ2010                                (d) None of the above. 

21. The moment of inertia relative to the ąć plane of a three dimensional region � with density Ā at each 
point is  

                (a) -  ą2 Ā  ý��                   (b) -   ąĀ  ý��                       (c) -  Ć2 Ā  ý��                (d) -  ĆĀ ý��  
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22. The moment of inertia relative to the ć-axis of a three dimensional region � with constant density 1 
in spherical co-ordinates is  

              (a) -  Ā2�  Āÿ�3 � ýĀý�ý�                                            (b) -  Ā4�  Āÿ�3 � ýĀý�ý�                     

              (c) -  Ā3�  Āÿ�3 � ýĀý�ý�                                            (d) -  Ā4�  Āÿ�2 � ýĀý�ý�                                                             

23. The moment of inertia of a three dimensional region � with constant density 1 in cylindrical co-
ordinates is  

              (a) -  ć ýćýÿý��                  (b) -  ÿć ýćýÿý��             (c) -  ÿć2 ýćýÿý��      (d) -  ÿ ýÿýćý��  

24. 25. If � is the sphere ą2 + Ć2 + ć2 f 9 then -  ý��    is equal to  

              (a) 63ÿ                         (b) 18ÿ                     (c) 62ÿ                         (d) 64ÿ                                                              

25. If � is the unit sphere ą2 + Ć2 + ć2 f 1 then -  ć  ý��  is equal to  

               (a) 0                      (b) 
23 ÿ                              (c) 

43 ÿ               (d) None of these 

26. The volume of the portion of the solid cylinder ą2 + Ć2 f 2 bounded above by the surface                         ć = ą2 + Ć2 and below by the ąĆ plane is  

(a) ÿ                     (b) 2ÿ            (c) 8ÿ                (d) 4ÿ  
 
 

Descriptive Questions 

 
I. Evaluate the iterated integrals by converting to polar co-ordinates. 

1. + +  ýýýþ1+ý2+þ2√42þ2þ√20                                       

2. + +  þý2+þ2  ýĆýą√42ý2020  

3. + +  (ą2 + Ć2)√ý2ý22√ý2ý210 ýĆýą 

4.   + +  √ą2 + Ć2  ýąýĆ√42þ2√3þ10 . 

5.  + +  (ą2 + Ć2) ýĆýą√2ÿý2ý202ÿ0  

6. + + √ą2 +  Ć2 ýąýĆ√2ý2ý2020             

7. ℎ+ +  ą  ýĆýą√12ý2212ý2021            

8. + + ąĆ ýąýĆ√42þ2þ√20           

9. + + cos(ą2 + Ć2)√12þ2010  ýąýĆ 

10. + +  √ą2 + Ć2√2ý2ý2020   ýĆýą 

 

II. Evaluate the double integral as an iterated integral in polar co-ordinates.  

1. ,  (ą + Ć)ý�þ  where þ is the region in the first quadrant bounded by the lines Ć = 0, ą = þ√3 and 

the circle ÿ = 2. 
2.  ,  ý�1+ý2+þ2þ  where þ is the sector in the first quadrant bounded by Ć = 0, Ć = ą,  and ą2 + Ć2 = 4  

3. ,  3Ćý�þ  where þ is the region in the first quadrant bounded by the circle (ą 2 1)2 + Ć2 = 1 and 

below by the line Ć = ą. 
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4. ,  ý�þ  where þ is the region in the first quadrant of the circle ą2 + Ć2 2 8Ć = 0 cut by the line Ć = √3ą. 
5. ,  ý�þ  where þ is the annulus between the circles ą2 + Ć2 = 4 and ą2 + Ć2 = 16. 

 

 

III. Using the cylindrical co-ordinates evaluate the following integrals: 

1.+ + +  ą2ýćýĆýą42ý22þ20√42ý22√42ý2222   

2.+ + + ą2ýćýĆýą√92ý22þ20√92ý22√92ý2323  

3.- √ą2 + Ć2 + ć2  ýąýĆýćþ  where þ is the region bounded by the plane ć = 3, and the cone ć =√ą2 + Ć2 

4.+ + +  ą2ýćýĆýą1(ý2+þ2)2√42ý22√42ý2222  

5.+ + + (ą2 + Ć2) ýćýąýĆ10√12þ20121  

6.- (ą2 + Ć2)ýąýĆýćþ  where þ is the solid bounded by the surface ą2 + Ć2 = 2ć and the plane ć =2. 
7.- √ą2 + Ć2 ý(ą, Ć, ć)þ  where þ is the solid region bounded by the cylinder ą2 + Ć2 = 4 and the 

plane ć = 0, Ć + ć = 4. 
8.-  ÿ(ą, Ć, ć)ý(ą, Ć, ć)þ  where ÿ(ą, Ć, ć) = ýÿ1+ý2+þ2  and þ = {(ą, Ć, ć) ∈ ℝ3 1 f ą2 + Ć2 f 3, 0 fć f 3}. 

9.-  ÿ(ą, Ć, ć)ý(ą, Ć, ć)þ  where ÿ(ą, Ć, ć) = ÿ1+ý2+þ2  and þ = {(ą, Ć, ć) ∈ ℝ3: 1 f ą2 + Ć2 f 3,   x g0, y g x, 1 f z f 5. } 

10. - ÿ(ą, Ć, ć)ýćýĆýćþ  Ą/þÿþ ÿ(ą, Ć, ć) = ÿ1+ý2+þ2  and þ = {(ą, Ć, ć) ∈ ℝ3 1 f ą2 + Ć2 f3, ą f √3 Ć f 3ą, ą g 0, 0 f ć f 3}. 
 

IV. Using cylindrical co-ordinates find the volume of the solid region þ in ℝ3 where  

1.þ is bounded by the paraboloid  ą2 + Ć2 = 4 2 ć and the plane ć = 0. 
2.þ is bounded above by the upper hemisphere of ą2 + Ć2 + ć2 = 25, below by thw plane ć = 0 and the 

laterally by the cylinder ą2 + Ć2 = 9. 
3.þ is the bounded by the cone ć = √ą2 + Ć2 and the paraboloid ć = ą2 + Ć2. 
4.þ is the solid bounded above by the paraboloid ć = 5 2 ą2 2 Ć2 and below by the paraboloid ć =4ą2 + 4Ć2 . 

5.þ is the solid bounded below by the paraboloid ć = ą2 + Ć2 and above by the plane ć = 2Ć. 

 

V. Evaluate the following integrals using spherical co-ordinates: 

1. - þ(ý2+þ2+ÿ2)3/2  ýąýĆýćþ  where þ is the unit sphere centered at origin.  

2.+ + + ć2√ą2 + Ć2 + ć2 ýćýĆýą.√42ý22þ20√42ý22√42ý2222  
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3.+ + + 11+ý2+þ2+ÿ2  ýćýĆýą.√12ý22þ20√12ý2010  

4.- ýýýþýÿ(ý2+þ2+ÿ2)3/2þ  where þ is bounded by the sphere Ā = ÿ and Ā = Ā; (ÿ > Ā > 0). 
5.- ą2 + Ć2ýąýĆýćþ  where þ  is the portion of the sphere  ą2 + Ć2 + ć2 = ÿ2 cut by the cone ą2 +Ć2 = 3ć2. 
6. - þ2(ý2+þ2+ÿ2�2 )3/2 ýýýþýÿþ  where þ is the spherical region given by ą2 + Ć2 + ć2 < ÿ2. 
7.-  ąĆć ýą ýĆ ýćþ  where þ is the solid in the first octant bounded by the sphere ą2 + Ć2 + ć2 = 4. 
8.- ą2ý�þ  where þ is the solid region bounded above by the sphere ą2 + Ć2 + ć2 = 1 and below by 

the upper half of the cone ć2 = ą2 + Ć2. 
 

 

VI. Using Spherical / Cylindrical Coordinates find the volume of the solid region þ in ℝ3 in the following 

examples:  

1.þ is the sphere ą2 + Ć2 + ć2 = ÿ2 

2.þ is the region between two concentric spheres Ā = ÿ and Ā = Ā; (Ā > ÿ > 0). 
3.þ is above the cone ć2 = ą2 + Ć2 and inside the sphere ą2 + Ć2 + ć2 = 2ÿć, (ÿ > 0). 
4.þ is the volume cut from the sphere Ā = ÿ by the planes � = 0 and � = ÿ6 in the first octant.   

5.þ is the volume of the solid region bounded by the surface Ā = cos �  

6.þ is the solid within the sphere ą2 + Ć2 + ć2 = 9 outside the cone ć = √ą2 + Ć2 and above the ÿĀ-

plane. 

7.þ is bounded by the cylinder ą2 + Ć2 = 25 and the planes ć = 0, ć = 8 2 ą 2 Ć. 
8.þ is the solid enclosed between the cylinder ą2 + Ć2 = 1 and the planes ć = 0 and ć = Ć + 1. 
9.þ is enclosed between the cylinder ą2+ Ć2 = 9 and the plane ć = 1 and ą + ć = 5. 
10. þ is enclosed by the paraboloids ć = 5ą2 + 5Ć2 and ć = 6 2 ą2 2 Ć2 

11. S is enclosed by the surface ć = ą2 + Ć2 above the plane ć = 0 and inside the cylinder  ą2 + Ć2 = 2Ć.  

 

VII. Evaluate the following integrals by a suitable change of variables. 

1.   ,  ą2Ćý�þ  where þ is the region bounded by the lines 2ą 2 Ć = 1, 2ą 2 Ć = 22, ą + 3Ć = 0, ą +3Ć = 1.  
2.,  (ý22þý+2þ)3þ   ý� where þ is the region bounded by the lines ą 2 2Ć = 1, ą 2 2Ć = 2, ą + 2Ć = 1, ą +2Ć = 3. 
3.,  (ą2 + Ć2) ýąýĆþ  where þ is the region in the ÿĀ-plane bounded by the curves 

 ą2 2 Ć2 = 1,  ą2 2 Ć2 = 2, ąĆ = 2, ąĆ = 4.  
4., ýąýĆþ  where þ is the region bounded by the curves ąĆ = 4, ąĆ = 8, ąĆ3 = 5, ąĆ3 = 15. 
5., (ą + Ć)ýąýĆþ  where þ is the region in the ÿĀ-plane bounded by the curves ą2 2 Ć2 = 1, ą2 2 Ć2 =2,  and the lines Ć = ą 2 3, Ć = ą 2 1. 
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6.        ,  sin(ý2þ)cos (ý+þ)þ  ýąýĆ where þ is the triangular region bounded by the parallelogram with vertices (ÿ, 0), (2ÿ, ÿ), (ÿ, 2ÿ) and (0, ÿ). 
7. ,  (Ć 2 ą) ý�  Ą/þÿþ  ý ý  is the region bounded by the straight lines  2ą + 3Ć 2 1 = 0, 2ą + 3Ć 23 = 0, ą + 2Ć = 0, ą + 2Ć 2 5 = 0. 

 

8. , cos (ý2þý+þ) ý� Ą/þÿþ  ý ý  is the region bounded by the coordinate axes and line ą + Ć = 1. 
 

9. , (ą 2 Ć)þý22þ2ý  ý� Where ý is the rectangular region enclosed by the lines 

  ą 2 2Ć = 1, ą 2 2Ć = 4, 2ą + 2Ć = 1, 2ą + 2Ć = 3. 
 

10. ,  þ24ýþ+4ý  ý�ý   where ý is the region bounded by the lines 

 Ć = 4ą, Ć = 4ą + 2, Ć = 2 2 4ą, Ć = 5 2 4ą. 
 

VIII. Evaluate the following integrals using the indicated transformations:  

1. , (ą2 + Ć2)þ  ýąýĆ where þ is the region bounded by the ellipse 4ą2 + Ć2 = 4. Take Ă = ą and ă =þ2.  
2.,  ąĆ2ý�þ  where þ is the region bounded by the lines ą 2 Ć = 2, ą 2 Ć = 21, 2ą + 3Ć = 1 and 2ą +3Ć = 0. Take ą = 15 (3Ă + ă) and Ć = 15 (Ă 2 2ă). 
3.,  þþ2ý ý�þ  where þ is the region bounded by the lines 2Ć = 3ą, Ć = 2ą, and Ć = ą + 1. Take ą =Ă + ă and Ć = Ă + 2ă. 
4.,  þý þý22þ2þ ý� where þ is the region in the first quadrant bounded by the hyperbolas 

 ą2 2 Ć2 = 1, ą2 2 Ć2 = 4, and the lines ą = 2Ć, ą = √2Ć. Take ą = Ă sec ă  ÿ�ý Ć = Ă tan ă for Ă > 0 and    0 < ă < ÿ2. 
5. , þýþ ý�ý  where ý is the region bounded by lines 2Ć = ą,   Ć = ą and hyperbolas ąĆ = 1 and ąĆ = 2. 

Take Ă = þý    ă = ąĆ.  
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US/AMTP05                              Integral Calculus Sem V Revised Syllabus 2016-17

Paper - I Line Integrals of Scalar and Vector Fields Practical -3

Objective Questions

1. ∶ → , ( ( ) = , . The image of [0, 1] is

a) One full circle. b) an arc of a circle.

c) an arc of a parabola d) none of the these

2. ∶ → , ( ( ) = ( + , − ). The image of [0, 1] is an

a) an arc of a circle. b) an arc of a parabola
c) An arc of a hyperbola d) none of these.

3. = ∫ = ( , , ) (0,0,0) (1,1,1). Then I is
a) 0. b)1. c) 1 2⁄ . d) none of these.

4. The value of the line integral ∫ ( + ) ̅ where C is the arc + = 1 from
(0, 1) to (1, 0) in clockwise direction is

a) 2⁄ . b) − 2⁄ c) d) none of these.

5. The Cartesian representation of the curve having parametric equation
= 3 + 5 sin , = 1 + 2 cos ; 0 ≤ ≤ 2

a) + = 1. b) + = 1.

c)
( )

+
( )

= 1. d)
( )

+
( )

= 1.

6. A parameterization of a circle of radius 2 centered at the origin in the X Z plane
is given by
a) ∝∶ [ 0, 2 ] → ,∝ ( ) = (2 , 2 sin , 0 )
b) ∝∶ [ 0, 2 ] → ,∝ ( ) = (2 , 2 sin , 1 )
c) ∝∶ [ , 3 ] → ,∝ ( ) = (2 , 0 , 2 sin )
d) ∝∶ [ 0, 2 ] → ,∝ ( ) = (0 , 2 , 2 sin )

7. The parametric equations x = 2 + 3t y = 4 + 7t elements.
a) The curve = , 0 ≤ ≤ 1.
b) The curve = , 0 ≤ ≤ 1.
c) The curve − = 2, 0 ≤ ≤ 1.
d) line having intercept on both the axes.

8. The parametric equations = cos(cos ) , = sin(cos ) , ∈ [ 0 , ] describes.
a) one full circle
b) an arc of a circle in first quadrant
c) one half circle above the XY-plane
d) an arc of a circle in the first and fourth quadrant

9. The equation = cos , = , 0 ≤ ≤ parameterizes
a) an arc of a circle. b) an arc of a parabola
c) a line segment                       d) a branch of a hyperbola.
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10. = ∫
( )

ℎ ∶ + = . Then I is

a) 0.        b) 2 .              C) d) ;  where A is area of the circle.

Descriptive Questions

I. Evaluate the integral of the scalar field along the given path.

1. ( , ) = + , is the curve ( ) = 3 , ( ) = ; 0 ≤ ≤ 1.
2. ( , , ) = + + ; the curve given by

( ) = cos , ( ) = sin , ( ) = ; 0 ≤ ≤ 2⁄ .

3. ( , , ) = + + and ( ) = (sin , cos , ), 0 ≤ ≤ 2
4. ( , , ) = cos , ( ) = (sin , cos , ), 0 ≤ ≤ 2
5. ( , , ) = cos , ( ) = + , 0 ≤ ≤ 1

6. ( , , ) = √ , and ( ) = (1, 2, ), 0 ≤ ≤ 1

7. ( , ) = sin + cos , C is the line segment from (0,0) ( , 2 ).
8. ( , , ) = 2 + 9 , C: ( ) = , ( ) = , ( ) = ; 0 ≤ ≤ 1.
9. ( , , ) = + +

C; ( ) = cos , ( ) = sin , ( ) = ; 0 ≤ ≤ 2⁄ .

10.f(x, y, z) = x + y + z C is the line segment from (1, 2, 3) to (0, -1,1).

II. Evaluate the integral of the vector field along the given path.

1. ( , ) = ( − 2 , − 2 ); is the curve = from (-1, 1) to (1, 1).
2. ( , ) = ( , ); is the line segment from (0, -1) to (4, -1)

and then to (4, 3).
3. ( , , ) = ( , + , ); : ( ) = , ( ) = , ( ) = , 0 ≤ ≤ 1.
4. ( , , ) = (2 + , , + 2 ) C: + = 1; = 1 from (0,1,1) (1,0,1).
5. ( , , ) = ( , , − ) is the circular helix given by

( ) = cos , ( ) = sin , ( ) = 2 ; 0 ≤ ≤ 3 .

6. ( , , ) = ( , − , 1); along each of the following curves:
a) The straight line joining (0, 0, 0) to (1,1,1)
b) The circle of radius 1, with centre at the origin and lying in the , plane, traversed

counterclockwise as viewed from the positive axis
c) The parabola = , = 0, between (−1, 0, 1) and (1, 0, 1)
d) The straight line between (−1, 0, 1) and (1, 0, 1)
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III. Evaluate the following line integrals

1. Evaluate the line integral ∫ sin + cos − ( ) where C be parametrized by

= , = , = , 0 ≤ ≤ 7 /2.

2. Evaluate the line integral ∫ + + , where is parametrized by ( ) =

( , , 1), 0 ≤ ≤ 1.

3. Evaluate ∫ ( ). , where ( , , ) = sin + cos + and is the line segment from

(1, 0, 0) to (0, 0, 3).

4. Evaluate ∫ 2 + + , where is an oriented curve connecting (1, 1,1) to

(1, 2,4).

5. Evaluate ∫ (3 − ) + where C is parametrised by

∝: [ 0, log 2] → ( ) = ( − 1, − 1)
6. Evaluate the integral of the vector field ( , ) = ( − 2 , − 2 ); along the parabolic

path C = (−1, 1) (1, 1).
7. Evaluate the integral of the vector field ( , , ) = , + , ; along the given path

ℎ ( ) = , ( ) = , ( ) = ; 0 ≤ ≤ 1.

8. Evaluate ∫ − where C is the straight line path joining

(1 , 0) (2, 0) (2, 0) (2, 1).

IV. Solve the following:
1. Calculate the work done by the force field ( , , ) = + when a particle is moved along the

path (3 , , 1), 0 ≤ ≤ 1.
2. Find the work done by force field when a particle is moved along the straight- line segment from

(0, 0, 1) to (3, 1, 1).
3. Find the work which is done by the force field ( , ) = ( + ) ( + ) around the loop

( , ) = (cos , sin ), 0 ≤ ≤ 2 .
4. Let = ( + 2 ) + + 3 . Show that the integral of around the square with vertices

(±1,±1, 0) is zero.
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US/AMTP05                              Integral Calculus Sem V Revised Syllabus 2016-17

Paper - I Green’s Theorem, Conservative Field and Applications Practical 4
Objective Questions

1) ( , ) = ( , ) is conservative in the plane then

a) = , = 1, = 6 b) = 5/3 , = 3, = 4.

c) & exists but a does not exist.                       d) = 1, = 2, = 5.

2) ( , , ) = (2 + , + 2 + , + ) then
a) there exist a function ( , , ) such that = ∇
b) there does not exist a function ( , , ) such that = ∇
c) ( , , ) = 2 + 2 + 2 , = ∇

d) ( , , ) = + + + , = ∇

3) The line integral ∫ ∙ ; =
̂ ̂

and : + = .

a) depends on a.
b) does not exist as Green’s Theorem is not applicable.

c) is a constant independent of a.
d) none of the above.

4) = ∮ + 2 where is a closed curve of the region + ≤ Then is
a) b) c) 0. d) None of these.

5) ∮ + = 0 around every C is a closed path in a simply continued region then

a) = if P and Q are C1 function.

b) = always.

c) = .

d) Nothing can be said about .

6) = ∮ ( + ) ̂ + ( − ) ̂ ,Where C is the ellipse + = then I is
a) b) 0. c) ( + ) d) .

7) = ∫ + where C is the path , ( /2) ; 0 ≤ ≤ 1 Then I is
a) 1 b) 0. c) –1. d) .

8) ∇ ( , , ) = 2 ̂ + ̂ + and (0,0,0) = 5. Then (1,1,1).
a) 5. b) e. c) +  5. d) 3

9) ∫ + along every closed curve is
a) 2 b) c) /2 d) None of these.



2 | P a g e I n t e g r a l  C a l c u l u s                     P r a c t i c a l  4

10) = log( + 1) − 2 , = − log( + 1). Then

a) ∫ + = ∫ + for any two curves C1 & C2 with same end points.

b) ∫ + = ∫ + for any two curves C1 & 2 by Green’s Theorem.

c) ∫ + ≠ ∫ + for any two curves C1 & C2.

d) None of these.

Descriptive Question

I. Find whether the following force field F is conservative .If so find ∅ so that = ∇∅ and
calculate the work done in the moving the particle from the point to the point

1. ( , ) = ( + , + ); (1,1), (2, 0).
2. ( , ) = ( + , 2 ); (1, 0), (1, 1).
3. = ( sin , , cos ). P(0,0,0),  Q( , , )
4. = 2 + 3 + 4 , (1, −1,0), (2,0,1)
5. . = ( + ) + ( + ) + ( + ) , (1, −1,0), (2,0,1)

6. = ( + + 3 ), (1, −1,0), (2,0,1).

II. Calculate the work done in the moving the particle from the point to the point for the following force
fields, showing first that they are conservative.

1. ( , ) = ( + 4 + 4 , 2 + 8 + 8 ), = (2, −1) and = (−4, 2).

2. ( , ) = cos , 2 sin , = , 0 and = , 1 .

3. ( , , ) = ( sin + 2 , 2 + 2 , cos + 2 + 3 ), = 0, 1 and = 1, 0,

4. ( , , ) = (3 sin + cos , cos ) ; (1, −1, 0) (2, 0, 1).

5. ( , ) = ( + 1), ( + 1) ; (1, 0) (1, 1).

III. Consider the vector field ⃗( , , ) = ⃗ + ⃗ + ( + 1) ⃗.

1. Find a scalar function such that ⃗ = ∇ .

2. Use part (1) to evaluate the line integral ∫ ⃗ ∙ ⃗. where is the curve described by

⃗( ) = ⃗ + ⃗ + ⃗ for 0 ≤ ≤ 1.

IV. In the following problems show that the given line integral is independent
of the path. Evaluate the line integral.

1. ∫ ( + 2 ) + ( + 2 )( , )

( , )

2. ∫ ( sin ) + ( cos ) .
( , ⁄ )

( , )
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3. ∫ 2 + ( − ) − 2 .
( , , )

( , , )

4. ∫ cos + cos sin + .
( , , )

( , , )

5. ∫ 2 cos + − 2 sin +
( , / , )

( , , )

6. ∫
( , , )

( , , )

V. Verify Green’s Theorem for the following examples:
1. ( , ) = 2 − + 4, ( , ) = 5 + 3 − 6 and is the triangular with vertices (0, 0), (3, 0) and

(3, 2) having positively oriented boundary.
2. ( , ) = (2 − , + ) and is the region bounded by the closed curve Γ formed by = and

= in the anticlockwise direction.
3. ( , ) = (2 − , − ) and is the positively oriented boundary of the region enclosed by the circles

+ = 1 and + = 9.
4. ( , ) = (− , ) and is the positively oriented boundary of the region defined by the lines

= 0, = 0, + = 1 and + = 2.

VI. Use Greens theorm to evaluate the following line integrals:

1. ∮ 4 + 2 ; is the boundary of the triangle with vertices (0,0) ,
(1,2) and (0, 2).

2. ∮ 2 + sin y dy; C is the boundary of the region R enclosed
between = = .

3. ∮ − + ; is the boundary of the region R enclosed between
+ = 1, + = 2, = 0 = 0.

4. ∮ 4 + 2 ; is the boundary of the triangle with vertices (0, 0), (1, 2) (0,2).
5. ∮ 2 cos + sin ; is the boundary of the region R enclosed between = = .
6. ∮( + 2 ) + ( + sin ) ; where is the rectangle with vertices (2,1), (6, 1), (6, 4) and (2, 4).
7. ∮(cos sin − ) + cos sin ; where : + = 1.

8. ∮ ( + 3 ) + (2 − ) where is the ellipse + = 1.

9. ∮ ( − 2 ) + ( + in ) where is the first quadrant arc of the circle + = .

10. ∮ where ( , ) = ( − 2 , + 3) and is the positively oriented boundary of the region,

= 8 and = 2.

VII. Using Green’s Theorem, find the area of the region whose boundary is positively oriented simple closed
curve, in the following examples:
1. is the triangle with vertices (1, 1), (4, 1) and (4, 9).
2. lies in the first quadrant bounded by the lines 4 = and 4 = and the hyperbola = 4.
3. is bounded by the lines = 1, = 3, = 0 and the parabola = .

4. = ( , ):
/

+
/

≤ 1, ≥ 0

5. = {( , ): 2 + 3 ≤ 1}



4 | P a g e I n t e g r a l  C a l c u l u s                     P r a c t i c a l  4

6. D is the interior of the circle C: ( ) = ( ) + ( ) , 0 ≤ ≤ 2
7.D is the interior of the ellipse C: ( ) = ( ) + ( ) , 0 ≤ ≤ 2
8.D is the asteroid ( ) = ( ) + ( ) , 0 ≤ ≤ 2

9.D is the region bounded by the closed curve ( ) = + (( /3) − ) , −√3 ≤ ≤ √3
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US/AMTP05 Integral Calculus Sem V Revised Syllabus 2016-17

Paper - I Evaluation of Surface Integrals Practical 5

1) The equation = − , = 2 , = + represents
a) a cone. b) a sphere. c) a circle. d) a Cylinder .

2) The equation = cos , = sin , = 4 − represents.
a) a cylinder.         b) a sphere. c) a paraboloid. d) none of these.

3) For the cylinder = 3 cos , = , = 3 sin at the point 3/√2, 1, 3 /√2 .
a) there is an unique unit normal vector.
b) there are two unit normal vectors.
c) there is no unit normal vector.
d) there are infinitely many unit normal vectors.

4) The equations = + , = − , = + ; 0 ≤ ≤ 1, 0 ≤ ≤ 1.
a) a cone. b) a sphere. c) a paraboloid d) a Cylinder.

5) The equation = 5 cos , = 5 sin , z = 7; 0 ≤ ≤ 2 represents.
a) a straight line segment.      b) a plane.        c) a circle d) a Cylinder.

6) The surface integral of ( , ) = − + ̂ on where S is the disc in the plane with
radius 2 oriented upwards and at the origin is
a) 1. b) –1.                   c) 0. d) None of these.

7) The surface area of the triangle with vertices  ( 1, 0, 0 ), (0, 1, 0 ) and ( 0, 0, 1) is

a) .3 b) .
2

3
c) .32 d) 21 .

8) The surface integral of ( , , ) = ̂ + ̂ − on the triangle with vertices
(0, 0, 0 ), (0, 2, 0) and (0, 0, 3) is
a) 1. b) –1. c) 0. d) 21

9) The surface area of the sphere ( − ) + ( − ) + ( − ) = is denoted by A.
Then,

a) A depends on , , and . b) A depends only on , , .
c)   a depends only on . d) None of these.

10) The equation = + 2 , = 2 − 3 , = 3 + 4 describes.
a) a general plane. b) a plane passing through the origin.
c) a line in ℝ d) none of these.

11) The magnitude of the fundamental vector product
̅
×

̅
for surface

̅( , ) = ( + ) ̂ + ( − ) + 4 is
(a) √4 + (b) √4 + 128 (c) √4 + 1 (d) None of these.

12) The parametric representation of cylinder + = 4, 0 ≤ ≤ 1 is given by
(a) = 2 cos , = 2 sin , = + , 0 ≤ ≤ 2 , 0 ≤ ≤ .
(b) = 2 cos , = 2 sin , = , 0 ≤ ≤ 2 .
(c) = 2 cos , = 2 sin , = , 0 ≤ ≤ 2 , 0 ≤ ≤ 1.
(d) None of the above.
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13) The parameterization = cosh cos , = cosh sin , = sin ℎ , where
0 ≤ ≤ 2 , −∞ < < ∞ represents

(a) an ellipsoid (b) a hyperboloid of one sheet
(c) a cylinder (d) None of these.

14) The fundamental vector product for the cone
= cos , = sin , = , 0 ≤ ≤ 2 , 0 ≤ ≤ 1 is

(a) – cos , − sin , (b) ( cos , sin , )

(c) – cos , sin , (d) ( cos , − sin , )

15) The area of surface of revolution of the curve = ( ) parameterized by
= , = ( ) cos , = ( ) sin , ≤ ≤ , 0 ≤ ≤ 2 is

(a) ∫ | ( )| 1 + ( ( ))

(b) 2 ∫ | ( )| 1 + ( ( ))

(c) ∫ ( ) 1 + ( ( ))

(d) None of these.

16) ∬ where is the triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1)  is

(a) √3 (b) √ (c) √ (d) None of these.

17) The flux of the vector field ̅ = + + across the unit sphere
+ + = 1 equals

(a) (b) (d) (d) None of these.

18) Let = ( , , ) ̂ + ( , , ) ̂ + ( , , ) , where , , are continuously

differentiable and S is the surface given by = ( , ), ( , ) ∈ , then ∬ . is given
by

(a) ∬ + + (b) ∬ − − +

(c) ∬ + − (d) None of these.

19) The centre of mass of a uniform hemispherical surface of radius a having parametric
representation ̅( , ) = cos cos ̂ + sin cos ̂ + sin ,
( , ) ∈ [0, 2 ] × [0, /2] is given by

(a) , , (b) 0, 0, (c) (0, 0, 0) (d) None of these.

20) The parameterized surface ̅ ( , ) given by
= + + , = + + , = + + represents

(where , , , , , , , , are constants)
(a) A sphere with centre ( , , ) (b) a cylinder
(c)  an ellipsoid (d) a plane
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DESCRIPTIVE QUESTIONS

(I) Evaluate surface integrals of scalar field over :
1. ( , , ) = + + and is the cube centered at the origin (−1 ≤ ≤

1,−1 ≤ ≤ 1,−1 ≤ ≤ 1)
2. ( , , ) = where is the part of the plane + 2 + 3 = 6 in the first

octant.
3. ( , , ) = + where is the surface of the paraboloid + = 2 −

above the -plane.
4. ( , , ) = and is the upper hemisphere + + = .
5. ( , , ) = + + and is the portion of the plane + = 1 in the first

octant for which 0 ≤ ≤ 1
6. ( , , ) = + 2 on the surface whose parameterization is ( , ) =

̂ + ̂ + where 0 ≤ ≤ 1 and 0 ≤ ≤ 2.

7. ( , , ) = where is the portion of the cone + = between the
plane = 1 and = 2.

8. ( , , ) = , is the surface of the cone = + between =
1 and = 2.

9. ( , , ) = and S is the cylinder + = 1, 0 ≤ ≤ 1 and its top and
bottom.

10. ∬ , where is the surface = + 4 , 0 ≤ ≤ 2, 0 ≤ ≤ 2.

(II) Evaluate the surface integrals of vector field over :
1. ( , , ) = (18 , −12, 3 ) and is the surface 2 + 3 + 6 = 12 in the first

octant.
2. ( , , ) = ( , , 0) and is the hemisphere above -plane
3. ( , , ) = ( , , ) and is the piece of the cylinder with parameterization

( , ) = (cos , sin , ) where ( , ) ∈ 0, × [0, 1].

4. ( , , ) = ̂ + 2 ̂ + and is the parabolic cylinder = bounded by
0 ≤ ≤ 3, 0 ≤ ≤ 2.

5. ( , , ) = ( , − , ) and is the surface bounding the region defined by
+ ≤ 2 and 0 ≤ ≤ + 2 oriented outward.

6. ( , , ) = ̅ + ̅ + is helicoids with vector equation

̅( , ) = cos ̅ + sin ̅ + . 0 ≤ ≤ 1, 0 ≤ ≤ 2
7. ( , , ) = ( , , ); is the paraboloid = + − 1; −1 ≤ ≤ 0

oriented upwards.
8. ( , , ) = ( ,− , sin ) is the surface parameterized by

( , ) = (2 cos , sin , ); 0 ≤ ≤ 5, 0 ≤ ≤ 2 .

9. ( , , ) = (0, , 1); is the portion of the paraboloid = + below
the plane = 4 oriented downwards.
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10. ( , , ) = ( , , ); is the surface parameterized by
( , ) = ( cos , sin , 1 − ); 1 ≤ ≤ 2, 0 ≤ ≤ 2 .

(III) Find the surface area of , represented by the following surfaces:
1. is the surface of the sphere + + = .
2. is the surface of the paraboloid = 1 − − cut by the plane = −3.
3. is the part of the surface = 9 − − that lies above the ring 1 ≤ + ≤ 9.
4. is the partion of the upper hemisphere + + = 2 cut by the cylinder +

= 1.
5. is the area cut from the plane + + = 5 by the cylinder whose walls are =

and = 2 −
6. is parametrically given by ( , ) = ( cos , sin , ) ( , ) ∈ [0, 2 ] ×

[−1, 1] with > 0 is constant.
7. is the torus parameterized by the equations = ( + cos ) cos , = ( +

cos ) sin , = sin where − < , < , ≥ 1.
8. is the surface of the cylinder + = which is cut out by the cylinder +

=
9. The part of the paraboloid = + that lies under the plane = 9.
10. The part of the plane + 2 + = 4 that lies inside the cylinder + = 4.
11. is the portion cut from the paraboloid = 1 − − by the plane = 0.
12. S is the surface parameterized by = cos , = 2 cos , = , 0 ≤ ≤ 1, 0 ≤

≤ 2 .
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Objective Questions

1. Let ( , , ) = − + and denote the upper hemisphere
+ + = 1, > 0 with unit normal having non- negative −component.

Then ∬ (∇ × ). equals
(a) 0 (b) −2 (c) 2 (d) 1

2. Let ( , , ) = ̂ + ̂ + and be the surface of unit sphere with outward

normal . Then ∬ (∇ × ). equals
(a)4 (b) 12 (c) 16 (d) 0

3. Let ( , , ) = − − and C be the triangle with vertices (0, 0, 0), (0, 2, 0) and

(0, 0, 2). Then ∫ . ̅ equals
(a) 1                          (b) -1                                         (c) -2                                   (d) 2

4. Let denote an oriented smooth surface bounded by a closed curve traversed
counterclockwise. Let ̅ = + + . If ̅ is a constant vector and be the unit outward

normal to S. then ∮ ( ̅ × ̅). equals

(a)∬ ̅. (b) 0                   (c) 2∬ ̅. (d) None of these.

5. If S is a sphere and is a vector field having continuous partial derivatives on an open region

containing S, then ∬ . where is unit outward normal
(a) Depends on F (b) 4 (c) 2 (d) 0

6. If is a simple solid region whose boundary surface is and is a unit outward normal to .

then for a harmonic function ∅ defined on a region containing ,∬ ∅ equals
(a) Volume of (b) surface area of (c) 0                (d) None of these.

7. If is a simple solid region in ℝ bounded by a smooth oriented surface with as outward

unit normal. and ̅ is a constant vector in ℝ , then ∫ ̅. equals
(a) ‖ ‖ (b) (surface area of S) ‖ ‖ (c) (volume of ) ‖ ‖ (d) 0

8. Let be a unit outward normal to a closed surface which bounds a homogeneous solid .

then ∬ ( + ) ( + ). equals
(a) | |, the volume of (b) | |, the surface area of
(c) 4 , where denote the moment of inertia about -axis              (d) None of these.

9. The flux of ( , , ) = ̂ + ̂ + outward through unit sphere S is

(a) 4 (b) (c) (d) None of these.
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10. If and are smooth oriented surfaces in ℝ having same boundary and is a vector

field on ℝ then ∬ (∇ × ). =∬ (∇ × ). if and only if
(a) = (b) = − (c) ∩ = ∅ (d) None of these.

11. Curl ( + ) is

a) ̂ + ̂ . b) 0. c) 0


d) none of these.

12. ( , , sin ) is

a) 2 + + cos b) 0. c) 0


. d) none of these.

13 . ( , , ) = (3 , −5 , ) and curl ( , 0, ) = . Then value of and are

a) −1 & 3 b) 1 & − 3 c) −1 & − 3 d) 1 & 3.

14. Let be the circle + = 4, = −3 oriented counterclockwise. Let

= ( , , − ) and = ∮ ∙ Then
a) Stoke’s theorem is applicable and = −112 .
b) Stoke’s theorem is applicable to  calculate .
c) Stoke’s theorem is not applicable but = −112 .
d) None of the above.

15. The surface integral ∬ ∇ × . where is continuously differentiable vector field and
is a closed surface is
a) 0 b) depends on c) depends on d) none of these.

16. The line integral ∫ ∙ ̅ where is a simple closed curve is
a) 0 b) 1 c) depends on d) none of these.

17. ( , , ) = ( + , + , + ) Then

a) curl = 0 = b) = 3 and = 0.
c) = 0 = 0. d) none of these.

18. =∭ ( ) where is the volume enclosed by a closed surface . Then is
a) surface area of b) volume c) 0. d) None of these.

19. The surface integral ∬ ∙ where =
̅
; ̅ = ̂ + ̂ + over the surface of

the sphere centered at (1, 1, 1 ) and radius 3 is
a) 1. b) depends on c) 0. d) None of these.

20. The surface integral ∬ ( ̂ ∙ ) over a closed surface with volume is
a) b) 3 c) 0. d) None of these.
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21. The surface integral ∬ ̂ + ̂ + . over the surface of a unit sphere enclosing a
volume is

a) ( + + ) 4 b) ( + + )

c) ( + + )4 d) ( + + )

22. The surface integral ∬ ( + ) + ( + ) + ( + ) where is the cube
0 ≤ ≤ 1, 0 ≤ ≤ 1, 0 ≤ ≤ 1 is

a) –3 b) 3 c) 0 d) None of these.

23. If is a harmonic function and is the unit sphere, then the surface integral

∬
a) does not exist b) is 1
c) is the volume of the unit sphere d) is 0

24. is vertical cylinder of height 2, with its base a circle of radius 1 on the plane, centered
at the origin and includes the disks that close it off top and  bottom, then the surface
integer ∬ equals

a) b) 2 c) /2 d) /4

25. The surface integral ∬ . for a constant vector field and being a closed surface is
a) a non zero constant b) 0 c) never zero d) None of these

26. A vector field is tangent to the boundary of a region in space. Then ∭ ,

a) depends on and .
b) 0
c) depends only on S
d) Gauss Theorem not applicable.

27. The result ∬ (∇ × ) ∙ = ∬ (∇ × ) ∙ where surfaces and .

have common boundary can be prove using
a) Only Gauss theorem and not by Stokes theorem
b) Only Stokes theorem and not by Gauss theorem
c) Neither from Stokes not from Gauss theorem
d) None of the above.

DESCRIPTIVE QUESTIONS

(I) Verify Stoke’s Theorem for defined over :

1. ( , , ) = 3 ̂ − ̂ + , is the surface of the paraboloid 2 = +
bounded by = 2.

2. ( , , ) = ( − ) ̂ + 2 ̂ and is the rectangular lamina in the -plane
bounded by the lines = 0, = , = 0 and = .

3. ( , , ) = (2 − ,− ,− ), is the upper half of the sphere; + + = 1.
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4. ( , , ) = ̂ − ̂ + , where is the triangle with vertices (2,0,0), (0, 2, 0) and
(0, 0, 2).

5. ( , , ) = (2 + ) ̂ − ̂ + 3 , and is the cylinder + = 1 bounded by

the plane = 0 and open at the end = ℎ, (ℎ ≠ 0).

(II) Using Stoke’s Theorem, evaluate the following surface integrals ∬ ( ) ∙

1. ( , , ) = ( − , , − ) where consists of the five faces of the cube
0 ≤ ≤ 2, 0 ≤ ≤ 2 and 0 ≤ ≤ 2 not in the -plane and is the outward normal.

2. ( , , ) = ̂ + ̂ + wher is the plane surface + + = 1 lying in the
first octant.

3. ( , , ) = ( , , ) where is the triangular surface with vertices
(0, 0, 0), (1, 0, 0) and (0, 2, 1).

4. ( , , ) = ( , , ) and is the surface of the paraboloid = 1 − − ; ≥ 0.

5. ( , , ) = ̂ + ̂ + where is the surface of the hemisphere
+ + = 1; ≥ 0 and is the unit normal with a non-negative compnent.

6. ( , , ) = ( − , + ,−3 ) where is the surface of the cone

= 2 − + above the plane = 0.

7. ( , , ) = ( − ,− , ) where is the ellipsoid + 4 + − 2 = 4
lying above -plane.

(III) Using Stoke’s Theorem evaluate the line integral ∮ ⋅ :

1. ∮ + taken around the square with vertices (1, 0), (−1, 0), (0, 1) and

(0, −1).
2. ( , , ) = ( , , ) and is the circle + = . in the -plane .
3. ( , , ) = ( , , ) where is the curve + = 1, = .
4. ( , , ) = ( , , ) and is the curve of intersection of the cylinder + = 2

and the plane = .
5. ( , , ) = (2 , , 3 ) where is the ellipse, that is the intersection of the plane =

and the cylinder + = 4.
6. ( , , ) = (4 , 2 , 6 ) where is the curve of intersection of + + = 6 and

= + 3.

(IV) Verify Gauss Divergence Theorem
1. ( , , ) = ( , , ) over a unit circle.
2. ( , , ) = ( , , ) over the surface of the sphere + + = 9.

3. ( , , ) = ( + ) ̂ − 2 ̂ + 2 over the volume of the tetrahedron bounded by
the co-ordinate planes and the plane 2 + + 2 = 6 in the first octant.

4. ( , , ) = (18 − 12 , 3 ) over the surface of the cone = + bounded by

the plane = 4.

5. ( , , ) = ̂ + ̂ + over the cylindrical region + = , = 0 and
= ℎ, (ℎ ≠ 0).



5 | P a g e                 I n t e g r a l  C a l c u l u s                     P r a c t i c a l  6

(V) Using Gauss Divergence Theorem evaluate ∬ ∙ ∶

1. ( , , ) = ( − , − , − ) and is the cube bounded by the planes
= ±1, = ±1, = ±1

2. ( , , ) = ( , , ) and is the surface + + =
3. ( , , ) = ( , , ) and is the surface of the sphere + + = 25 above the

plane = 3.
4. ( , , ) = (6 + 2 , 2 + , 4 ) and is the surface of the solid in the first

octant bounded by the co-ordinate planes, the cylinder + = 4 and the plane
= 4.

5. ( , , ) = (4 − 2 , ) and is the region bounded by
= 4 , = 1, = 0, = 3.

6. ( , , ) = ( , , ) and is the surface of the cone + − = 0, (0 ≤ ≤ )

7. ( , , ) = ( + , + , + ) and is the region given by
−4 + + ≤ ≤ 4 − − ; 0 ≤ + ≤ 4.
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Miscellaneous Theory Questions                                                    

Practical 7 

Unit 1 

1. Define the double integral of a bounded function ć ∶ Ă → ℝ where Ă = [Ă, ă] × [Ą, ą] is a rectangle in ℝ2.    
Show with usual notation that ă(ă 2 Ă)(ą 2 Ą) f , ćÿ f Ā(ă 2 Ă)(ą 2 Ą) 

 

2. Define the triple integral of a bounded function ć ∶ ā → ℝ where Ă = [Ă, ă] × [Ą, ą] × [Ć, ć] with usual 

notation prove that 

 ă(ă 2 Ă)(ą 2 Ą)(ć 2 Ć) f ÿ(Ć, ć) f - ć ąąÿ f Ą(Ć, ć) f Ā(ă 2 Ă)(ą 2 Ą)(ć 2 Ć). 

 

3. Let Ă{(ą, Ć): Ă f ą f ă, �1 f Ć f �2(ą)} where �1, �2 ∶ [Ă, ă] → ℝ are continuous. 

a) Suppose ć: Ă → ℝ is such that ć(ą, Ć) g 0 and ć is continuous in the interior of Ă. Prove that , ćÿ  g 0  

b)  Prove that , ćÿ  gives the volume of the solid with base Ă, bounded above by the surface ć = ć(ą, Ć). 

Show further that , 1ÿ  ąý gives the area of Ă.  
4. Let ć be defined and bounded on a rectangle ā = [Ă, ă] × [Ą, ą]. Suppose ć is integrable over ā and for 

each Ć ( [Ą, ą],the integral ý(Ć) = + ć(ą, Ć)ąąĀÿ  exists, then show that , ćþ  gives the volume of Ă where Ă = {(ą, Ć, ć) ( ℝ3: Ă f ą f ă, Ą f Ć f ą, 0 f ć f ć(ą, Ć)}. 

 

5. Prove that a continuous function is integrable for a rectangular domain in ℝ2. 

(Problems on Integrability of bounded functions having finite number of points of discontinuity) 

 

6. a)  State and prove Fubini’s Theorem for a rectangular domain in ℝ2. 
b) Prove Algebra of Integrable functions as a corollary using Fubini’s theorem for a Rectangular Domains. 

 

7. a)  State the change of variables formula for double integral clearly stating the conditions under which it is    

      valid. Explain further, how will you use it to express the double integral in polar co-ordinates. 

b) State the change of variables formula for triple integral, stating clearly the condition under which it is  

                  valid. Express further, how will you use it to express the triple integral in cylindrical co-ordinates  

                 (ÿ, �, ć) and spherical co-ordinates (Ā, �, '). 
c) State the change of variable formula for double integral over a rectangular domain and invertible affine 

transformation.      

8. Let Ą be an open set in ℝ2 containing the rectangle [Ă, ă] × [Ą, ą]. Suppose ć: Ą → ℝ is a continuously 

differentiable function. Show that Ĉ′(ą) = +  ���ýĂā  (ą, Ć)ąĆ where Ĉ(ą) = + ć(ą, Ć)ąĆ,   ∀ą ( [Ă, ă].Ăā  (This 

is known as Leibniz Rule for differentiation under integral sign). 
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.    Unit 2 
1. Define a parameterized curve in ℝ�. When do you say that two parameterized curves in ℝ� are equivalent? 

Show that two equivalent parameterized curves have essentially the same image set. Show that the converse 

of this is not true by considering the curves ÿ(ā) = (cos ā, sin ā) ; 0 f ā f 2ÿ and Ā(ā) = (sin ā, cos ā); 0 fā f 2ÿ.    
2. If Ą is an open set in ℝ2 /ℝ3and Γ is a parameterized curve in Ą, define the line integral of ć along Γ; for a 

continuous function ć: Ą → ℝ. Show further, if ÿ, Ā are two equivalent parameterized curves, then the line 

integrals of ć along them coincide.  

3. Let Ą be an open set in ℝ� and ÿ ∶ [Ă, ă] → Ą be a parameterization of curve Γ. If ć, Ĉ ∶ Ą → ℝ are 

continuous function, then prove that  

           + (Ąć + ąĈ) = Ą + ć + ą + ĈΓΓΓ   

Where Ą, ą are real constants. Further show that + ć = + ć + + ć,Γ2Γ1Γ  where Γ1 and Γ2 are restrictions of ÿ 

to [Ă, Ą] and [Ą, ą] where Ă < Ą < ă.   
4. When do you say that two parameterized curves in ℝ� are orientedly equivalent? Define the line integral of 

a vector field ý define on an open set Ą in ℝ� along an oriented curve Γ in Ą. If Γ and Γ′ are two orientedly 

equivalent curves in Ą, show that + ý = + ýΓ′Γ . 

5. Let ć be a continuously differentiable scalar field defined on an open set Ą in ℝ� . Suppose ÿ, Ā are two 

points of Ą that can be connected by piecewise smooth curve ÿ lying in Ą. Prove that                                                                 + 'ć ∙ ąÿ = ć(Ā) 2 ć(ÿ)ÿ  given that ÿ has parameterization ÿ(ā), ā ( [Ă, ă] with ÿ(Ă) = ÿ and ÿ(ă) = Ā.  
                                                         OR 

Let ć be a continuously differentiable scalar field defined on an open set Ą in ℝ� . Suppose ÿ is a closed 

curve in Ą,  with parameterization ÿ(ā), ā ( [Ă, ă]. Then prove that . ' ý ∙ ąÿ = 0.ÿ   

6.   Suppose F is a continuous vector field defined on an open connected set Ą in ℝ�. Define a function �: Ą →ℝ by �(ă) =  + ýĀĀ0  where ă0 is a fixed point in Ą and ý is conservative. 

 Show that '�(ă) = ý(ă). ∀ă ( Ą.  
7. Let ý be a continuous vector field defined on an open connected set Ą in ℝ�. Show that the following 

conditions are equivalent.  

(i) The line integral of ý depends only on the end points of a curve in Ą and not on the curve. 

(ii) ý is the gradient of a ÿ′ function (i.e. ý has a potential function)  on Ą. 
(iii) For any ÿ′ closed curve ÿ in Ą, . ý = 0.ÿ  

8. State and prove Green’s Theorem for a rectangle.  
9. State Green’s Theorem for a closed region in ℝ2 whose boundary is a simple closed curve. Show how it can 

be used to calculate area of the region.  

10. ý = (ÿ, Ā) is a continuously differentiable function defined on a simply connected region Ā in ℝ2. Show 

that .  ÿąą + ĀąĆ = 0 around every closed curve ÿ in Ā if and only if 
���þ = �ý�ý , ∀(ą, Ć) ( Ā. 

 

Unit 3 

1. Suppose Ą is an open set in ℝ3 and ý: Ą → ℝ3 be a continuously differentiable vector field.  

Define (i) curl ý     (ii) ąÿă ý.  
Show that necessary and sufficient condition for a ÿ2 function ý ∶  ℝ3 → ℝ3 to be conservative is that curl ý = 0. 
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2. Define a parameterized surface in ℝ3.When do you say that two parameterized surfaces in ℝ3 equivalent? 

If Ă is a smooth parameterized surface in an open set Ą in ℝ3 and ć: Ą → ℝ is a continuous scalar field, 

define the surface integral of ąăĆÿ Ă. Further if ý ∶ Ą → ℝ3   is a continuous vector field, define the surface 

integral of ýover Ă. 
  

3. For the surface ÿ̅(Ă, ă) described by the vector equation ÿ̅(Ă, ă) = ÿ(Ă, ă)ÿ +    Ā(Ă, ă)Ā +ā(Ă, ă)ā̂, (Ă, ă)Ă b( ă where X, Y, Z are differentiable on T, define the  fundamental vector product 
��̅�ÿ ×��̅�ÿ. If C is a smooth curve lying on the surface, ÿ = ÿ̅ (∝ (ā)), ∝; [Ă, ă] → ă, then show that 

��̅�ÿ × ��̅�ÿ  is 

normal to C at each point.  

4. Let Ă = ÿ̅(ă) be a smooth parametric surface in Ăă plane. Define area of S. If S is represented by an 

equation ć = ć(ą, Ć) then show that area of S is given by 

                , √1 + (���ý)2 +  (���þ)2Ā   ąąąĆ              Ą/ĆÿĆ ă is projection of S on ąĆ 2plane. 

 

5. Let Ă = ÿ̅(ă) be a smooth parametric surface described by a differentiable function ÿ̅ defined on region T.  

            Let ć be defined and bounded on S. Define surface integral of ć over Ă. If R smoothly equivalent functions,       

             ā(Ā, ā) = ÿ̅ (þ(Ā, ā)) where þ(Ā, ā) = Ă(Ā, ā)ÿ̂ + ă(Ā, ā)Ā ̂being continuously differentiable. Then show that  

                                    , ćąĂ =  , ćą Ăþ(þ)�(ý)  

              Where þ(þ) = ý. 
 

6. State and prove Stoke’s Theorem for an oriented smooth, simple parameterized surface in ℝ3  bounded by a 

simple, closed curve traversed counter clockwise assuming general form of Green’s Theorem. 
7. If S and C satisfy hypothesis of Stoke’s Theorem and ć, Ĉ have continuous second order partial   derivative. 

Prove with usual notations. 

a) + (ć'Ĉ). ąÿ̅ =  , ('ć × 'Ĉ)Ą̂ąĂÿÿ    

b) + (ć ' ć).  ąÿ̅ = 0 ÿ  

c) + (ć'Ĉ) + Ĉ ' ć).  ąÿ̅ = 0ÿ  

8. State Divergence Theorem for a solid in 3-space (or ℝ3) bounded by an orientable closed surface with 

positive orientation and prove the divergence Theorem for cubical region. 

 

9. State and Prove Divergence Theorem for a simple solid region V bounded by an orientable surface S which          

can be projected on ÿĀ, Āā, āÿ planes.  

 

      10. Prove the following identities, assuming S and V satisfy the conditions of the Divergence Theorem and 

scalar fields ć and Ĉ, components of ý̅ have continuous partial derivatives, Ą̂  is unit outward normal. 

a) + ý̅.  Ą̂ąĂ = 0ÿ  Where  ý̅ is a constant vector. 

b) |ą| = 13 , ÿ̅.  Ą̂ąĂÿ   where ÿ̅ = ąÿ̂ + ĆĀ̂ + ćā̂ and |ą| = volume of V. 

c) , ĄĂÿĂý .ÿ    Ą̂ąĂ = 0. 
d) , (Ā�ć)ąĂ = - '2ćąą,�  ÿ  where Ā�ć is the direction derivative in the direction Ą̂. 
e) , (ć'Ĉ) . Ą̂ąĂ = - (ć'2Ĉ + 'ć.  'Ĉ)ąą.�  ÿ  

f) , (ć'Ĉ 2 Ĉ'ć).  ÿ Ą̂ąĂ = - (ć'2Ĉ 2 Ĉ'2ć)ąą.�   
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US/AMT502 Linear Algebra Sem V Revised syllabus 2018

Practical no 2.1. Quotient Space and Orthogonal
Transformations,Isometries

Q 1) Let V = R
3,W1 = {(x1, x2, x3) ∈ R

3 : x1 + x2 + x3 = 0} and W2 = {(x1, x2, x3) ∈
R

3 : x1 − x2 + x3 = 0} are subspaces of V . then

(a) dimV/W1 = dimV/W2 = 2, dimW2/W1 ∩W2 = 1

(b) dimV/W1 = dimV/W2 = 1, dimW2/W1 ∩W2 = 1

(c) dimV/W1 = dimV/W2 = 1, dimW2/W1 ∩W2 = 2

(d) None of the above.

Q 2) Let V = M2(R) , W1 = Space of 2×2 real symmetric matrices, W2 = Space of 2×2
real skew symmetric matrices.

(a) dimV/W1 = 1, dimV/W2 = 1 (b) dimV/W1 = 2, dimV/W2 = 2
(c) dimV/W1 = 1, dimV/W2 = 3 (d) None of the above.

Q 3) Let V = P2[x] , the space of polynomial of degree ≤ 2 over R along with zero
polynomial and W = {f ∈ V : f(0) = 0}. Then

(a) {1, x+ 1, (x+ 1)2} is the basis of the quotient space V/W .

(b) {x+ 1, x2 + 1} is the basis of the quotient space V/W

(c) {x+ 1} is the basis of the quotient space V/W

(d) None of the above.

Q 4) Let V be a real vector space and T : R6 → V be a linear transformation such that
S = {Te2, T e4, T e6} spans V. Then, which of the following is true ?

(a) S is a basis of V

(b) {e1 +KerT, e3 +KerT, e5 +KerT} is a basis of R6/KerT

(c) dimV/ImT ≥ 3

(d) dimR
6/KerT ≤ 3

Q 5) ConsiderW = {(x, y, z) ∈ R
3 : 2x+2y+z = 0, 3x+3y−2z = 0, x+y−3z = 0}.Then

dimR
3/W is

(a) 1 (b) 2 (c) 3 (d) 0

Q 6) Consider the linear transformation T : P2[R] → M2(R) defined by T (f) =

(

f(0)− f(2) 0
0 f(1)

)

where P2[R]= space of polynomials of degree ≤ 2 along with 0 polynomial.Then

(a) kerT = 0 and dim(M2(R)/ImT ) = 3

(b) dim(P2[R]/KerT ) = 1

(c) T is one-one and onto.

(d) dim(P2[R]/KerT ) = 2



Q 7) Let V = M2(R) and W =

{

A ∈ M2(R) : A

(

0 2
3 1

)

=

(

0 2
3 1

)

A

}

.Then

(a) dimV/W = 0 (b) dimV/W = 1
(c) dimV/W = 2 (d) dimV/W = 3

Q 8) Let V = R
4 and W = {(x1, x2, x3, x4) ∈ R

4 : x1 = x2 and x3 = x4} a subspace of V.
Then

(a) {(1, 1, 0, 0), (0, 1, 0, 1)} is the basis of V/W .

(b) {(1, 0, 1, 0), (0,−1, 0,−1)} is the basis of V/W

(c) {(1, 0, 1, 0), (0, 1, 0, 1)} is the basis of V/W

(d) None of the above.

Q 9) Let V = M2(R).Consider the subspacesW1 =

{(

a −a
c d

)

: a, b, c, d ∈ R

}

andW2 =
{(

a b
−a d

)

: a, b, d ∈ R

}

.Then

(a) dimV/W1 = dimV/W2 = 2, dimW2/W1 ∩W2 = 1

(b) dimV/W1 = dimV/W2 = 1, dimW2/W1 ∩W2 = 1

(c) dimV/W1 = dimV/W2 = 1, dimW2/W1 ∩W2 = 2

(d) None of the above.

Q 10) Let V = M2(R) and W = {A ∈ M2(R) : Tr(A) = 0} a subspace of V. Then

(a)

{

(

1 0
0 0

)

,

(

0 1
0 0

)

}

is the basis of V/W . (b)

{

(

1 0
0 0

)

}

is the basis of V/W

(c)

{

(

0 1
0 0

)

}

is the basis of V/W (d) None of the above.

Q 11) Let V = Pn[x],the space of polynomials of degree≤ n over R along with zero
polynomial and D denote the linear transformation D : V → Pn−1[x] defined by
D(f) = df

dx
. If W = kerD, then

(a) dimV/W = n− 1. (b) dimV/W = 1
(c) dimV/W = n (d) None of these.

Q 12) Let A be a 5× 7 matrix over R. Suppose rank A = 3.
A linear transformation T : R7 → R

5 is defined byT (X) = AX, where X is a column
vector in R

7, and W = kerT , U = ImgT , then

(a) dimR
7/W = 3, dimR

5/U = 2. (b) dimR
7/W = 2, dimR

5/U = 2.
(c) dimR

7/W = 2, dimR
5/U = 1. (d) None of the above.

Q 13) Let V = M2(R) and A =

(

1 1
1 1

)

. A linear transformation T : V → V is defined

by T (B) = AB − B. Then

(a) T is a linear isomorphism. (b) dimV/kerT = 1.
(c) dimV/kerT = 2. (d) None of these.
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Q 14) Let U,W be vector spaces over R with bases {u1, u2, ...., um} and {w1, w2, ...., wn}
respectively. Let V = U ⊕ V and linear transformation PU : V → U be defined by
PU(u+ v) = u, where u ∈ U and w ∈ W . Then

(a) dimV/kerPU = n. (b) dimV/kerPU = m.
(c) dimV/kerPU = m− n. (d) None of these.

Q 15) Let V = R
2,W = {(x, y) ∈ R

2 : y = x}. Then
(a) {(1, 1)} is a bases of V/W . (b) {(1, 0)} is a bases of V/W .
(c) {(1, 1), (1,−1)} is a bases of V/W . (d) None of the above.

Q 16) If α : R
4 → R

4 and β : R
4 → R

4 are translations such that α((1, 1, 1, 1)) =
(1, 0,−1, 3) and β((2, 2, 2, 2)) = (2, 0, 3, 4) then αβ(0, 0, 0, 0) is
(a) (0, 0, 0, 0). (b) (0,−3,−1, 4). (c) (0, 3, 1,−4). (d) None of these.

Q 17) If α : R2 → R
2 be an isometry defined by α((x, y)) = (x

2
+

√
3y

2
− 1

2
, −

√
3x

2
+ y

2
+

√
3

2
)

and α((x, y)) = (
√
3

2
, 1
2
) then

(a) x = 1, y = −1. (b) x =
√
3, y = 1. (c) x = 1, y = 1. (d) None of these.

Q 18) Let α be an orthogonal transformation of the plane such that the matrix of α w.

r. t. the standard basis of R2 is

(

− 1√
2

1√
2

− 1√
2

− 1√
2

)

, then α represents

(a) a rotation about origin through π
4
. (b) a rotation about origin through 5π

4
.

(c) a rotation about the line y = −x. (d) None of the above.

Q 19) Let α : R2 → R
2 represents the rotation about origin by angle π

4
and β : R2 → R

2

represents a reflection about y-axis. Then β ◦ α represents

(a) a rotation about origin through angle 3π
8
. (b) a rotation about the line y = x.

(c) a rotation about the line y = −x. (d) None of the above.

Q 20) Let α : R3 → R
3 be an orthogonal transformation and E = {v ∈ R

3 : αv = v}.
Then

(a) dimE = 1 (b) dimE ≥ 1
(c) If dimE = 2, then α is reflection with respect to the plane.
(d) None of the above.

Q 21) Let α : R3 → R
3 represents reflection in the plane x+ y + z = 0. The matrix of α

with respect to the standard basis of R3 is

(a)







1√
2

0 0

0 1√
2

0
1√
2

− 1√
2

−1






(b) 1

3





1 −2 −2
−2 1 −2
−2 −2 1



 (c)





−1 0 0
0 1 0
0 0 1



 (d) None of

these.

Q 22) Let V be an n-dimensional real inner product space. Suppose B = {ei}ni=1 and
B

′

= {fi}ni=1 are orthogonal basis of V . Then

(a) If T : V → V is a linear transformation such that T (ei) = fi for i = 1 to n,
then T is orthogonal.
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(b) If T : V → V is a linear transformation such that T (ei) = fi for i = 1 to n,
then T need not be orthogonal.

(c) There exist a linear transformation T : V → V such that {T (ei)}ni=1 is an
orthogonal basis of V , but {T (fi)}ni=1 is not an orthonormal basis of V .

(d) None of the above.

Q 23) Let A and B be n× n real orthogonal matrices. Then

(a) AB and A + B are orthogonal matrices. (b) AB and BA are orthogonal
matrices.
(c) A+B is an orthogonal matrix. (d) None of the above.

Q 24) Let A,B be n× n real matrices. If A and AB are orthogonal matrices,then

(a) B is orthogonal but BA may not be orthogonal (b) B and BA both are
orthogonal matrices.
(c) B may not be orthogonal matrix. (d) None of the above.

Q 25) Let α : R2 → R
2 be an isometry fixing origin and α 6= identity. Then

(a) α((1, 0)) is in the first quadrant. (b) α((1, 0)) ∈ {(−1, 0), (0, 1), (0,−1)}.
(c) α((1, 0)) lies on the unit circle S1. (d) None of the above.

Q 26) If α : R2 → R
2 is a linear transformation such that 〈v, w〉 = 0 ⇒ 〈α(v), α(w)〉 = 0

∀ v, w ∈ R
2. Then

(a) α is an isometry of R2. (b) α is an orthogonal transformation.
(c) α = aT where T is an orthogonal transformation and a ∈ R. (d) None of the
above.

Q 27) Let α : R2 → R
2 be defined by α((x, y)) = (ax+ by + e, cx+ dy + f)

where a, b, c, d, e, f ∈ R. Then α is an isometry if and only if

(a) ad− bc 6= 0, e, f > 0 (b) ad− bc = ±1.
(c) a2 + c2 = 1,b2 + d2 = 1, ab+ cd = 0. (d) None of the above.

Q 28) Let V be a finite dimensional inner product space and α : V → V be an isometry.
Then

(a) α is one-one may not be onto. (b) α is one-one only if α(0) = 0.
(c) α is bijective. (d) None of the above.

Practical 2.1 Descriptive Questions

Q 1) Let V = R
3 and W = {(x1, x2, x3) ∈ R

3 : x3 = 3x1} be subspace of V . Find a basis
of W and the quotient space V/W .

Q 2) V = M2(R) and W =

{(

a b
0 d

)

: a, b, d ∈ R

}

. Find the basis of the subspace W

and the quotient space V/W

Q 3) Let V = P4[x],the space of polynomial of degree ≤ 4 along with zero polynomial.
The linear transformation D : P4[x] → P4[x] be defined by D(f) = df

dx
. If W =

kerD,then find bases of W and V/W .
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Q 4) Let V = M2(R) and N be a 2 × 2 nilpotent matrix. If T : V → V is defined by
T (A) = NA−A, then find kerT, dimkerT and dimV/kerT . Is T onto? Justify your
answer.

Q 5) Let Pn[R] denote the space of polynomials with real coefficients of degree ≤ n along
with zero polynomial.Consider the linear transformation D : Pn[R] → Pn−1[R] defined
by D(f) = df

dx
and T : Pn[R] → Pn+1[R] defined by T (f) = xf .If A = DT − TD :

Pn[R] → Pn[R], find KerA, and dim(A/KerA).

Q 6) A linear transformation T : R3 → R
2 be defined by T ((x1, x2, x3)) = (x1, x2). Find

basis of kerT and R
3/kerT ,

Q 7) Let A =

(

1 2 3
−1 0 1

)

. A linear transformation T : R3 → R
2 is defined by T (x) =

AX(X being a column vector in R
3). Find kerT ,a basis of kerT and R

3/kerT . Also
find ImT .

Q 8) Let V = M2(R) and W = Space of 2 × 2 real symmetric matrices. Find a basis of
W and the quotient space V/W .

Q 9) Let V = P2(R), the space of polynomials of degree ≤ 2 over R along with zero

polynomial. A linear transformation T : P2(R) → R is defined by T (f) =
∫

1

0
f(t)dt.

Find kerT and basis of kerT, V/kerT .

Q 10) Show that following maps are isometries.

1. α : R2 → R
2 defined by α((x, y)) = (x− 2, y + 1).

2. α : R3 → R
3 defined by α((x, y, z)) = (x,−y, z).

3. α : R2 → R
2 defined by α((x, y)) = (3

5
x+ 4

5
y − 1

4
,−4

5
x+ 3

5
y + 3

4
).

4. α : R3 → R
3 defined by α((x, y, z)) = ( 1√

2
y + 1√

2
z, x,− 1√

2
y + 1√

2
z).

Q 11) Show that the given maps are orthogonal transformations. Determine whether
they are rotations or reflections. In case of rotations,determine the angle of rotation
and in case of reflection ,determine the line of reflection.

1. T (x, y) = (3
5
x+ 4

5
y,−4

5
x+ 3

5
y).

2. T (x, y) = ( 1√
2
x+ 1√

2
y, 1√

2
x− 1√

2
y).

3. T (x, y) = (−x,−y).

4. (x, y) = ( 1√
2
x− 1√

2
y, 1√

2
x+ 1√

2
y)

Q 12) Show that the following maps are isometries. Express each of them as a composite
of an orthogonal transformation and a translation.

1. α : R3 → R
3 defined by α(x, y, z) = ( 1√

2
x+ 1√

2
y − 2, 1√

2
x− 1√

2
y + 3, z + 2).

2. α : R2 → R
2 defined by α(x, y) = (x

2
−

√
3

2
y + 1,

√
3

2
x+ y

2
− 5).

3. α : R3 → R
3 defined by α(x, y, z) = (x

2
+

√
3

2
z − 1, y,

√
3

2
x− z

2
+ 5).
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Q 13) Find the orthogonal transformations in R
2 which represents reflections with respect

to the following lines.

1. x = y

2. y = −x

3. y = 2x.

Q 14) Find the orthogonal transformations in R
3 which represent reflections with respect

to the following planes.

1. x− y + z = 0

2. 2x− y = 0

3. y = 0

Q 15) If T : R2 → R
2 is a linear transformation such that 〈u, v〉 = 0 ⇒ 〈T (u), T (v)〉 =

0 for each u, v ∈ R
2, show that T = aS, where S : R

2 → R
2 is an orthogonal

transformation.
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Practical no 2.2. Cayley-Hamilton Theorem and its applications

Q 1) Let A =

(

10 −9
4 −2

)

, then

(a) A−1 = 1

16
[A+ 8I] (b) A−1 = 1

16
[A− 8I]

(c) A−1 = 1

16
[−A+ 8I] (d) A−1 = 1

16
[−A− 8I]

Q 2) The following pairs of n x n matrices do not have same characteristic polynomial.

(a) A and At. (b) A and PAP−1 where P is non singular n× n matrix.
(c) A and A2. (d) AB and BA.

Q 3) Let p(t) = t2 + bt + c where b, c ∈ R.Then the number of real matrices having p(t)
as characteristic polynomial is

(a) One (b) Two
(c) Infinity (d) None of the above

Q 4) Let p(t) = t3 − 2t2 +5 be the characteristic polynomial of A then detA and trA are

(a) 5,−2 (b) 2, 5
(c) −5, 2 (d) −2, 5

Q 5) If A is a 3 × 2 matrix over R and B is a 2 × 3 matrix over R and p(t) is the
characteristic polynomial of AB, then

(a) t3 divides p(t) (b) t2 divides p(t)
(c) t divides p(t) (d) None of the above

Q 6) Let A and B be n× n matrix over R such that trA = trB and detA =detB.Then

(a) Characteristic polynomial of A = Characteristic polynomial of B.

(b) Characteristic polynomial of A 6= Characteristic polynomial of B.

(c) Characteristic polynomial of A =Characteristic polynomial of B if n = 3.

(d) Characteristic polynomial of A =Characteristic polynomial of B if n = 2.

Q 7) Let A and B be n × n matrix over R such that characteristic polynomial of A =
characteristic polynomial of B.Then

(a) A and B are similar matrices (b) detA = detB
(c) AB = BA (d) None of the above.

Q 8) Let A =

(

1 −1
−1 1

)

Q 9) Let p(t) = t3 − 2t2 + 15 be the characteristic polynomial of A .Then det A

(a) 15 (b) -15 (c) 0 (d) None of these (a) A10 =

(

210 −210

−210 210

)

(b) A10 =

(

211 −211

−211 211

)

(c) A10 =

(

29 −29

−29 29

)

(d) A10 =

(

−29 29

29 −29

)
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Q 10) Let A be a 3× 3 matrix and λ1, λ2 be only two distinct eigen values of A.Then its
characteristics polynomial kA(x) is

(a) (x− λ1)(x− λ2)

(b) (x− λ1)(x− λ2)
2

(c) (x− λ1)
2(x− λ2)

(d) (x− λ1)
2(x− λ2) or (x− λ1)(x− λ2)

2

Q 11) Let characteristic polynomial of A is t2+a1t+a0 and and characteristic polynomial
of A−1 is t2 + a

′

1t+ a′0.Then

(a) a0a
′

0 = 1 and a1 + a
′

1 = 1 (b) a1a
′

1 = 1 and a0a
′

0 = 1
(c) a0a

′

0 = 1 (d) a0a
′

0 = 1 and a
′

1 = a1a
′

0

Q 12) If p1(t) = t2 + a1t + a0 is characteristic polynomial of A and p2(t) = t2 + a
′

1t + a
′

0

is characteristic polynomial of A2 then

(a) a
′

1 = a21 and a
′

0 = a20 (b) a
′

1 = 2a1 and a
′

0 = a20
(c) a′0 = a20, a

′
1 = a21 − 2a0 (d) None of the above

Q 13) Let A6×6 be a matrix with characteristic polynomial x2(x− 1)(x+ 1)3, then trace
A and determinant of A are

(a) -2, 0 (b) 2, 0 (c) 3, 1 (d) 3, 0

Q 14)

(

a 0
0 d

)

and

(

a b
0 d

)

are similar (non- zero a, b, d)

(a) for any reals a, b, d. (b) if a = d.
(c) if a 6= d. (d) never similar.

Q 15) Let A6×6 be a diagonal matrix over R with characteristic polynomial (x−2)4(x+3)2.
Let V = {B ∈ M6(R) : AB = BA}. Then dim V =

(a) 8 (b) 12 (c) 6 (d) 20.

Q 16) If A− In is a n×n nilpotent matrix over R, then characteristic polynomial of A is

(a) (t− 1)n (b) tn

(c) tn − 1 (d) (tn−1 − 1)t

Q 17) If A ∈ M2(R), tr A = −1, detA = −6 then det (I2 + A) is

(a) -6 (b) -5 (c) -1 (d) None of the above.

Q 18) Let A = [aij]10×10 be a real matrix such that ai,i+1 = 1 for 1 ≤ i ≤ 9 and aij = 0
otherwise, then

(a) A9(A− I) (b) (A− I)10 A10 = 0 A(A− I)9 = 0

Q 19) T : R4 → R
4 is a linear transformation such that T 3 + 3T 2 = 4I. If S = T 4 +

3T 3 − 4I, then

(a) S is not one-one. (b) S is one-one.
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(c) if 1 is not an eigen value of T then S is invertible.

(d) None of these.

Q 20) Which of the following statements are true

1. If the characteristic roots of two n×n matrices are same then their characteristic
polynomials are same.

2. If the characteristic polynomials of two n × n matrices are same then their
characteristic roots are same.

3. If eigen values of two n×n matrices are same then their eigen vectors are same.

4. The characteristic roots of two n× n matrices are same but their characteristic
polynomials may not be same.

(a) ii and iv are true. (b) i, iii are true.
(c) i, ii and iii are true. (d) only ii is true.

Q 21) A 2× 2 matrix A has the characteristic polynomial x2 + 2x− 1, then the value of
det (2I2 + A) is

(a)
1

detA
(b) 0

(c) 2 + det A (d) 2 det A

Practical 2.2 Descriptive Questions

Q 1) Let A =





2 1 2
3 0 2
−1 2 4



. Then show that 5 is a characteristic root of A.

Q 2) Find characteristic polynomial of the following matrix and verify Cayley-Hamilton

theorem for A =





−1 0 1
−1 3 0
−4 13 −1



.

Q 3) Let A =

(

2 1
1 2

)

(a) Find characteristic polynomial of A.

(b) Using Cayley-Hamilton theorem find A10.

Q 4) Let A =





2 1 1
2 1 −2
−1 0 −2





(a) Find characteristic polynomial of A.

(b) Using Cayley-Hamilton theorem,find A−1 and A4 − 3A3 − 3A2 + 7A+ 6I.

Q 5) Let A =

(

6 −5
2 −1

)

and P =

(

1 5
1 2

)

(a) Find P−1AP and compute A6
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(b) Verify that A and P−1AP have same characteristic polynomial.

Q 6) Let A =





10 −9 0
4 −2 0
0 0 −2





(a) Find characteristic polynomial of A and express it as a product of linear factors.

(b) Compute A−1 using Cayley-Hamilton theorem and find characteristic polynomial
of A−1 and factorise it.

(c) Verify that product of constant terms of both the polynomials is 1.

Q 7) (a) If A =





1 2 −2
0 3 −1
0 0 1



 Find A−1 and characteristic polynomial of A−1.

(b) If A =





1 2 0
2 −1 0
0 0 −1.



. Find A−1.

Q 8) (a) Verify Cayley-Hamilton theorem for





0 c −b
−c 0 a
b −a 0



. Find A−1 if it exist.

(b) Verify Cayley-Hamilton theorem for A =

(

1 4
2 3

)

. Find A−1 and A5 − 4A4 −
7A3 + 11A2 − A− 10I

Q 9) (a) A =





2 1 1
0 1 0
1 1 2



. Find A8 − 5A7 + 7A6 − 3A5 + A4 − 5A3 + 8A2 − 2A+ I.

(b) A =





3 10 5
−2 −3 −4
3 5 7



. Find A6 − 6A5 + 9A4 + 4A3 − 12A2 + 2A− I.

Q 10) (a) Find An for A =

(

7 3
2 6

)

.

(b) Show thatAn = An−2 + A2 − I for n > 3 for





1 0 0
1 0 1
0 1 0



. Hence write A50.

Q 11) Let P (x) = x4 + a3x
3 + a2x

2 + a1x+ a0 be a monic polynomial of degree 3 where

a0, a1, a2, a3R and A =









0 0 0 −a0
1 0 0 −a1
0 1 0 −a2
0 · · · 1 −a3









, then show that characteristic polynomial

of A is P (x).

Q 12) Let A7×7 be a diagonal matrix over R with characteristic polynomial (t+4)3(t−3)4.
Let V = {B ∈ M7(R) : AB = BA}. Find dim V .
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Q 13) Express the characteristic polynomial of aI+bA interms of the characteristic poly-
nomial of A.

Q 14) Let A and C be matrices such that ACA = 0, show that for every matrix B the
characteristic polynomial of AB and A(B + C) are equal.

Q 15) If A = uvt, then the characteristic polynomial of A is xn−1(x− utv) where u, v are
column vectors in R

n.
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Practical no 2.3. Eigen values and Eigen vectors

Q 1) The product of all characteristic roots of a square matrix A is equal to
(a) 0 (b) 1 (c) |A| (d) None of these.

Q 2) If eigen value of A is λ,then eigen value of A2 is
(a) 1 (b) 1

λ
(c) λ2 (d) None of these.

Q 3) If A is invertible matrix and eigen value of A is λ, then eigen value of A−1 is
(a) 1 (b) 1

λ
(c) λ (d) None of these.

Q 4) If the determinant of a matrix A is non-zero, then its eigen values of A are
(a) 1 (b) 0 (c) Non-zero (d) None of these.

Q 5) If the determinant of a matrix A is zero, then one of its eigen values of A is
(a) 1 (b) 0 (c) -1 (d) None of these.

Q 6) The eigen space corresponding to eigen value 1 of

[

1 1
0 1

]

has basis

(a) {(1, 0)} (b) {(1, 0), (0, 1)}
(c) {(0, 1)} (d) {(1, 1)}

Q 7) Let A =





a b 1
c d 1
1 −1 0



 where a, b, c, d ∈ R such that a+ b = c+ d, then A has eigen

value
(a) a+ c (b) a+ b (c) a− d (d) b− d

Q 8) Zero is a eigen value of a linear map T from V to V if and only if
(a) KerT = {0} (b) T is bijective
(c) T is singular (d) T is non singular

Q 9) The eigen values of a 3× 3 real matrix A are 1,2,3.Then

(a) Inverse of A exists and it is 1

6
(5I + 2A− A2)

(b) Inverse of A exists and it is 1

6
(5I + 2A+ A2)

(c) Inverse of A does not exist

(d) None of the above

Q 10) The matrix A =





1 −1 2
2 −2 4
3 −3 6



 has

(a) Only one distinct eigen value

(b) Only two distinct eigen values

(c) Three distinct eigen values

(d) None of the above

Q 11) The eigen vectors of the matrix A =

(

1 2
0 1

)

generate
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(a) a vector space with basis

{(

1
0

)}

(b) a vector space with basis

{(

0
1

)}

(c) a vector space with basis

{(

1
1

)}

(d) a vector space with basis

{(

1
0

)

,

(

0
1

)}

Q 12) The eigen vectors of the matrix A =

(

2 0
0 2

)

generate a vector space of dimension

(a) 1 (b) 2 (c) 3 (d) 4

Q 13) The eigen space E(5) of the matrix A =

(

1 4
2 3

)

corresponding to the eigen value

λ = 5

(a) is

(

1
1

)

(b) is

(

2
−1

)

(c) has a basis

{(

1
1

)}

(d) has a basis

{(

2
−1

)}

Q 14) Let V a vector space over R and I : V → V be the identity map.Then

(a) v is the only eigen vector of I for some v ∈ V

(b) 2v is the only eigen vector of I for some v ∈ V

(c) 3v is the only eigen vector of I for some v ∈ V

(d) every vector in V is an eigen vector of I

Q 15) Let T : R2 → R2 be the linear map which rotates every vector v ∈ R2 through an
angle π

4
.Then T has

(a) no eigen vectors

(b) only two eigen vectors

(c) only three eigen vectors

(d) infinitely many eigen vectors

Q 16) Let A3×3 be a real matrix of rank 1, then the eigen values of A are
(a) 0, 0, 1 (b) 0, 0, tr A (c) 0, 0, detA (d) 0, 0,−detA

Q 17) Let A = [aij] be a 10 × 10 matrix with aij =

{

1 if i+ j = 11

0 otherwise
. Then the set of

eigen values of A is
(a) {0, 1} (b) {1,−1} (c) {0, 1, 10} (d) {0, 11}

Q 18) Let An×n be a real matrix, then

(a) A,At have same determinant, same eigen values and same eigen vectors.
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(b) A,At have same determinant, same eigen values but eigen vectors may be
different.

(c) A,At have same eigen values but different determinants.

(d) A,At have different eigen values.

Q 19) Let
n
∑

j=1

aij = 1 for a real matrix A = [aij] then

(a) (1, 1, · · · , 1) is an eigen vector of A corresponding to the eigen value 1.

(b) (1, 0, · · · , 0) is an eigen vector of A corresponding to the eigen value 1.

(c) (1, 1, · · · , 1) is an eigen vector of A corresponding to the eigen value n.

(d) 1 is not an eigen value of A.

Q 20) Let the characteristic polynomial of A3×3 be x(x−1)(x+2), then the characteristic
polynomial of A2 is
(a) x(x+ 1)(x− 2) (b) x(x− 1)(x− 4)
(c) x(x+ 1)(x+ 4) (d) None of these.

Q 21) If matrix A =





0 0 1
a 1 b
1 0 0



 has linearly independent eigen vectors corresponding to

eigen value 1, then
(a) a = 0, b = 0. (b) a = 1, b = 1
(c) for any a, b. (d) a+ b = 0.

Q 22) Let characteristic polynomial of A2×2 be a real matrix and its characteristics poly-
nomial is x2 − 3x+ 2. Then the characteristic polynomial of A−1 is
(a) x2 − 3

2
x+ 1

2
(b) x2 − 3x+ 2

(c) x2 − 2x+ 3 = 0 (d) x2 − 1

2
x+ 3

2

Q 23) One of the eigen vectors of the matrix A =

(

2 1
0 1

)

over R is

(a)

(

2
1

)

(b)

(

1
1

)

(c)

(

−1
1

)

(d) None of these.

Q 24) If A is a square matrix of order n and λ is a scalar,then the characteristic polynomial
of A is obtained by expanding the determinant:
(a) |λA| (b) |λA− In| (c) |A− λIn| (d) None of these

Q 25) At least one characteristic roots of every singular matrix is equal to
(a) 1 (b) -1 (c) 0 (d) None of these.

Q 26) The characteristic roots of two matrices A and BAB−1 are
(a) The same (b) Different (c) Always zero (d) None of these.

Q 27) The scalar λ is a characteristic root of the matrix A if:
(a) A− λI is non-singular (b) A− λI is singular (c) A is singular (d) None
of these.
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Q 28) If eigen value of A is λ,then eigen value of P−1AP is
(a) 1 (b) 1

λ
(c) λ (d) None of these.

Q 29) If λ is a characteristic root of a matrix A then characteristic roots of −A and
αI − A respectively are
(a) −λ and α− λ (b) −λ and α (c) −λ and λ (d) None of these.

Q 30) Which of the following statements are true

1. If the characteristic roots of two n×n matrices are same then their characteristic
polynomials are same.

2. If the characteristic polynomials of two n × n matrices are same then their
characteristic roots are same.

3. If eigen values of two n×n matrices are same then their eigen vectors are same.

4. The characteristic roots of two n× n matrices are same but their characteristic
polynomials may not be same.

(a) ii and iv are true. (b) i, iii are true.
(c) i, ii and iii are true. (d) only ii is true.

Q 31) Let T : R2 → R
2 be the orthogonal transformation of rotation through angle θ,

then

(a) T has no eigen values for any θ ∈ (0, 2π).

(b) T has only one eigen value −1 for θ = π and no eigen values if θ ∈ (0, 2π)−
{π}.

(c) T has eigen value 1 for θ = π/4.

(d) T has only one eigen value for all θ ∈ (0, 2π).

Q 32) Let T : R2 → R
2 be the orthogonal transformation of reflection in the line y =

tan θ
2
x, then

(a) T has no eigen value for any θ ∈ (0, 2π).

(b) T has only one eigen value 1 for every θ ∈ (0, 2π).

(c) T has two eigen values 1,−1 for every θ ∈ (0, 2π).

(d) T has an eigen value -1 for θ = π.

Q 33) Let A =

[

a b
c d

]

where a, b, c, d ∈ Z such that a+ b = c+ d, then

(a) A has two integer eigen values.

(b) A may not have any eigen value.

(c) A has two eigen values which may not be integers.

(d) A has two eigen values only if b, c = 0.

Q 34) Let A be an n× n orthogonal matrix with detA = −1. Then

(a) −1 is the only eigenvalue of A. (b) −1 is an eigenvalue of A.
(c) A has at least one real eigenvalue only if n is odd. (d) None of the above.
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Q 35) Let A be an 2× 2 orthogonal matrix with detA = 1. Then

(a) 1 is the eigenvalue of A. (b) −1 cannot be an eigenvalue of A.
(c) A may not have real eigenvalue. (d) None of the above.

Q 36) Let x(x− 1)(x+ 2) be the characteristic polynomial of a 3× 3 matrix A, then the
characteristic polynomial of A2 is
(a) x(x− 1)(x− 4) (b) x(x+ 1)(x− 2)
(c) x(x+ 1)(x+ 4) (d) None of these.

Q 37) Which of the following statements are true-

(i) 0 is an eigen value of a matrix if and only if the matrix is singular.

(ii) An×n has atleast one (real) eigen value if n is odd.

(iii) A matrix with all the diagonal entries equal to zero has zero eigen value.

(iv) detA = product of characteristic roots of A.

(a) all the statements are true. (b) (i), (ii), (iv) are true.

(c) (i), (iii) are true. (d) (i), (ii), (iii) are true.

Practical 2.3 Descriptive Question

Q 1) Find eigen values and bases of the corresponding eigen spaces for following matrices

(

1 2
3 2

)





0 1 0
1 0 1
1 1 0









2 0 0
0 1 0
0 0 1









0 0 −2
1 2 1
1 0 3









5 6 2
0 −1 −8
1 0 −2





Q 2) Find eigen values and bases of the corresponding eigen values of A =





−2 2 3
−2 3 2
−4 2 5



.

Hence find eigen values and the bases of corresponding eigen spaces of
(i) A−1 (ii) A3 − 2A2 + I (iii) A+ 2I

Q 3) Let A,B be n × n matrices and x be an eigen vector corresponding to a non-null
eigen value λ, of AB. Show that Bx is an eigen vector of BA corresponding to λ.

Q 4) If λ is an eigen value of An×n, show that the eigen subspace of Ak corresponding to
λk contains the eigen subspace of A corresponding to λ.

Q 5) Let v be a non-zero vector in R
n and A = vtv where v is treated as a 1 × n row

vector. Then

a. Show that the eigen values of A are 0 and vvt.

b. Show that the eigen space corresponding to eigen value vvt is of dimension 1.

c. Identify the eigen subspace corresponding to 0.
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Q 6) Find all the eigen values and corresponding eigen vectors of the matrix

(1)

[

2 4
5 3

]

(2)

[

5 4
5 6

]

(3)





2 1 1
1 2 1
1 1 2





(4)





3 −1 2
−1 2 1
2 1 3



 (5)





8 −6 2
−6 7 −4
2 −4 3



 (6)





−2 2 1
2 1 2
1 2 6





Q 7) Let matrix A =





−1 2 1
−4 5 1
−1 −2 −3



 and matrix B = 3A2 − 4A + I, where I is 3 × 3

identity matrix. Find the eigen values and corresponding eigen vectors of the matrix
B.

Q 8) Compute the eigen values and corresponding eigen vectors ofA−1 ,forA =





4 2 5
3 3 5
3 2 6



.Hence

compute the eigen values and eigen vectors of 4A−2 − 3A−1 + 2I.

Q 9) Let A =





3 −1 2
−1 2 1
2 −1 3



.Find the eigen values and corresponding eigen vectors of the

matrix B ,where B = 2A2 + 3A− 5I where I is 3× 3 identity matrix.

Q 10) Find eigen values and bases of the corresponding eigen vectors for a 3× 3 matrix
having all its entries 1.

Q 11) Let V be a vector space of dimension 3 and {v1, v2, v3} be a basis of V . Find
eigen values and corresponding eigen spaces of T : V → V be defined by T (v1) =
v1, T (v2) = v1 + v2, T (v3) = v1 + v2 + v3.

Q 12) If A is a nilpotent matrix (Ak = 0 for some k ∈ N) then show that 0 is the only
eigen value of A, hence show that xn is the characteristic polynomial of A.

Q 13) Find a 3 × 3 real matrix A s.t. Au1 = u1, Au2 = 2u2, Au3 = 3u3 where u1 =




1
2
2



 , u2 =





2
−2
1



 , u3 =





−2
−1
2



.

Q 14) Let A,B be n× n real matrices and PB(x) be the characteristic polynomial of B.
Show that the matrix PB(A) is invertible if and only if A and B have no common
eigen values.

Q 15) Let λ1 and λ2 be two distinct eigen values of a matrix A and let u1 and u2 be eigen
vectors of A corresponding to λ1 and λ2 respectively, then show that u1 + u2 is not
an eigen vector of A.

Q 16) Prove that if every non-zero vector of Rn is an eigen vector of An×n then A is a
n× n scalar matrix.
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Q 17) If P3(R) is a vector space containing polynomials of degree ≤ 3 along with the zero
polynomial over R and D : P3(R) → P3(R) is defined as D(f(x)) = f ′(x) then find
the characteristic polynomial, eigen values and corresponding eigen space for D.

Q 18) Let A13×13 be a real matrix of rank 1 and P (t) be the characteristic polynomial of
A. Prove or disprove: (i) t12|P (t) (ii) tr A is an eigen value of A.

Q 19) Consider the linear transformation T : M2(R) → M2(R) defined by T (A) = At.
Find the eigen values and corresponding eigen vectors of T .

Q 20) Prove that





1 1.00001 1
1.00001 1 1.00001

1 1.00001 1



 has one positive and one negative eigen

value.

Q 21) Let A = [aij] be a 3× 3 real matrix where each aij ≥ 0 and
3
∑

j=1

aij = 1 then prove

that any eigen value of A has absolute value ≤ 1.

Q 22) Find a 3 × 3 matrix A which has eigen values 0, 1, -1 with corresponding eigen
vectors (0, 1,−1)t, (1,−1, 1)t, and (0, 0, 1)t respectively.
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Practical no 2.4. Similar matrices and Minimal polynomial

Q 1) If A and B are 3 × 3 matrices over R having (1,−1, 0)t, (1, 1, 0)t, and (0, 0, 1)t as
eigenvectors. Then
(a) A and B are similar matrices. (b) AB = BA.
(c) A and B have same eigenvalues. (d) None of the above.

Q 2) If n× n real matrices A,B are similar and f(x) is a polynomial in real coefficients
then f(A), f(B) have

(a) same characteristic polynomials but different minimal polynomials.

(b) same minimal polynomial but different characteristic polynomials.

(c) same characteristic polynomial and same minimal polynomial.

(d) characteristic polynomials are different as well as the minimal polynomials are
different.

Q 3) For square matrices A,B of same size, which of the following statements are true?

i. If A,B are similar then they have same characteristic polynomial.

ii. If A,B are similar then they have same eigen vectors.

iii. If A,B have same characteristic polynomial then A,B are similar.

iv If A,B have same characteristic roots then A,B are similar.

(a) i and iv (b) only i

(c) i, ii and iv (d) None.

Q 4) The matrix A =

(

1 1
0 1

)

is

(a) similar to

(

2 0
0 0

)

(b) similar to

(

0 0
0 2

)

(c) similar to

(

1 0
0 1

)

(d) not similar to any diagonal matrix

Q 5) The matrix A =

(

1 2
3 4

)

is similar to the matrix

(a)

(

10 −12
4 −5

)

(b)

(

3 2
5 −4

)

(c)

(

6 4
2 1

)

(d) None of the above

Q 6) Degree of the minimal polynomial of n× n real matrix is

(a) equal to n. (b) less than or equal to n.
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(c) greater than n. (d) less than n.

Q 7) Minimal polynomial of

[

A 0
0 B

]

where A,B are square matrices, is

(a) L.C.M. of the minimal polynomials of A and B.

(b) G.C.D. of the minimal polynomials of A and B.

(c) product of the minimal polynomials of A and B.

(d) minimal polynomial of A− minimal polynomial of B.

Q 8) LetA = diag {1, 2,−1}, B =





1 −1 0
−1 2 0
0 0 3



 , C =





−2 0 0
0 1 0
0 0 1



 andD =





0 1 0
1 0 0
0 0 2



,

then

(a) B,C,D are similar to A. (b) Only D are similar to A.

(c) None of B,C,D are similar to A. (d) A is similar to D.

Q 9) If A is a square matrix with all its eigen values equal to 1, then

(a) Ak is similar to A for every positive integer k.

(b) Ak is not similar to A for any positive integer k 6= 1.

(c) Ak is similar to A for only k = 2.

(d) Ak = I for some positive integer k.

Q 10) The minimal polynomial of the diagonal matrix A = diag {1,−1, 1,−1} is

(a) x2 + 1 (b) x2 − 1

(c) (x2 − 1)2 (d) None of these.

Q 11) Let An×n be a real matrix, then the characteristic polynomial of A = the minimal
polynomial of A if

(a) and only if A has n distinct characteristic roots.

(b) A has n distinct characteristic roots.

(c) only if A is a diagonal matrix. (d) A is nilpotent matrix.

Q 12) The minimal polynomial of

[

1 α
0 1

]

is

(a) x− 1 for any α ∈ R. (b) (x− 1)2 for any α ∈ R.

(c) x− 1 if α = 0 and (x− 1)2 otherwise. (d) x− 1 if α 6= 0 and (x− 1)2

otherwise.

Q 13) The minimal polynomial of





1 α β
0 1 γ
0 0 2



 is
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(a) (x− 1)(x− 2) for any α, β, γ ∈ R.

(b) (x− 1)2(x− 2) for any α ∈ R.

(c) (x− 1)2(x− 2) if α = 0 and (x− 1)(x− 2) otherwise.

(d) (x− 1)2(x− 2) if α 6= 0 and (x− 1)(x− 2) otherwise.

Q 14) If a =





1 α β
0 1 γ
0 0 1



 then which of the following statements is true

(i) x− 1 is the minimal polynomial of A if and only if α = β = γ = 0.

(ii) (x− 1)2 is the minimal polynomial of A if and only if α = γ = 0 and β 6= 0.

(iii) (x− 1)3 is the minimal polynomial of A if and only if β and exactly one of the
α, γ are 0.

(iv) (x− 1)3 is the minimal polynomial of A if and only if exactly two of the α, β, γ
are 0.

(a) i, ii, iii are true. (b) only i is true.

(c) i and iii are true. (d) i, ii, iv are true.

Q 15) Let A =





2 0 0
a 2 0
b c −1



. Then (t + 1)(t − 2) is the minimal polynomial of A if and

only if
(a) b = c = 0 (b) a = 0
(c) b 6= 0 (d) a = b = c.

Q 16) If N1, N2 are real nilpotent matrices , then N1, N2 are similar if and only if
(a) they have same characteristic polynomials. (b) They have same minimal polynomials.
(c) Either N1 or N2 is zero. (d) N1 = ±N2

Practical 2.4 Descriptive Question

Q 1) Determine the minimal polynomials of





1 0 0
0 0 0
0 0 0



 and





1 0 0
0 0 1
0 0 0



. Show that their

minimal polynomials are different though their characteristic polynomials are same.

Q 2) Show that a n × n matrix A such that A2 = 0 is either a zero matrix or is similar

to

[

0 1
0 0

]

.

Q 3) Find the minimal polynomial of

(1)





3 0 0
0 2 1
0 1 2



 (2)





2 1 0
−4 −2 0
2 1 0





(3)





2 1 0
−4 −2 0
2 1 0



 (4)





3 1 6
2 1 0
−1 0 −3




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Q 4) Find the values of ’a’ and ’b’ such that the following matrices are similar.

A =





−2 0 0
2 a 2
3 1 1



, B =





−1 0 0
0 2 0
0 0 b





Q 5) Prove or disprove: An×n is idempotent (A2 = A) if and only if the minimal polyno-
mial of A is x2 − x.

Q 6) For every n × nreal matrix A, show that there exists an unique monic polynomial
of least degree that annihilates A.

Q 7) If d1, d2, · · · , dk are the distinct diagonal entries of a n× n diagonal matrix A, then

show that the minimal polynomial of A is
k
∏

i=1

(x− di).

Q 8) Show that the minimal polynomial of An×n is product of k distinct linear factors if
and only if A is similar to a diagonal matrix with k distinct diagonal entries.

Q 9) Show that the minimal polynomial of the companion matrix corresponding to f(x) =
x3 + a2x

2 + a1x+ a0 is f(x).

Q 10) If An×n is a real matrix, A = [aij] where aij =

{

1 i+ j = n

0 otherwise.
. Find the minimal

polynomial of A.

Q 11) Let A be a 3 × 3 matrix with all its entries = 1. Find the minimal polynomial of
A.

Q 12) find the minimal polynomial of A =





0 0 a
1 0 b
0 1 c



, where a, b, c ∈ R.

Q 13) Show that characteristic polynomial of An×n where A2 = A and rank A = k is
xn−k(x− 1)k.
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Practical no 2.5. Diagonalization of a matrix

1. Let A =

(

1 2
0 −2

)

. Then,

(a) A and A100 are both diagonalizable. (b) A is diagonalizable but A100 is not.
(c) Neither A nor A100 is diagonalizable. (d) None of the above.

2. Let A =





1 2 4
0 −1 −2
0 0 3



 and B = A100 + A20 + I. Then,

(a) A,B are not diagonalizable. (b)A is diagonalizable, but B is not diagonalizable.
(c) AB is diagonalizable (d) None of the above.

3. If T : R
2 → R

2 is a linear transformation such that T (61, 23) = (189, 93) and
T (67, 47) = (195, 117). Then
(a) T is diagonalizable with distinct eigenvalues. (b) T is not diagonalizable.
(c) T does not have distinct eigenvalues, but is diagonalizable. (d) None of the above.

4. Which of the following matrices is not diagonalizable?

(a)





1 1 0
0 2 1
0 0 3



 (b)





1 1 0
0 2 0
0 0 1



 (c)





1 1 0
0 1 0
0 0 2



 (d)





1 0 0
0 2 0
0 0 3





5. Let A be a n× n real orthogonal matrix. Then
(a) A has n real eigen values and each eigen value is ±1. (b) A is diagonalizable
(c) A may not have any real eigen value. (d) (b) A2 = I

6. Let A =









0 0 0 0
a 0 0 0
0 b 0 0
0 0 c 0









, then A is diagonalizable if

(a) a = b, c = 1 (b) a = 1 = b = c (c) a = b = c = 0 (d) a, b, c > 0

7. Let A =

[

0 a
0 −a

]

(a) A is diagonalizable but not orthogonally diagonalizable.
(b) A is not diagonalizable for any a ∈ R.
(c) A is orthogonally diagonalizable if and only if a = 1 (d) None of these.

8. If A is a 4× 4 matrix having all diagonal entries 0, then
(a) 0 is an eigenvalue of A. (b) A4 = 0 (c) A is not diagonalizable. (d) None of these.

9. Let A be an n× n non-zero nilpotent matrix over R. Then
(a) A is diagonalizable. (b) A is diagonalizable if n is odd.
(c) A is not diagonalizable. (d) None of the above.

10. Let A =

(

α −3
3 0

)

, α ∈ R is a parameter. Then

(a) A is not diagonalizable for any α ∈ R. (b) A is diagonalizable ∀αR.
(c) A is not diagonalizable if −6 ≤ α ≤ 6. (d) A is diagonalizable if −6 < α < 6.
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11. Let A and B be n× n matrices over R such that AB = A− B. If B is a diagonal-
izable matrix with only one eigenvalue 2, then,
(a) 2 is also an eigenvalue of A. (b) A is diagonalizable and −2 is the only eigenvalue of A.
(c) A may not be diagonalizable. (d) None of these.

12. The matrix A =





1 7 5
0 4 7
0 0 2





(a) Not diagonizable. (b) is similar to





1 0 0
0 4 0
0 0 2





(c) is similar to





2 0 0
0 2 0
0 0 3



. (d) None of the above.

13. Let A,B,C be 3× 3 non-diagonal matrices over R such that
A2 = A,B2 = −I, (C − 3I)2 = 0. Then
(a) A,B,C are all diagonalizable over R. (b) A,C are all diagonalizable over R.
(c) Only A is diagonalizable over R. (d) None of the above

14. Let A ∈ M3(R) such that AB = BA for all B ∈ M3(R) . Then
(a) A has distinct eigenvalues and is diagonalizable.
(b) A is not diagonalizable.
(c) A does not have distinct eigenvalues but is diagonalizable.
(d) None of the above.

15. If A,B,C,D ∈ M2(R) such that A,B,C,D are non-zero and not diagonal. If
A2 = I, B2 = B,C2 = 0, C 6= 0 and every eigenvalue of D is 2, then
(a) A,B,C,D are all diagonalizable. (b) B,C,D are diagonalizable.
(c) A,B are diagonalizable. (d) Only D is diagonalizable.

16. If A =

[

1 1
0 0

]

and B =

[

1 0
0 0

]

then

(a) Both A,B are diagonalizable, A is also orthogonally diagonalizable.

(b) Both A,B are orthogonally diagonalizable.

(c) Both A,B are diagonalizable, B is also orthogonally diagonalizable.

(d) Both A,B are diagonalizable, but both A,B are not orthogonally diagonaliz-
able.

Practical 2.5. Descriptive Questions

1. In each following matrices A,
(a) Find eigen values of A, geometric and algebraic multiplicity of each eigen values.
(b) Determine whether A is diagonalizable. In case, the given matrix is diagonaliz-
able find a non-singular matrix P so that P−1AP is a diagonal matrix.
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(i)

(

1 1
2 2

)

(ii)

(

1 2
3 6

)

(iii)

(

1 1
0 1

)

(iv)





1 1 0
0 1 0
0 0 2



 (v)





1 1 0
0 2 2
0 0 4



 (vi)





3 1 6
2 1 0
−1 0 −3





(vii)





3 0 6
0 −3 0
5 0 2



 (viii)





0 0 0
0 0 0
3 0 1



 (ix)





3 0 −2
−7 0 4
4 0 −3





2. For the following find a non-singular matrix P such that P−1AP is a diagonal
matrix.

(a) A =

(

1 0
−1 2

)

.Hence find A1000.

(b) A =

(

1 −1
−1 1

)

.Hence find A10.

(c) A =

(

2 1
1 2

)

.Hence find A100.

(d) A =





1 −2 8
0 −1 0
0 0 −1



.Hence find A1000, A−1000, A2002, A2003.

3. Determine constants a, b, c so that the matrix A =





1 a b
0 2 c
0 0 1



 is diagonalizable.

4. Characterize the diagonalizable 2 × 2 matrices A such that A2 − 3A + 2I = 0 in
terms of their eigenvalues.

5. Show that A =

(

a b
0 d

)

, a, b, d ∈ R is diagonalizable if and only if b = 0 or a 6= d.

6. (i) Is the matrix

(

1 6
2 0

)

is similar to

(

3 0
0 2

)

.

(ii) Is the matrix

(

1 2
0 3

)

is similar to

(

3 0
1 2

)

.

7. Let A =

(

1 0
1 2

)

. Find a non-singular matrix P such that P−1AP is a diagonal

matrix and hence find A100.

8. Find a 3× 3 matrix A which has eigenvalues 0, 1and− 1 with corresponding eigen-
vectors (0, 1.− 1)t, (1;−1; 1)t, (0, 1, 1)t respectively.

9. Find the eigenvalues and eigenvectors of 13 × 13 matrix A =















0 · · · 0 1
0 · · · 0 1
...

. . .
...

...
0 · · · 0 1
1 · · · 1 1















and

show it is diagonalizable.
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10. Let An×n real matrix such that A2 = A. Prove that A is diagonalizable.
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Practical no 2.6 Orthogonal Diagonalization and Quadratic Form

1. If v = [1, 0, 1] is a row vector then,
(a) vtv is not orthogonally diagonalizable.
(b) vvtv is orthogonally diagonalizable.

(c) vtv is not diagonalizable.
(d) None of the above.

2. Let A be an m× n matrix over R. Then
(a) AAt is not orthogonally diagonalizable.
(b) Im + AAt is not orthogonally diagonalizable.
(c) AAt and AtA are orthogonally diagonalizable. (d) None of the above.

3. Let A =

(

2 1
1 2

)

. If P tAP =

(

3 0
0 1

)

, then P =

(a)

(

1√
2

1√
2

1√
2

− 1√
2

)

(b)

(

1√
2

1√
2

− 1√
2

1√
2

)

(c)

(

1√
2

− 1√
2

− 1√
2

1√
2

)

(d) None of the above.

4. Let A =

(

0 a
−a 0

)

, a ∈ R. Then

(a) A is not diagonalizable for any a ∈ R.
(b) A is diagonalizable but not orthogonally diagonalizable.
(c) A is orthogonally diagonalizable if and only if a = 0. (d) None of the above.

5. The equation 2x2 − 4xy− y2 − 4x+10y− 13 = 0 after rotation and translation can
be reduced to
(a) an ellipse (b) a hyperbola (c) a parabola (d) a pair of straight lines.

6. The conic x2 + 2xy + y2 = 1 reduces to the standard form after rotation through a
angle

(a)
π

4
(b)

π

3
(c)

2π

3
(d)

π

6

7. The quadratic form Q(x) = x2
1 + 4x1x2 + x2

2 has
(a) rank = 1, signature = 1. (b) rank = 2, signature = 0.
(c) rank = 2, signature = 2. (d) None of the above.

8. Let A be a 4 × 4 real symmetric matrix. Then there exists a 4 × 4 real symmetric
matrix B such that
(a) B2 = A (b) B3 = A (c) B4 = A (d) None of these

9. The matrix

(

1 2
2 k

)

is positive definite if

(a) k > 4 (b) −2 < k < 2 (c)|k| > 2 (d) None of these.

10. ax2 + bxy + cy2 = d where a, b, c are not all zero and d > 0 represents
(a) ellipse if b2 − 4ac > 0 and hyperbola if b2 − 4ac < 0.
(b) ellipse if b2 − 4ac < 0 and hyperbola if b2 − 4ac > 0.
(c) is a circle if b = 0 and a = c else it is a hyperbola.
(d) None of these.
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11. The conic x2 + 10x+ 7y = −32 represents
(a) a hyperbola (b) an ellipse. (c) a parabola (d) a pair of straight lines.

12. For the quadratic from Q(x) = 2x2
1 + 2x2

2 − 2x1x2

(a) rank = 2, signature = 1 (b) rank = 1, signature = 1
(c) rank = 2, signature = 0 (d) rank = 2, signature = 2

13. For the quadratic from Q(x) = −3x2
1 + 5x2

2 + 2x1x2,
(a) rank = 2, signature = 0 (b) rank = 2, signature = 1
(c) rank = 2, signature = 2 (d) rank = 1, signature = 1

14. The symmetric matrix associated to the quadratic from 5(x1 − x2)
2 is,

(a) positive definite (b) positive semi definite (b) indefinite (d) negative definite.

15. The quadratic form Q(x) = 2x2
1 − 4x1x2 − x2

2 after rotation can be reduced to
standard form
(a) 3y21 − 2y22 or 2y21 + 3y22 (b) 3y21 + 2y22 (c) −3y21 + 2y22 (d) 2y21 − 4y22

16. The equation x2 + y2 + z2 − 2x+ 4y − 6z = 11 represents
(a) None of the below (b) a hyperboloid of one sheet
(c) a hyperboloid of two sheet (d) a sphere.

17. The conic 3x2 − 4xy = 2 represents
(a) an ellipse (b) a hyperbola (c) a parabola (d) a pair of straight lines.

18. Let Q(X) = X tAX, where A =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, X = (x1, x2, x3, x4)
t. Then by

orthogonal change of variable, Q(X) can be reduced to
(a) y1y2 + y23 (b) y1y2 + y22 + y23
(c) y21 + y22 + y23 − y24 (d) y22 + y22 − y3y4

19. If An×n be real matrix then which of the following is true-
(a) A has at least one eigen value. (b) ∀X, Y ∈ R, 〈AX,AY 〉 > 0
(c) Each eigen value of AtA ≥ 0 (d) AtA has n eigen values.

Practical 2.6 Descriptive Questions

1. Find an orthogonal matrix P such that P−1AP is a diagonal matrix, in each of the
following examples. A =

(a)





1 0 −1
0 1 2
−1 2 5



 (b)





8 −2 2
−2 5 4
2 4 5



 (c)





3 0 7
0 5 0
7 0 3



 (d)





5 −2 −4
−2 8 −2
−4 −2 5





2. In the following examples, make an orthogonal change of variables X = PY to

reduce the given quadratic form Q(X) to standard form
n

∑

i=1

λiy
2

i . Also, state rank

and signature of Q(X).

(a) Q(x1, x2) = 11x2
1 + 6x1x2 + 19x2

2.
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(b) Q(x1, x2) = x2
1 + 4x1x2 + x2

2.

(c) Q(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 4(x1x2 + x2x3 + x1x3).

(d) Q(x1, x2, x3) = 7x2
1 + x2

2 + x2
3 + 8x1x2 + 8x1x3 − 16x2x3.

(e) Q(x1, x2, x3) = 2(x2
1 + x2

2 + x2
3 − x1x2 + x1x3 − x2x3).

(f) Q(x1, x2, x3) = 5x2
1 + 8x2

2 + 5x2
3 − 4(x1x2 + 2x1x3 + x2x3).

(g) Q(x1, x2, x3) = x2
1x

2
3 − 4(x1x2 + 4x2x3).

(h) Q(x1, x2, x3) = x2
1 + x2

3 − 2x1x2 + 2x2x3.

3. Find rank and signature of the following

(1)









1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1









(2)









1 2 0 0
2 1 0 0
0 0 2 1
0 0 1 2









(3)









0 5 0 0
5 0 0 0
1 0 5 0
0 0 1 5









4. In each of the following examples, find value of k, for which the symmetric matrix
associated to the quadratic form is positive definite.

(a) x2
1 + kx2

2 − 4x1x2.

(b) 5x2
1 + x2

2 + kx2
3 + 4x1x2 − 2x1x3 − 2x2x3.

(c) 3x2
1 + x2

2 + 2x3 + 2x1x3 + 2kx2x3.

5. In each of the following examples, a translation in R
2 puts the conic in standard

form. Reduce the conic to standard form and identify it.
(a) 9x2 + 4y2 − 36x− 24y + 36 = 0. (b) x2 + 10x+ 7y = −32.
(c) y2 − 8x− 14y + 49 = 0. (d) x2 − 16y2 + 8x+ 128y = 256.
(f) x2 + y2 + 6x− 10y + 18 = 0

6. In each of the following examples, a rotation of coordinate axes reduces the conic
to standard form. Identify the conic and give its equation in the standard form in
the rotated system.
(a) 2x2 − 4xy − y2 + 8 = 0. (b)x2 + 2xy + y2 − 2 = 0. (c) 5x2 + 4xy + 5y2 = 9.

7. In each of the following examples a rotation





x
y
z



 =





x′

y′

z′



 reduces the quadric to

standard form. Name the quadric and give its equation in x′y′z′ system.
(a) 2x2+3y2+23z2+72xz+150 = 0 (b) 4x2+4y2+4z2+4xy+4xz+4yz− 5 = 0.

8. Reduce the following quadratic forms to standard form:
(a) 4xz + 4y2 + 8y + 8 (b) 9x2 − 6xy + 6y2 + 2

√
5x+ 12y + 16z.

(c) x2 + 4y2 + 4z2 + 4xy − 4xz − 8yz + 2x+ 8y + 7

9. let A =









0 5 1 0
5 0 5 0
1 5 0 5
0 0 5 0









. Let Q(X) = X tAX, find rank and signature of Q(X).
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Practical 2.7
Unit 1

Q 1) Let W be a subspace of a real vector space V . For v1, v2 ∈ V , show that

(i) (v1 +W ) = (v2 +W ) if and only if v1 − v2 ∈ W .

(ii) either (v1 +W ) ∩ (v2 +W ) = {0} or (v1 +W ) = (v2 +W )

Q 2) Let W be a subspace of a real vector space V and V/W = {v +W / v ∈ V }. Show
that addition defined by (v1+W )+(v2+W ) = (v1+v2)+W and scalar multiplication
defined by α.(v +W ) = α.v +W are well defined in V/W .

Q 3) Let W be a subspace of a finite dimensional vector space V . Show that dim V/W =
dim V− dim W .

Q 4) Let Pn[R] denote the space of polynomials with real coefficients of degree ≤ n along
with zero polynomial. Consider the linear transformation D : Pn[R] → Pn−1[R]
defined by D(f) = df

dx
and T : Pn[R] → Pn+1[R] defined by T (f) = xf . If A =

DT − TD : Pn[R] → Pn[R], find KerA, and dim(A/KerA)

Q 5) State and prove the ’First Isomorphism Theorem of vector space’ (Fundamental
theorem of vector space homomorphism).

Q 6) Show that any orthogonal linear transformation T : R2 → R
2 is either a rotation

about origin or a reflection about a line passing through origin.

Q 7) Let V be a finite dimensional inner product vector space and T : V → V be a linear
transformation. Prove that the following statements are equivalent.

(i) T is orthogonal.

(ii) ‖T (X)‖ = ‖X‖ for all X ∈ V .

(iii) If {ei}ni=1 is an orthonormal basis of V , then {T (ei)}ni=1 is also an orthonormal
basis of V .

Q 8) Let V be a finite dimensional inner product vector space. If f : V → V is a function
such that (i) f(0) = 0 (ii) ‖f(X) − f(Y )‖ = ‖X − Y ‖, ∀ X, Y ∈ V , then show that
f is an orthogonal linear transformation.

Q 9) Let V be a finite dimensional inner product vector space and f : V → V be an
isometry, then show that there exists unique x0 ∈ V and an unique orthogonal linear
transformation T : V → V such that f = Lx0

◦ T where Lx0
: V → V is a translation

map defined as Lx0
(X) = X +X0.

Q 10) Let V be an n dimensional inner product space and W be a subspace of V of
dimension n − 1. Let u be a unit vector orthogonal to W . Show that T : V → V
defined by T (x) = x − 2〈x, u〉u is an orthogonal linear transformation such that
T (w) = w, ∀ w ∈ W and T (u) = −u.

Q 11) Let A be a n× n real matrix. Show that

(i) det xIn − A is a monic polynomial of degree n in ′x′.
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(ii) Coefficient of xn−1 in the polynomial is = - tr A.

(iii) Constant term of the polynomial is = (−1)n det A.

Q 12) State and prove the Cayley Hamilton Theorem.

Q 13) If T : R2 → R
2 is a linear transformation such that 〈u, v〉 = 0 ⇒ 〈T (u), T (v)〉 =

0 for each u, v ∈ R
2, show that T = aS, where S : R

2 → R
2 is an orthogonal

transformation.

Unit 2

Q 1) Let V be a vector space of finite dimension ’n’and T : V → V be a linear transfor-
mation. Show that following statements are equivalent.

(i) λ ∈ R is a an eigen value of T .

(ii) λIn − T is not injective. (I : V → V is the identity map.)

(iii) λ is an eigen value of a matrix A,where A is a matrix associated with T with
respect to any basis of V .

(iv) λ is a root of the characteristic polynomial of A.

(v) The system of homogeneous linear equations [λIn −A]X = 0 has non-zero solu-
tion X ∈ R

n.

Q 2) If λ is an eigen value of a real n× n matrix A, then

(i) λ is an eigen value of At.

(ii) λk is an eigen value of Ak for k ∈ N. Hence f(λ) is an eigen value of f(A), for a
polynomial f(x) over R.

(iii) If A is invertible, then λ−1 is an eigen value of A−1.

Q 3) For n× n real matrix A, prove that -

(i) Characteristic polynomial of A = Characteristic polynomial of At.

(ii) Characteristic polynomial of B = characteristic polynomial of A for any matrix
B similar to A.

(iii) For any real matrix Cn×n, Characteristic polynomial of AC = characteristic
polynomial of CA.

Q 4) If A is an n × n real matrix, and λ1, λ2, · · · , λk are distinct eigen value of A with
X1, X2, · · · , Xk as corresponding eigenvectors, then show that X1, X2, · · · , Xk are
linearly independent.

Or

If T : V → V is a linear transformation where V is an vector space of dimension n
and λ1, λ2, · · · , λk are distinct eigen value of T with X1, X2, · · · , Xk as corresponding
eigenvectors, then show that X1, X2, · · · , Xk are linearly independent in V .
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Q 5) Let A be a n× n matrix having ’n’ eigen values, then prove that A is similar to an
upper triangular matrix.

Q 6) Show that minimal polynomial of a real matrix An×n divides every polynomial
which annihilates A. Hence the minimal polynomial of A divides the characteristic
polynomial of A.

Q 7) α is a root of the minimal polynomial of matrix A if and only if α is a characteristic
root of A.

Q 8) Similar matrices have same minimal polynomials.

Q 9) Define invariant subspace. Let V be a finite dimension vector space and T : V → V
be a linear transformation. Show that

(a) ker T, ImT are invariant under T .

(b) eigen space of T is invariant under T .

(c) If V is an inner product space, T is symmetric (i.e. 〈TX, Y 〉 = 〈X, TY 〉 ∀X, Y ∈
V ) and W is invariant under T , then W⊥ is also invariant under T .

Unit 3

1. Define a diagonalizable matrix. If A is an n× n real matrix, and λ1, λ2, · · · , λn are
distinct eigen values of A, show that A is diagonalizable.

2. Define Algebraic and Geometric multiplicity of an eigen value of a square matrix.
Show that the algebraic multiplicity of an eigen value does not exceed its geometric
multiplicity.

3. For n× n matrix A, show that following are equivalent-

(a) A is diagonalizable.

(b) R
n has basis consists of eigen vectors of A.

(c) There are n eigen values to A and algebraic multiplicity of each eigen value
coincides with its geometric multiplicity.

(d) sum of dimensions of eigen spaces of A is n.

4. Let V be an n dimensional vector space and T : V → V be linear transformation.
When do we say that T is diagonalizable? Show that T is diagonalizable if and only
if V has a basis consists of eigen vectors of T .

5. Let A be real symmetric matrix of order n. Show that eigen values of A are real.
Also show that if λ1, λ2, · · · , λk are distinct eigen values of A and X1, X2, · · ·Xk are
corresponding eigen vectors then {X1, X2, · · · , Xk} form an orthogonal set.

6. Define an orthogonally diagonalizable matrix. Show that every real symmetric ma-
trix is orthogonally diagonalizable.
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7. Define a quadratic form in n variables. Define symmetric associated to it. What
is the standard (normal or canonical) form of quadratic form? Show that every
quadratic formQ(x1, x2, · · · , xn) can be reduced to standard form by suitable change
of variables.

or

Show that every quadratic form Q(x1, x2, · · · xn) over R can be to reduced standard

form
n

∑

i=1

λiy
2

i by an orthogonal change of variables X = PY ,X = (x1, x2 · · · , xn)
t,

y = (y1, y2, · · · yn)t and P is an n× n orthogonal matrix.

8. Define a positive definite quadratic form Q(x1, x2, · · · , xn). Show that quadratic
form Q is positive definite if and only if Rank Q = sign Q = n.

or

Show that a quadratic form Q is positive definite if and only if all eigen values of
associated symmetric matrix are positive.

or

Let A be an n×n real symmetric matrix. Then show that the following statements
are equivalent.
(i) 〈AX,X〉 > 0 for all non-zero X ∈ R

n. (ii) Each eigenvalue of A is positive.

9. Define positive definite symmetric matrix. Show that a symmetric matrix is positive
definite if and only if all leading principal minors of A are positive.

10. Consider the equation f(x, y) = ax2 + 2fxy + by2 + cx + dy + e = 0. Show that
by applying rotation and translation the equation f(x, y) reduces to f(X, Y ) =
λ1(X − h)2 + λ2(Y − k)2 + L; h, k, L ∈ R.
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Practical 3.1 : Examples of Metric Spaces, Normed Linear Spaces.
Objective Questions 3.1

(1) Consider the following maps d : R× R −→ R.
(i) d(x, y) = |x− 2y| (ii) d(x, y) = |x2 − y2|
(iii) d(x, y) = |x− y|2 (iv) d(x, y) = |x− y| 12

(a) (iii) and (iv) are metrics on R

(b) Only (iv) is a metric on R

(c) (ii) and (iii) are metrics on R

(d) (ii), (iii) and (iv) are metrics on R

(2) Let d1 and d2 be metrics on a non-empty set X. Then

(a) d21 + d22, ad1 where a > 0 are metrics on X, where (d21 + d22)(x, y) =
(

d1(x, y)
)2

+
(

d2(x, y)
)2

and (ad1)(x, y) = a
(

d1(x, y)
)

(b)
√
d1 +

√
d2, ad1 where a > 0 are metrics on X, where (

√
d1 +

√
d2)(x, y) =

√

d1(x, y) +
√

d2(x, y) and (ad1)(x, y) = a
(

d1(x, y)
)

(c) ad1+bd2 where a, b ∈ R is a metric on X, where (ad1+bd2)(x, y) = ad1(x, y)+bd2(x, y)
(d) None of the above

(3) Consider the discrete metric d1 defined on a non-empty set X by d1(x, y) =

{

1 if x 6= y
0 if x = y

.

Then for x, y, z ∈ X,
(a) d1(x, z) < d1(x, y) + d1(y, z)
(b) d1(x, z) < d1(x, y) + d1(y, z) if and only if x, y, z are distinct.
(c) d1(x, z) = d1(x, y) + d1(y, z) if and only if x = y = z
(d) None of the above

(4) Let d1 and d2 be metrics on a non-empty setX. For x, y ∈ X, let d(x, y) = min {d1(x, y), d2(x, y)}
and d′(x, y) = max {d1(x, y), d2(x, y)}. Then
(a) Both d, d′ are metrics on X. (b) d is a metirc on X, d′ is not.
(c) d′ is a metirc on X, d is not. (d) None of the above.

(5) Let (X, d1) and (Y, d2) be metric spaces. d, d′, d′′ : (X × Y ) × (X × Y ) −→ R are defined
as follows:
(i) d((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2)

(ii) d′((x1, y1), (x2, y2)) = [(d1(x1, x2))
2 + (d2(y1, y2))

2]
1

2

(iii) d′′((x1, y1), (x2, y2)) = [(d1(x1, x2))
2 + (d2(y1, y2))

2]
(a) d, d′, d′′ are all metrics on X × Y (b) d, d′ are metrics on X × Y
(c) d′, d′′ are metrics on X × Y (d) None of the above.

(6) Let (X, ‖ ‖) be a normed linear space and x, y, z ∈ X. If d is the metric induced by the
norm then

1
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(a) d(x+ z, y + z) ≥ d(x, y) and the strict inequality may hold.
(b) d(x+ z, y + z) ≥ d(x, y) + d(y, z) and the strict inequality may hold.
(c) d(x+ z, y + z) = d(x, y).
(d) None of the above

(7) Consider the norms ‖ ‖1, ‖ ‖2 and ‖ ‖∞ on R2, ‖x‖1 = |x1|+ |x2|, ‖x‖2 =
√

x2
1 + x2

2, ‖x‖∞ =
max {|x1|, |x2|}. Then
(a) 2‖x‖∞ ≤ ‖x‖2 ≤ 2‖x‖1 (b) ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1
(c) 2‖x‖∞ ≤ ‖x‖1 ≤ 2‖x‖2 (d) None of the above

(8) Let X = C[0, 1] and consider the norms ‖ ‖1, ‖ ‖∞ on X, where ‖f‖1 =
∫ 1

0

|f(t)| dt, ‖f‖∞ =

sup {|f(t)|, t ∈ [0, 1]}. Then for f(t) = t, g(t) = t2 ∈ X, if d1 and d∞ are metric induced
by ‖ ‖1, and ‖ ‖∞ then

(a) d1(f, g) =
1

2
, d∞(f, g) =

1

3
(b) d1(f, g) =

1

6
, d∞(f, g) =

1

4

(c) d1(f, g) =
1

3
, d∞(f, g) =

1

2
(d) None of the above.

(9) Consider the normed linear space (l2 , ‖ ‖2 ) where l2 = {(xn) : (xn) is a sequence over R, such that
∞
∑

n=1

x 2

n
< ∞} and for x = (x1, x2, . . . , xn, . . .), ‖x‖2 =

√

∞
∑

n=1

x2
n. Let e1 = (1, 0, 0, . . .), e2 =

(0, 1, 0, 0, . . .). Then for the metric d2 induced by ‖‖2,
(a) d2(e1 + e2, e1 − e2) =

√
2 (b) d2(e1 + e2, e1 − e2) = 2

(c) d2(e1 + e2, e1 − e2) =
1√
2

(d) None of the above.

(10) Let X be the set of all real sequences x = (xn). Consider the metric d defined by

d(x, y) = 0 if x = y

=
1

min {i : xi 6= yi}
if x 6= y

where x = (xn), y = (yn) ∈ X. Then for distinct sequences x, y, z ∈ X
(a) d(x, z) ≤ d(x, y) + d(y, z) and the equality may hold.
(b) d(x, z) ≤ max {d(x, y), d(y, z)}
(c) d(x, z) ≥ max {d(x, y), d(y, z)}
(d) None of the above.

(11) Let (X, ‖ ‖) be a normed linear space and d be the metric induced by ‖ ‖. Then for
x, y, z ∈ X, d(x, z) = d(x, y) + d(y, z) if and only if
(a) y = z
(b) y lies on the segment joining x and z and between them.
(c) z lies on the segment joining x and y and between them.
(d) None of the above.

2
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(12) Let X be a normed linear space and x, y ∈ X. Then
(a) ‖x− y‖ ≤ | ‖x‖ − ‖y‖ | (b) ‖x− y‖ = | ‖x‖ − ‖y‖ |
(c) ‖x− y‖ ≥ | ‖x‖ − ‖y‖ | (d) None of the above.

(13) Let X = M2(R). Consider the following maps from X −→ R.
(i) ‖A‖ = | det A|
(ii) ‖A‖ =

∑

1≤i,j≤2

|aij| where A = (aij)

(iii) ‖A‖ = max 1≤i,j≤2|aij| where A = (aij)
Then
(a) (i), (ii), (iii) are all norms on X.
(b) (ii) and (iii) are norms on X.
(c) (i) and (ii) are norms on X.
(d) None of the above.

Topology of Metric Spaces: Practical 3.1

Examples of Metric Spaces, Normed Linear Spaces

Descriptive Questions 3.1

(1) Let d1 and d2 be metrics on a non-empty set X. Check if the following are metrics on X.
Justify your answer.

(i) d, where d(x, y) = max {d1(x, y), d2(x, y)} for x, y ∈ X

(ii) d, where d(x, y) = min {d1(x, y), d2(x, y)} for x, y ∈ X

(iii) d, where d(x, y) = 2d1(x, y) + 3d2(x, y) for x, y ∈ X

(iv) d, where d(x, y) = (d1(x, y))
2 + (d2(x, y))

2 for x, y ∈ X

(v) d, where d(x, y) = max {1, d1(x, y), d2(x, y)} for x, y ∈ X

(2) Let (X, d) be a metric space. Show that the following are metrics on X.

(i) d1 where d(x, y) =
√

d(x, y)

(ii) d, where d(x, y) =
d(x, y)

1 + d(x, y)

(3) Show that d is a metric on R, where d(x, y) =

{

0 if x = y
|x|+ |y| if x 6= y, x, y ∈ R

(4) Let Rn = {(x1, x2, . . . , xn) : xi ∈ R for 1 ≤ i ≤ n}. Show that ‖ ‖1, ‖ ‖2, and ‖ ‖∞

are norms on Rn where for x = (x1, x2, . . . , xn), ‖x‖1 =
i=n
∑

i=1

|xi|, ‖x‖2 =

√

√

√

√

i=n
∑

i=1

x2
i and

‖x‖∞ = max {|x1| : 1 ≤ i ≤ n}. Further, show that ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 and
‖x‖1 ≤

√
n‖x‖2 ≤ n‖x‖∞ for x ∈ Rn

3
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(5) Let l2 = {(xn) : (xn) is a sequence of real numbers such that
∞
∑

n=1

x2
n < ∞}. If ‖x‖2 =

(

∞
∑

n=1

x2
n

)
1

2

for x = (x1, x2, . . . , xn, . . .) ∈ l2 , then show theat (l2 , ‖ ‖2 ) is a normed linear

space.

(6) Let X = C [0 , 1 ] and show that ‖ ‖1 : X −→ R and ‖ ‖∞ : X −→ R defined by,

‖f‖1 =
∫ 1

0

|f(t)| dt, ‖f‖∞ = sup {|f(t)| : t ∈ [0, 1]} are norms on X

(7) Let X = C [0 , 1 ] and consider the norms ‖ ‖1 and ‖ ‖∞ defined by,

‖f‖1 =
∫ 1

0

|f(t)| dt, ‖f‖∞ = sup {|f(t)| : t ∈ [0, 1]}
Then for f = t, g = t2, h = t3, t ∈ [0 , 1 ], find d1(f, g), d∞(f, g), d1(f, h), d∞(f, h) where d1
and d∞ are metrics induced by the norms ‖ ‖1 and ‖ ‖∞ respectively.

(8) Let X be the set of real sequences

(i) Show that d : X ×X −→ R defined by

d(x, y) = 0 if x = y

=
1

min {i : xi 6= yi}
if x 6= y

where x = (xn), y = (yn) ∈ X is a metric on X.

(ii) Show that d : X ×X −→ R defined by

d(x, y) =
∞
∑

i=1

|xi − yi|
2i(1 + |xi − yi|)

where x = (xn), y = (yn) ∈ X is a metric on X.

(iii) LetX = {(xn) : (xn) is a sequence of real numbers, xn −→ 0}. Show that ‖ ‖ : X −→
R defined by ‖x‖ = sup {|xn| : n ∈ N} for x = (xn) is a norm on X.

(9) Let ‖ ‖2 be the Euclidean norm on R2. Let d : R2 × R2 −→ R be defined by

d(x, y) = ‖x‖2 + ‖y‖2 if x 6= y

= 0 if x = y

for x, y ∈ R2. Show that d is a metric on R2

(10) Show that d is a metric on N where for m,n ∈ N,

d(m,n) = 0 if m = n

= 1 +
1

m+ n
if m 6= n

4
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(11) Show that ‖ ‖ is a norm on X, where X = M2(R) and ‖A‖ = max 1≤i,j≤2|aij| for A = (aij)

(12) Show that ‖ ‖1 is a norm on l1 where l1 =
{

(xn) : xn ∈ R,

∞
∑

n=1

|xn| < ∞
}

and ‖x‖1 =

∞
∑

n=1

|xn| for x = (xn)

(13) Show that C (set of complex numbers) is a normed linear space where norm is the absolute
value of a complex number.

5
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Topology of Metric Spaces Practical 3.2

Sketching of Open Balls in R2, Open and Closed sets, Equivalent metric spaces

Objective Questions 3.2

. (Revised Syllabus 2018-19)

(1) In a metric space (X, d)
(a) an arbitrary intersection of open sets is an open sets.
(b) an arbitrary intersection of open balls is an open ball.
(c) an intersection of finitely many open balls is an open ball.
(d) None of the above.

(2) Let (X, d) be a metric space and x, y ∈ X, r, s > 0. If B(x, r) = B(y, s), then
(a) x = y and r = s (b) x = y but r may not be equal to s
(c) r = s (d) None of the above

(3) Let (X, d) be a metric space and x, y ∈ X, 0 < r < s. Then
(a) B(x, r) ⊆ B(x, s) and the equality may occur. (b) B(x, r) ( B(x, s),
(c) B(x, r) = B(x, s) if r ≥ 1 (d) None of the above.

(4) Let (X, d) be a metric space in which the only open subsets are ∅ and X. Then
(a) d is a discrete metric on X.
(b) For x, y ∈ X, d(x, y) ≥ 1 if x 6= y
(c) X is a singleton set.
(d) None of the above.

(5) Let G be a non-empty bounded open set in R2 with Euclidean metric. Then G is of the
type
(a) (a, b)× (c, d), where a, b, c, d ∈ R, a < b, c < d.
(b) I × J, where I and J are union of finitely many bounded open intervals in R

(c) G1 ×G2, where G1 and G2 are bounded open subsets of R.
(d) None of the above.

(6) Consider the normed linear space (R2, ‖ ‖1) where for x = (x1, x2) ∈ R2, ‖x‖1 = |x1|+ |x2|.
If B1((0, 0), 1) is an open ball with center (0, 0) and radius 1, then
(a) B1((0, 0), 1) is a square with sides of length

√
2 which are parallel to coordinate axes.

(b) B1((0, 0), 1) is a square with sides of length
√
2 and diagonals are parallel to

coordinate axes.
(c) B1((0, 0), 1) is a square with sides of length 2 which are parallel to coordinate axes.
(d) None of the above.

(7) Let (X, d) be a metric space and x, y ∈ X. Let d(x, y) = s > 0. Then B(x, r)∩B(y, r) = ∅,
if
(a) r ≥ s

2
(b) 0 < r ≤ s

2
(c) r ≥ 2s (d) None of the above

6
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(8) Consider the normed linear spaces (R2, ‖ ‖1), (R2, ‖ ‖2) and (R2, ‖ ‖∞) where for x =
(x1, x2) ∈ R2 ‖x‖1 = |x1|+ |x2|, ‖x‖2 =

√

x2
1 + x2

2, ‖x‖∞ = max {|x1|, |x2|}
If B1((0, 0), 1), B2((0, 0), 1) and B∞((0, 0), 1) denote open balls in (R2, ‖ ‖1), (R2, ‖ ‖2) and
(R2, ‖ ‖∞) respectively. Then
(a) B1((0, 0), 1) ( B2((0, 0), 1) ( B∞((0, 0), 1)
(b) B1((0, 0), 1) = B2((0, 0), 1) = B∞((0, 0), 1)
(c) B∞((0, 0), 1) ( B2((0, 0), 1) ( B1((0, 0), 1)
(d) None of the above.

(9) Let (X, d) be a metric space aned d1 be the metric on X defined by d1(x, y) =
d(x, y)

1 + d(x, y)
for x, y ∈ X
(a) Every open ball in (X, d1) is an open ball in (X, d) and viceversa.
(b) Every open ball in (X, d1) except possibly B(x, r), r ≥ 1 for any x ∈ X is an

open ball in (X, d) .
(c) Every open ball in (X, d1) is an open ball in (X, d)
(d) None of the above.

(10) Let (X, ‖ ‖) be a normed linear space. Let A ⊆ X and U be an open subset of X in (X, d)
where d is the metric induced by ‖ ‖. Then
(a) A+ U is open if and only if A is open.
(b) A+ U is open.
(c) A+ U is open if and only if A = ∅ or A is a singleton set.
(d) None of the above.

(11) Let (X, d) be a metric space , a ∈ X and r′ > r > 0. Let U1 = {x ∈ X : d(x , a) >
r},U2 = {x ∈ X : d(x , a) 6= r} and U3 = {x ∈ X : r < d(x , a) < r ′}. Then
(a) U1 and U2 are open subsets of X, but U3 may not be open.
(b) U1 ,U2 ,U3 are all open.
(c) U1 is open subset of X, but U2 and U3 may not be open.
(d) None of the above.

(12) Consider the metric spaces (N, d) and (N, d1) where d is the usual distance (induced from
R) and d1 is the discrete metric in N. Then
(a) d and d1 are equivalent metrics on N, but the two metric spaces do not have

same open balls.
(b) The open balls in two metric spaces are the same.
(c) Every open ball in (N, d) is an open ball in (N, d1)
(d) None of the above.

(13) Consider the following subsets of C with respect to the usual distance

(i) A = {z ∈ C : z = 2}⋃{z ∈ C : |z| < 2}

7



US/AMT503 Sem V, Paper 3: Topology of Metric Spaces Revised Syllabus 2018

(ii) B = {z ∈ C : |Re z| < a} where a > 0, a ∈ R

(iii) C = {z ∈ C : z 6= i

n
, n ∈ N}

(a) A,B and C are open.
(b) B,C are open.
(c) Only B is open.
(d) Only C is open.

(14) Consider the following subsets (R3, d) where d Euclidean.
E = {(x, y, 0) ∈ R3}
F = {(x, y, z) ∈ R3 : ax+ by + cz = d, at least one of a, b, c is not zero}
G = {(x, y, z) ∈ R3 : xyz 6= 0}. Then
(a) E,F and G are not open.
(b) Only G is open.
(c) F,G are open.
(d) Only E is open.

(15) Let X = C [0 , 1 ] with norm ‖ ‖∞.
Let E = {f ∈ X : f(0) 6= 0}, F = {f ∈ X : f(1

2
) 6= 0}. Then

(a) E is not open and F is open.
(b) Neither E nor F are open.
(c) Both E and F are open.
(d) E is open but F is not.

(16) Let X = C [0, 1]. Then
(a) B1(0, 1) is open in (X, ‖ ‖∞)
(b) B1(0, 1) ⊆ B∞(0, r) for some r > 0.
(c) B∞(0, 1) ⊆ B1(0, r) for some r > 0.
(d) None of the above.

Topology of Metric Spaces: Practical 3.2

Sketching of Open Balls in R2, Open and Closed sets, Equivalent metric spaces

Descriptive Questions 3.2

(1) Give an example of a metric space in which B(x, r) = B(y, s) but x 6= y and r 6= s.

(2) Determine which of the following sets are open in the given metric space. Justify your
answer in each case.

(i) U = {(x , y) ∈ R2 : xy 6= 0} with Euclidean metric.

(ii) U = {(x , y) ∈ R2 : x = 0} with Euclidean metric.

(iii) Q in R with usual distance.

(iv) U = {(x , y) ∈ R2 : x 2 − y2 ≤ 1} with Euclidean metric.

8
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(v) U = {(x , y) ∈ R2 : 2x + 3y < 1} with Euclidean metric.

(ii) U = B((0 , 0 ), 1 ) \ {(1
2
, 1
2
), (1

3
, 1
3
)} ∈ R2 with Euclidean metric.

(3) Let (X, d) be a discrete metric space and x ∈ X. Find
(i) B(x, 1

2
) (ii) B(x, 3

4
) (iii) B(x, 1) (iv) B(x, r), r > 1

(4) Draw open ball B((0, 0), 1) in R2 with respect to the given metric.

(i) d1 induced by the norm ‖ ‖1, ‖x‖1 = |x1|+ |x2| for x = (x1, x2) ∈ R2

(ii) d2, the Euclidean metric.

(iii) d1 induced by the norm ‖ ‖∞, ‖x‖∞ = max {|x1|, |x2|} for x = (x1, x2) ∈ R2

(iv) d where d(x, y) = 2|x1 − y1|+ 3|x2 − y2| for x = (x1, x2), y = (y1, y2) ∈ R2

(5) Show that in the following examples U is open subset of (R2, d), where d is the Euclidean
metric. Also, for p ∈ U , find maximum rp such that B(p, rp) ⊆ U .

(i) U = {(x , y) ∈ R2 : x > 0 , y > 0} .

(ii) U = {(x , y) ∈ R2 : x /∈ Z, y /∈ Z} .

(iii) U = (0 , 1 )× (0 , 1 ) .

(iv) U = {(x , y) ∈ R2 : −1 < x + y < 1} .

(6) Let f, g ∈ C [0 , 1 ] and suppose f(t) < g(t) for each t ∈ [0, 1]. Show that U = {h ∈ C [0 , 1 ] :
f (t) < h(t) < g(t) for each t ∈ [0 , 1 ]} is an open subset of X = C [0 , 1 ] under ‖ ‖∞ norm
where ‖f‖∞ = sup {|f(t)| : t ∈ [0, 1]}

(7) Consider X = C [0 , 1 ] under the norms ‖ ‖1 and ‖ ‖∞ where ‖f‖1 =

∫ 1

0

|f(t)| dt and

‖f‖∞ = sup {|f(t)| : t ∈ [0, 1]}. Draw the open ball B(0, 1) in (X, ‖ ‖1) and (X, ‖ ‖∞).
(meaning show when does f ∈ C [0 , 1 ] lie in the open ball B(0, 1)).

(8) Describe the open balls B(p, r) for p ∈ Z, r > 0 considering cases 0 < r < 1, r = 1, r > 1 in
the subspace Z of R with usual distance.

(9) Let (X, d1) and (Y, d2) be metric spaces. Consider the metric d : (X ×Y )× (X ×Y ) −→ R

defined by d((x1, y1), (x2, y2)) = max {d1(x1, x2), d2(y1, y2)}. Let p ∈ X, q ∈ Y and r, s > 0.
Show that B(p, r)× B(q, s) is an open set in (X × Y, d).

(10) Consider the metric δ on R2 defined by

δ(x, y) = ‖x‖+ ‖y‖ if x 6= y

= 0 if x = y

for x, y ∈ R2 where ‖ ‖ is the Euclidean norm in R2. Find the open balls B((0, 0), r) and
B(x, r) where x 6= (0, 0), ‖x‖ = ε and 0 < ε < r

9
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(11) Check whether the following subsets of C with respect to usual distance are open. Justify
your answer.

1. A = {z ∈ C : z = 2}⋃{z ∈ C : |z| < 2}
2. B = {z ∈ C : |Re z| < a, where a ∈ R+}

3. C = {z ∈ C : z 6= i

n
, n ∈ N}

(12) Let (X, d) be a metric space. We define a metric d′ on X ×X by

d′((x1, x2), (y1, y2)) = max {d(x1, y1), d(x2, y2)}

Show that D = {(x, x) : x ∈ X} is a closed subset of (X ×X, d′)

(13) Show that S ′ = {(x, y) ∈ R2 : x2 + y2 = 1} is a closed subset of (R2, ‖ ‖2), ‖ ‖2 being the
Euclidean metric.

(14) In the following examples, show that the given pairs of metrics are equivalent.

(i) For a metric space (X, d), the metrics d and d1, where d1(x, y) =
d(x, y)

1 + d(x, y)
, x, y ∈ X

(ii) For a metric space (X, d), the metrics d and d1, where d1(x, y) = min {1, d(x, y)}, x, y ∈
X

(iii) On N, d and d1 where d is the induced metric from the usual distance d in R and d1
is the discrete metric.

(15) Let X = C [0 , 1 ] and d1 and d∞ be the metrics on X induced by ‖ ‖1 and ‖ ‖∞. Prove or
disprove d1 and d∞ are equivalent metrics on X.

(16) Let d1, d2, d∞ be three metrics defined on R2 as follows:
d1(x, y) = |x1 − y1|+ |x2 − y2|, d2(x, y) =

√

(x1 − y1)2 + (x2 − y2)2

d∞(x, y) = max {|x1 − y1|, |x2 − y2|}, ∀x = (x1, x2) & y = (y1, y2).
Prove that d1, d2, d∞ are equivalent metrics on R2 by showing

d∞(x, y) ≤ d2(x, y) ≤
√
2d∞(x, y) and d∞(x, y) ≤ d1(x, y) ≤ 2d∞(x, y).

(17) Let d1, d2, d∞ be three metrics defined on Rn as follows:

d1(x, y) =
n

∑

i=1

|xi − yi|, d2(x, y) =

√

n
∑

i=1

(xi − yi)
2

d∞(x, y) = max {|xi − yi| : 1 ≤ i ≤ n}
∀x = (x1, x2, . . . , xn) & y = (y1, y2, . . . , yn)

Show that d1(x, y) ≥ d2(x, y) ≥ d∞(x, y) ≥ n− 1

2d2(x, y) ≥ n−1d1(x, y)

10
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Topology of Metric Spaces: Practical 3.3

Subspaces, Interior points, Limit Points, Dense Sets and Separability, Diameter of

a set, closure

Objective Questions 3.3

. (Revised Syllabus 2018-19)

(1) Consider the subspace Z of the metric subspace R with usual distance. Then
(a) Every open ball in Z is an infinite set.
(b) Every open ball in Z is a singleton set.
(c) Every open ball in Z is a finite set.
(d) None of the above.

(2) Let (X, d) be a metric space and A,B ⊆ X. Then
(a) (A∪B)◦ = A◦∪B◦, (A∩B)◦ = A◦∩B◦ (b) (A∪B)◦ ⊆ A◦∪B◦, (A∩B)◦ ⊆ A◦∩B◦

(c) A◦ ∪ B◦ ⊆ (A ∪ B)◦, (A ∩ B)◦ = A◦ ∩ B◦ (d) None of the above.

(3) Let A be a non-empty subset of R, (distance being usual) then A◦ can be
(a) empty
(b) singleton set
(c) a finite set containing more than one element
(d) countable but not finite

(4) Consider A = [0, 1) with the induced distance from the usual distance in R. Then
(a) An open ball in A is of the type (−r, r) with 0 < r < 1
(b) [0, 1

2
) is an open ball in A

(c) [0, 1) is not an open ball in A
(d) None of the above

(5) In the subspace (Q, d) of (R, d) where d is the usual distance in R, E = {r ∈ Q : 2 < r2 < 3}
is
(a) an open ball (b) an open set which is not bounded.
(c) open and closed (d) None of the above.

(6) Let A be a closed subset of R (distance usual) A 6= ∅, A 6= R. Then
(a) A = (A◦)
(b) A is countable.
(c) A is not open.
(d) A is a bounded set.

(7) Let (X, d) be a metric space and A,B ⊆ X. Let D(S) denote the set of limit points of
S ⊆ X. Then
(a) If A ( B, then D(A) ( D(B)
(b) If A ( B, then D(B) ( D(A)
(c) If A ( B, then D(A) ⊆ D(B) and the equality may occur.
(d) None of the above.
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(8) Let d be the usual distance on R and d1 be the discrete metric on R. Let A = (0, 1). If
D(A) denotes the set of all limit points of A, then
(a) In (R, d), D(A) = (0, 1) and in (R, d1), D(A) = {0, 1}
(b) In (R, d), D(A) = [0, 1] and in (R, d1), D(A) = ∅
(c) In (R, d), D(A) = (0, 1) and in (R, d1), D(A) = (0, 1)
(d) None of the above.

(9) Consider the following subsets of R (distance in R being usual):
(i) N (ii) Q (iii) { 1

n
: n ∈ N} (iv) (−1, 0) . Then 0 is a limit point of

(a) (iv) only
(b) (ii), (iii) and (iv)
(c) (ii) and (iv) only
(d) N

(10) Let (X, d) be a metric space and A,B ⊆ X. Then
(a) A ∪ B = A ∪ B,A ∩ B = A ∩ B
(b) A ∪B ⊂ A ∪ B,A ∩ B = A ∩B
(c) A ∪ B = A ∪ B,A ∩ B ⊆ A ∩B
(d) None of the above

(11) Let (X, d) be a metric space and A ⊆ X. If G ⊆ X is an open set such that G ∩ A = ∅
then
(a) G ∩ A = ∅ (b) G ∩ A = ∅ (c) G ∩ A = ∅ (d) None of the above

(12) Let A = {1, 1
2
, 1
3
, 2
3
, 1
4
, 3
4
, 1
5
, 2
5
, 3
5
, 4
5
, · · · } in R where the distance is usual. Then

(a) A is a closed set. (b) A is not a closed set, A = (0, 1]
(c) A is not a closed set, A = [0, 1]
(d) None of the above.

(13) Consider Y = [0, 1] ⊆ R, with the induced usual distance d of R. Let A = [0, 1) ⊆ Y. Then
in (Y, d)
(a) ∂A = (0, 1) (b) ∂A = {0, 1} (c) ∂A = {1} (d) None of the above.

(14) Consider N with the induced usual distance of R. Let A = {1, 2, . . . , 10} ⊆ N. Then the
statement which is not true in (N, d) is
(a) A◦ = ∅ (b) A = A (c) ∂A = ∅ (d) None of the above.

(15) Let A,B ⊂ R, and d be the usual distance in R. Then
(a) d(A◦, B◦) = d(A,B) = d(A,B) (b) d(A,B) = d(A,B)
(c) d(A◦, B◦) = d(A,B). (d) None of the above.

(16) Let (X, d) be a metric space and A,B ⊆ X such that A,B are non-empty and A∩B = ∅.
Then
(a) d(A,B) > 0 (b) d(A,B) > 0 if A,B are open.
(c) d(A,B) > 0 if A,B are closed. (d) None of the above.
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(17) Let S1 = {(x, y) : x2 + y2 = 1} ⊆ R2, distance d being Euclidean. For p ∈ R2, d(p, S1)
equals
(a) ‖p‖ (b) ‖p‖ − 1 (c) ‖p‖+ 1 (d) None of the above.

(18) Let A = {1, 1
2
, 1
4
, 3
4
, 1
8
, 3
8
, 5
8
, 7
8
, · · · } (distance in R usual). Then A equals

(a) [0, 1] (b) (0, 1) (c) [0, 1] ∩Q (d) {m
2n
,m, n ∈ N} ∩ [0, 1]

(19) Consider the set A = {1, 1
2
, 1
3
, 2
3
, 1
4
, 3
4
, 1
5
, 2
5
, 3
5
, 4
5
, · · · } (distance in R usual). Then A equals

(a) A is a closed set (b) A is not a closed set, A = (0, 1].
(c) A is not a closed set, A = [0, 1] (d) None of the above.

(20) Let A =

{ |x|
1 + |x| : x ∈ R

}

, (distance usual). Then the set of all limit points of A is

(a) (0, 1] (b) (0,∞) (c) [0, 1] (d) None of the above.

(21) Let A =

{

x

1 + |x| : x ∈ R

}

, (distance usual). Then the set of all limit points of A is

(a) (−1, 1) (b) [−1, 1] (c) (0,∞) (d) None of the above.

Topology of Metric Spaces: Practical 3.3

Subspaces, Interior points, Limit Points, Dense Sets and Separability, Diameter of

a set, closure

Descriptive Questions 3.3

(1) Give an example of a metric space (X, d), A,B ⊆ X such that A◦ = B◦ = ∅ but (A∪B)◦ =
X

(2) Find the interiors of the following subsets in a given metric space.

(i) Z in (R, d) where d is the usual distance.

(ii) Q in (R, d) where d is the usual distance.

(iii) {(x, y) ∈ R2 : x > y} ∪ {(0, 0)} in (R2, d) where d is the Euclidean metric.

(3) Find the closure of the following subsets of C (distance being usual)

(i) S = {z = i
n
: n ∈ N}

(ii) S = {z = 1
m
+ i

n
: m,n ∈ N}

(iii) S = {z = x+ iy, x, y ∈ (0, 1), x, y ∈ Q}
(iv) S = {z = x+ iy, x, y ∈ (0, 1)}

(4) Consider the subspace A = [0, 1) of R where distance in R is usual. Find BA(0, r) an open
ball in the subspace A for r > 0

(5) Consider the subspace A = [0,∞) of R where distance in R is usual. Find BA(0, 1) an open
ball in the subspace (A, d).
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(6) Show that A = {x ∈ Q : −
√
2 < x <

√
2} is both open and closed in the subspace Q of R

with usual distance.

(7) Prove or disprove : Let (X, d) be a metric space and A ⊆ X. Then
(i) (A◦) = A (ii) (A)◦ = A◦

(8) In R, with respect to usual distance, show that A = N, B = {n + 1
n
: n ∈ N, n 6= 1} are

closed sets such that A ∩ B = ∅. Also find d(A,B).

(9) (i) In (R, d), where d is the usual distance, find d(Q,R \Q) and d(Q, A) where A is any
non-empty subset of R.

(ii) In (R2, d), d being Euclidean, find d(A,B) where A = {(x, y) ∈ R2 : xy = 0} and
B = {(x, y) ∈ R2 : xy = 1}.
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Topology of Metric Spaces: Practical 3.4

Limit Points, Sequences, Bounded, Convergent and Cauchy Sequences in a

Metric Space

Objective Questions 3.4

. (Revised Syllabus 2018-19)

(1) Let (xn) be a sequence in a metric space (X, d), xn −→ p. Let A = {xn : n ∈ N}. Then
(a) p is a limit point of A
(b) p ∈ A
(c) There is a subsequence (xnk

) of (xn) having distinct terms such that xnk
−→ p

(d) None of the above.

(2) Let S be an infinite subset of R such that S ∩Q = ∅. Then
(a) S has a limit point which belongs to R \Q.
(b) S has a limit point which belongs to Q.
(c) S is not closed.
(d) R \ S has a limit point which is in S.

(3) Let d1 and d2 be equivalent metrics on X and (xn) be a sequence in X. Then
(a) (xn) is bounded in (X, d1) ⇐⇒ (xn) is bounded in (X, d2).
(b) (xn) is convergent in (X, d1) ⇐⇒ (xn) is convergent in (X, d2).
(c) (xn) is a Cauchy sequence in (X, d1) ⇐⇒ (xn) is a Cauchy sequence in (X, d2).
(d) None of the above.

(4) Every Cauchy sequence is eventually constant in
(a) (N, d) where d is usual.
(b) (Q, d) where d is usual.
(c) (R \Q, d) where d is usual.
(d) None of the above.

(5) d and d1 are metrics on X = (0,∞) where d is the usual distance and d1(x, y) =

∣

∣

∣

∣

1

x
− 1

y

∣

∣

∣

∣

.

Then
(a) If (xn) is a Cauchy sequence in (X, d1) then (xn) is a Cauchy sequence in (X, d)
(b) If (xn) is a Cauchy sequence in (X, d) then (xn) is a Cauchy sequence in (X, d1)
(c) If (xn) is Cauchy in (X, d1), (xn) may not be Cauchy in (X, d).
(d) (xn) is a Cauchy sequence in (X, d) ⇐⇒ (xn) is Cauchy sequence in (X, d1)

(6) d and d1 are metrics on X = (0,∞) where d is the usual distance and d1(x, y) =

∣

∣

∣

∣

1

x
− 1

y

∣

∣

∣

∣

.

Then
(a) If (xn) is a bounded sequence in (X, d1) then (xn) is a bounded sequence in (X, d)
(b) If (xn) is a bounded sequence in (X, d) then (xn) is a bounded sequence in (X, d1)
(c) If (xn) is bounded in (X, d1), (xn) may not be bounded in (X, d).
(d) (xn) is a bounded sequence in (X, d) ⇐⇒ (xn) is bounded sequence in (X, d1)
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(7) Let d1 and d2 be metrics on X such that k1d2(x, y) ≤ d1(x, y) ≤ k2d2(x, y) for all x, y ∈ X
where k1, k2 > 0 are constants. The the statement which is not true is
(a) (xn) is Cauchy in (X, d1) if and only if (xn) is Cauchy in (X, d2).
(b) xn −→ p in (X, d1) if and only if xn −→ p in (X, d2).
(c) (xn) is bounded in (X, d1) if and only if (xn) is bounded in (X, d2).
(d) None of the above.

(8) Consider the sequence (xk) defined by xk =
(

(−1)k,
1

k

)

in R2. d and d1 are metrics on R2

where d is the Euclidean distance and d1 is discrete metric. Then
(a) (xk) is not bounded in (R2, d) and (R2, d1). (b) (xk) converges in (R2, d).
(c) (xk) has a convergent subsequence in (R2, d). (d) (xk) converges in (R2, d1).

(9) Let xk −→ x and yk −→ y in (Rn, d), d is Euclidean distance. Which statement is not
true?
(a) ‖xk‖ −→ ‖x‖ and ‖yk‖ −→ ‖y‖.
(b) 〈xk, yk〉 −→ 〈x, y〉
(c) x is a limit point of the set A = {xk : k ∈ N} and y is a limit point of the set

B = {yk : k ∈ N}
(d) xk + yk −→ x+ y

(10) Consider X = C[0, 1], ‖f‖1 =
∫ 1

0

|f(t)| dt, ‖f‖∞ = sup {|f(t)| : t ∈ [0, 1]} ∀f ∈ X and

fn(x) = xn. Then
(a) {fn} converges in (X, ‖ ‖1) but not in (X, ‖ ‖∞)
(b) {fn} converges in (X, ‖ ‖∞) but not in (X, ‖ ‖1)
(c) {fn} does not converge in both.
(d) {fn} converges in both.

(11) Consider (N, d) where d(m,n) =

{

0 if m = n

1 +
1

m+ n
if m 6= n

Then

(a) Every sequence in (N, d) is bounded.
(b) Every sequence in (N, d) is eventually constant.
(c) Every Cauchy sequence in (N, d) is eventually constant.
(d) Every sequence in (N, d) is Cauchy.

(12) Consider the sequence xn = n− [
√
n] in (R, d) where d is usual metric. Then

(a) (xn) is Cauchy.
(b) (xn) is monotone increasing.
(c) (xn) is monotone decreasing.
(d) (xn) is not convergent but has a convergent subsequence.
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(13) Let d1 and d2 be two metrics on X and there exists real numbers k1, k2 > 0 such that
k1d2(x, y) ≤ d1(x, y) ≤ k2d2(x, y) ∀x, y ∈ X. Mark the sentences which is not true.
(a) (xn) is a Cauchy sequence in (X, d1) implies (xn) is a Cauchy sequence in (X, d2)
(b) (xn) is a bounded sequence in (X, d1) implies (xn) is a bounded sequence in (X, d2)
(c) (xn) is a convergent sequence in (X, d1) implies (xn) is a convergent sequence in (X, d2)
(d) (a), (b) and (c) are not true.

(14) The sequence
( 1

n

)

is not convergent in

(a) [0, 1] with usual distance.
(b) [0, 1] with discrete metric.
(c) Q with usual distance. (d) [0,∞) with usual distance.

(15) The Cauchy sequence which is convergent in (Q, d), where d is the usual distance, is

(a) (xn), where xn = 1 +
1

1!
+ +

1

2!
· · ·++

1

n!

(b) (xn) where x1 = 1 and xn =
1

2

(

xn +
2

xn

)

(c) (xn) = {0.1, 0.101, 0.101001, 0.1010010001, · · · } (d) (xn) where xn =
1

n

(

1 +
1

n

)n

Topology of Metric Spaces: Practical 3.4

Sequences, convergent and Cauchy sequences in a metric space

Descriptive Questions 3.4

(1) Show that the following sequences in R2 are convergent, distance being Euclidean.

(i) (xn) where xn =

(

1

n2
,
n2 − 1

n3 + 1

)

(ii) (xn), where xn =

(

2n,
1

n

)

for n ≤ 9 and xn =

(

210,
−1

n

)

for n ≥ 10

(2) Prove or disprove: Let d1, d2 be equivalent metrics on a non-empty set X. Then

(i) (xn) is bounded in (X, d1) if and only if (xn) is bounded in (X, d2)

(ii) (xn) is Cauchy in (X, d1) if and only if (xn) is Cauchy in (X, d2)

(3) Let d1 and d2 be equivalent metrics on a non-empty set X such that there exist k1, k2 > 0
such that

k1d1(x, y) ≤ d2(x, y) ≤ d2d1(x, y) ∀x, y ∈ X

Then show that

(i) (xn) is bounded in (X, d1) if and only if (xn) is bounded in (X, d2)
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(ii) (xn) is Cauchy in (X, d1) if and only if (xn) is Cauchy in (X, d2)

(4) Show that the sequence xn = 1
n
converges to 0 in the usual metric space R but is not

convergent in X = (0, 1) with the usual metric.

(5) X = C [0 , 1 ]. Show that fn(t) = e−nt converges to 0 w.r.t. the metric d1(f, g) =

∫ 1

0

|f(x)−
g(x)| dx but is not convergent w.r.t. the metric d∞(f, g) = sup{|f(x)− g(x)| : x ∈ [0, 1]}

(6) Let (X, d) be a metric space. If (xn) and (yn) are sequences in X such that xn −→ x and
yn −→ y, then prove that the sequence d(xn, yn) −→ d(x, y) in R w.r.t. the usual metric.

(7) Let X = C [0 , 1 ] be a metric space with the metric d∞ defined by

d∞(f, g) = sup{|f(t)− g(t)| : t ∈ [0, 1]}

Show that the sequence {fn} in X given by fn(t) =
nt

n+ t
∀t ∈ [0, 1], is a Cauchy sequence

in X.

(8) Prove that every Cauchy sequence in a discrete metric space is convergent.

(9) Let (xn) be a Cauchy sequence in a metric space (X, d) and (xnk
) be a subsequence of (xn).

Show that d(xn, xnk
) −→ 0 in R w.r.t. the usual metric.

(10) Let (xn) and (yn) be Cauchy sequences in a metric space (X, d). Prove that (d(xn, yn)) is
a Cauchy sequence in R w.r.t. the usual distance.

(11) Let (X, d) be a metric space and d′ be a metric on X defined by

d′(x, y) = min{1, d(x, y)}

Show that (xn) is a Cauchy sequence in (X, d) if and only if it is a Cauchy sequence in
(X, d′).

(12) Let (X, d1) be a metric space and (xn) be a sequence in X. Show that xn −→ x in (X, d1)
if and only if d1(xn, x) −→ 0 in (R, d) where d is the usual distance in R.

(13) Let (an) and (bn) be sequences in a metric space (X, d1) and xn = d(an, bn).If (an) is a
Cauchy sequence in (X, d1) and xn −→ 0 in (R, d) (d is the usual distance), then show that
(bn) is a Cauchy sequence.
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Topology of Metric Spaces: Practical 3.5

Complete Metric Spaces

Objective questions 3.5

. (Revised Syllabus 2018-19)

(1) Fn = [n,∞) for each n ∈ N. Then ∩n∈NFn

(a) has infinitely many points (b) is a singleton set.
(c) is the empty set. (d) None of the above .

(2) In R with respect to usual distance ∩n∈NFn is a singleton set when
(a) Fn = [−n, n] (b) Fn = [n, n+ 1] (c) Fn = [1− 1

n
, 1] (d) Fn = [0, n]

(3)
⋂

n∈N

(

1− 1

n
, 1 +

1

n

)

is

(a) {1} (b) (0, 2) (c) empty (d) None of these.

(4)
⋂

n∈N

(−n, n) is

(a) [−1, 1] (b) (−1, 1) (c) empty (d) None of these.

(5)
⋂

n∈N

[

− 1

n
,
1

n

]

is

(a) {0} (b) [−1, 1] (c) [0, 1] (d) None of these.

(6)
⋂

n∈N

[

0,
1

n

]

(a) {0} (b) empty (c) [0, 1] (d) None of these.

(7) f : R −→ R be any function (distance is usual). Then
(a) f is continuous on R if and only if f satisfies intermediate value property.
(b) If f is continuous on R then satisfies intermediate value property.
(c) If f satisfies intermediate value proerty and f−1({r}) is closed ∀ r ∈ Q then f is
continuous on R.
(d) None of the above.

(8) f : [0, 1] −→ [0, 1] is defined by

f(x) =

{

x if x ∈ Q ∩ [0, 1]
1− x if x ∈ (R \Q) ∩ [0, 1]

(a) f is continuous on [0, 1] and does not satisfy intermediate value property.
(b) f satisfies intermediate value property but f is not continuous.
(c) f is continuous only at x = 1

2
and f [0, 1] = [0, 1] . (d) None of the above.

(9) Cantor’s Theorem is applicable in the following and ∩n∈NFn is a singleton set
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(i) X = [−1, 1], d usual distance, Fn = [− 1
n
, 1
n
]

(ii) X = (0, 1), d usual distance, Fn = [0, 1
n
]

(iii) X = R, d discrete metric, Fn = (0, 1
n
)

(iv) X = [0, 1], d usual distance, Fn = [1− 1
n
, 1]

(a) (i) and (ii) (b) (i) and (iv) (c) (i), (ii) and (iv) (d) None of these.

(10) Let d1 and d2 be equivalent metrics on X. Then
(a) (X, d1) is bounded =⇒ (X, d2) is bounded.
(b) (X, d1) is complete =⇒ (X, d2) is complete.
(c) (xn) is a Cauchy sequence in (X, d1) =⇒ (xn) is a Cauchy sequence in (X, d2).
(d) None of the above.

(11) Consider the following subspaces of R where distance in R is usual.
(i) Q (ii) Z (iii) {0}∪ { 1

n
: n ∈ N} (iv) [−1, 1)∪N. Then

(a) (i) and (iv) are complete .
(b) only (ii) is complete.
(c) (ii), (iii) and (iv) are complete.
(d) None of the above.

(12) Suppose ‖ ‖1 and ‖ ‖2 are equivalent norms on a normed linear space X. Then the
statement which is not true is
(a) (X, ‖ ‖1) is complete if and only if (X, ‖ ‖2) is complete.
(b) (xn) is a Cauchy sequence in (X, ‖ ‖1 if and only if (xn) is a Cauchy sequence in
(X, ‖ ‖2).
(c) A is a bounded set in (X, ‖ ‖1) if and only if A is bounded in (X, ‖ ‖2).
(d) (a), (b) and (c) are not true.

(13) Consider the following subspaces of (R, d) where d is usual distance :
(i) [0,∞) (ii) [0, 1] ∪ [2, 3] ( iii){1

1
, 1
2
, 1
3
, 2
3
, 1
4
, 3
4
, 1
5
, 2
5
, 3
5
, 4
5
, . . .} (iv) Z Then

(a) All the sub spaces are complete . (b) Only (i) is complete.
(c) Only (ii) is complete (d) Only (iii) is not complete.

(14) Let (X, d) be a complete metric space. A,B be complete subspaces of X such that
A ∩B 6= ∅ then
(a) A ∪ B is a complete subspace of X but A ∩ B is not.
(b) A ∩ B is a complete subspace of X but A ∪ B is not.
(c) A ∪B and A ∩ B are complete subspaces of X.
(d) None of the above.

(15) Consider the following subspaces under usual distance in R.
(i) {

√
2,
√
3,
√
5} (ii) {√p : p is a prime number} (iii) {x ∈ R \Q : x ≤

√
89} Then

(a) (i), (ii), (iii) are not complete.
(b) (i), (ii), (iii) are all complete.
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(c) (i) and (ii) are complete and (iii) is not.
(d) None of the above.

(16) Consider the following subspaces of (R, d), where d is usual distance in R. If N,Z,Q,R\Q
are subspaces of (R, d). Then
(a) N,Z and Q are complete , R \Q is not complete.
(b) N,Z,Q and R \Q are all complete.
(c) N,Z are complete and Q,R \Q are not complete.
(d) None of the above.

(17) Consider the space C [a, b] with norms ‖ ‖1 and ‖ ‖∞ where ‖f‖1 =

∫ b

a

|f(x)| dx and

‖f‖∞ = sup{|f(x)|x ∈ [a, b]}. Then
(a) (C [a, b], ‖ ‖1 ) and (C [a, b], ‖ ‖∞) are complete.
(b) (C [a, b], ‖ ‖1 ) is complete but (C [a, b], ‖ ‖∞) is not complete.
(c) (C [a, b], ‖ ‖∞) is complete but (C [a, b], ‖ ‖1 ) is not complete.
(d) None of the above.

Topology of Metric Spaces: Practical 3.5

Complete Metric Spaces

DESCRIPTIVE QUESTIONS 3.5

(1) Check whether Cantor’s Intersection theorem is applicable for the following examples. Also,
find ∩n∈NFn in each case, where (Fn) is a sequence of subsets of R and the distance in R is
usual.
(a) Fn = (0,∞) (b) Fn = (0, 1

n
) (c) Fn = [1− 1

n
, 2 + 1

n
]

(2) Let f : R −→ R be a function which satisfies intermediate value property: for a, b ∈ R

with f(a) < λ < f(b), there exists c between a and b such that f(c) = λ. Further if
{x ∈ R : f(x) = r} is closed set for each r ∈ Q, then show that f is continuous on R.

(3) Prove that there is no continuous function f : [0, 1] −→ R satisfying x ∈ Q ⇐⇒ f(x) /∈ Q.

(4) Let f : R −→ R be a function such that f−1({x}) has exactly two points for each x ∈ R.
Show that f cannot be continuous on R.

(5) Let h be defined on [0, 1] (usual distance) as follows:

h(x) =







0 if x is irrational.
1
n

if x is rational numberm
n
,with(m,n) = 1

1 if x = 0

Prove that h is continuous only at irrational points in [0, 1].
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(6) f : [0, 1] −→ [0, 1] is defined by

f(x) =

{

x if x ∈ Q ∩ [0, 1]
1− x if x ∈ R \Q ∩ [0, 1]

Show that f([0, 1]) = [0, 1] whereas f does not satisfy intermediate value property.

(7) Show that the equation cos x = x has at least one solution.

(8) Show that the equation x3 − 15x+ 1 = 0 has 3 solutions in the interval [−4, 4].

(9) Show that the function f(x) = (x− a)2(x− b)2+x takes the value (a+ b)/2 for some value
of x.

(10) Let f(x) = tan x ; then f(π/4) = 1 and f(3π/4) = −1. But there is no c ∈ (π/4, 3π/4)
such that f(c) = 0. Explain why this does not contradicts Intermediate value property.

(11) Prove that if f, g are continuous on [a, b] and f(a) > g(a) and f(b) < g(b) then there is a
point c ∈ (a, b) such that f(c) = g(c).

(12) Use the intermediate value property to show that there is a square whose diagonal has
length between r and 2r and has area equal to half the area of the circle of radius r.

(13) Show that a Cauchy sequence in a metric space (X, d) where, X is a finite set and d is
any distance, is eventually constant. Hence show that (X, d) is complete.

(14) Show that Cauchy sequence in (N, d) (or (Z, d)) where d is usual distance is eventually
constant. Hence show that (N, d) (or (Z, d)) is complete.

(15) Show that a Cauchy sequence in a discrete metric space (X, d) is eventually constant.
Deduce that (X, d) is complete.

(16) Show that (R2, d) is a complete metric space where d(x, y) = 2|x1 − y1| + 3|x2 − y2| for
x = (x1, x2), y = (y1, y2) ∈ R2.

(17) Show that (N, d) is a complete metric space where for m,n ∈ N,

d(m,n) =

{

0 if m = n

1 +
1

m+ n
if m 6= n

(18) Let (X1, d1) and (X2, d2) be metric spaces and d be a metric on X1 × X2 defined by

d
(

(x1, x2), (y1, y2)
)

=
√

d21(x1, y1) + d22(x2, y2). Show that
(

xn

)

=
(

x1(n), x2(n)
)

in X1 ×
X2 converges to (p1, p2) if and only if x1(n) −→ p1 and x2(n) −→ p2. Hence prove that if
X1, X2 are complete, then X1 ×X2 is complete.

22



US/AMT503 Sem V, Paper 3: Topology of Metric Spaces Revised Syllabus 2018

(19) Let (X1, d1) and (X2, d2) be complete metric spaces. Show that
(

X1 ×X2, d
′

)

and
(

X1 ×
X2, d

′′

)

are complete metric spaces where

d′
(

(x1, x2), (y1, y2)
)

= αd1(x1, y1) + βd2(x2, y2)

d′′
(

(x1, x2), (y1, y2)
)

=
√

αd21(x1, y1) + αd22(x2, y2). where α, β > 0.

(20) Show that the metric space (C[0, 1], d1) is not complete where d1(f, g) =

∫ 1

0

|f(x) −
g(x)| dx.
Hint: Consider the sequence {fn} in C[0, 1] defined by

fn(t) =











0 if 0 ≤ t ≤ 1
2
− 1

n

nt− n

2
+ 1 if 1

2
− 1

n
< t ≤ 1

2

1 if 1
2
< t ≤ 1

(21) Prove that (0, 1) as a subspace of (R, d) (d being usual distance) is not complete but is
complete as a subspace of (R, d1) where d1 is discrete metric.

(22) Show that C[0, 1] with ‖ ‖∞ defined as ‖f‖∞ = sup{|f(t)| : t ∈ [0, 1]} is complete.
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Topology of Metric Spaces: Practical 3.6

Compact Metric Spaces

Objective Questions 3.6

. (Revised Syllabus 2018-19)

(1) Let (X, d) be a metric space and K ⊆ X. Then
(a) K is compact. (b) K is compact if K is closed.
(c) K is compact if K is bounded. (d) K is compact if K is finite.

(2) Let (X, d) be a metric space and (xn) be a sequence in X such that xn → x0 as n → ∞.
Then
(a) {xn : n ∈ N} is a compact subset of X
(b) {xn : n ∈ N} ∪ {x0} is a compact subset of X
(c) {xn : n ∈ N} ∪ {x0} is a compact subset of X only if (xn) is a sequence of distinct
points.
(d) None of the above.

(3) Let {An} be a family of compact subset of a metric space (X, d) such that ∩n∈NAn 6= ∅.
Then
(a) A1 ∪ . . . ∪ Ak, k ∈ N and ∩n∈NAn are compact subsets of X.
(b) A1 ∩ . . . ∪ Ak, k ∈ N and ∪n∈NAn are compact subsets of X.
(c) ∪n∈NAn and ∩n∈NAn are compact subsets of X
(d) None of the above.

(4) Which of the following statements is false?
(a) A compact subset of a metric space is closed and bounded.
(b) A closed and bounded subset of a metric space is compact.
(c) A finite subset of a metric space is compact.
(d) A closed subset of a compact set in a metric space is compact.

(5) Which of the following are compact sunsets in the given metric space?
(a) [0, 1] in (R, d1) where d1 is discrete metric.
(b) N in (R, d) where d is usual distance.

(c)

{(

1

n
,
(−1)n

n

)

: n ∈ N

}

∪ {(0, 0)} in (R2, d) where d is Euclidean distance.

(d) [a, b] ∩Q where a, b are irrational numbers in (Q, d) where d is usual distance.

(6) Consider the following subsets of (R2, d), (d being Euclidean distance)

(i) A = {(x, y) ∈ R2 : x2 − y2 = 1}
(ii) B = {(x, y) ∈ R2 : y2 = x}
(iii) C = {(x, y) ∈ R2 : 2x2 + 3y2 = 100} Then
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(a) A,B,C are compact.
(b) B,C are compact and A is not compact.
(c) Only A,B are compact.
(d) C is compact.

(7) Let (X, d) be a metric space and x ∈ X. Let B[x, r] denote the closed ball {y ∈ Y :
d(x, y) ≤ r} Then
(a) B[x, r] is compact. (b) B[x, r] is compact only if r ≤ 1.
(c) B[x, r] is compact if X = R and d is Euclidean distance. (d) None of the above.

(8) In the metric space (Z, d), (Z is the set of integers, d is usual distance), K ⊂ Z

(a) if and only if K is closed. (b) if and only if K is bounded.
(c) if and only if K has a limit point. (d) if and only if 0 ∈ K.

(9) Which of the following subsets of R3 are compact?
(a) {(x, y, x) ∈ R3 : x2 + y2 − z2 = 1} (b) {(x, y, x) ∈ R3 : x2 − y2 − z2 = 1}
(c) {(x, y, x) ∈ R3 : x2 + y2 + z2 = 1} (d) None of the above.

(10) Which of the following subsets of R2 is not compact? (distance being Euclidean) (a) The

ellipse {(x, y) ∈ R2 :
x2

a2
+

y2

b2
= 1}, (a, b > 0)

(b) The rectangular hyperbola {(x, y) ∈ R2 : xy = 1}
(c) The set {(x, y) ∈ R2 : x2 + 2y2 ≤ 32} (d) The set {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1}

(11) In the metric space (R, d) (d begin usual distance)
(a) [0, 1] ∪ [2, 3] is compact. (b) [0, 1] ∪ (2, 3) is compact.
(c) [0, 1] ∪ {x ∈ N : x ≥ 3} is compact. (d) [0, 1] ∪ [2,∞) is compact.

(12) Consider the following subsets of R2 (distance being Euclidean).

(i) A = {(x, y) ∈ R2 : x2 + y2 = 1}
(ii) B = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

(iii) C = {(x, y) ∈ R2 : x2 + y2 ≥ 1}

(a) A,B,C are all compact. (b) A and B are compact, C is not compact.
(c) Only B is compact. (d) Only A is compact.

(13) Consider the following subsets of (Rn, d) (d being Euclidean distance)

A = {(x1, . . . , xn) ∈ Rn : x1 + x2 + . . .+ xn = 0}

B = {(x1, . . . , xn) ∈ Rn :
n

∑

i=1

x2
i = 1}

C = {(x1, . . . , xn) ∈ Rn :
n

∑

i=1

|xi| ≤ n for 1 ≤ i ≤ n}

D = {(x1, . . . , xn) ∈ Rn : x1 = xn = 0}
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(a) A,B,C,D are compact sets. (b) Only B and C are compact sets.
(c) Only B,C and D are compact sets. (d) None of the above.

(14) Let A,B be compact subsets of (R, d), (d being usual). Then the following set is not
compact.
(a) A× B in (R2, d), d being Euclidean (b) A ∪ B in R

(c) A ∩ B in R (provided A ∩ B 6= ∅). (d) A \B in R (provided A \B 6= ∅).

(15) Let (xn) be a sequence in [0, 1]. Then, which of the following is not true.
(a) (xn) has a convergent subsequence.
(b) (xn) is bounded but may not be convergent.
(c) (xn) is Cauchy.
(d) (xn) may have subsequences converging to different limits.

(16) Let A be a compact subset of R. Then
(a) A may not be compact. (b) A◦ may not be compact.
(c) ∂A may not be compact. (d) None of the above.

(17) Let A be a compact subset of R. Then which of the following statements is not true
(a) A is complete. (b) A has a limit point in R

(c) A is closed and bounded. (d) A◦ and ∂A are bounded.

Topology of Metric Spaces: Practical 3.6

Compact Metric Spaces

Descriptive Questions 3.6

(1) Using definition, show that K =

{

1

n
: n ∈ N

}

∪ {0} is a compact subset of (R, d), where d

is usual distance in R. Also find a finite subcover of the open cover {B( 1
n
, 1
10
)}n∈N of K.

(2) Let (X, d) be a metric space and (xn) be a sequence in X converging to x0. Using definition,
show that K = {xn : n ∈ N} ∪ {x0} is a compact subset of (X, d)

(3) In the following examples, show that the set is not compact b considering the given open
cover of the set:

(i) C [a, b] in the metric space (C [a, b], ‖ ‖∞), ‖f ‖∞ = sup {|f (t)| : t ∈ [a, b]}. Show that
the open cover {B(0, n)}n∈N of C [a, b] has no finite subcover. 0 being the constant
zero function).

(ii) (0, 1) in the metric space (R, d), d being the usual distance . Show that the open cover
{( 1

n
, 1)}n∈N of (0, 1) has no finite subcover.

(iii) { 1
n
: n ∈ N} in the metric space (R, d), d being the usual distance. Show that the open

cover {( 1
2n
, 3
2n
)}n∈N of { 1

n
: n ∈ N} has no finite subcover.
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(iv) [0, 1] in the metric space (R, d1), d1 being the discrete metric. Show that the open
cover {B(x, 1

2
)}x∈[0,1] has no finite subcover.

(4) Check if the following sets are compact in the given metric space. Justify your answer.

(i) {(x, y) ∈ R2 : x2 − y2 = 1} in (R2, d), d being Euclidean metric.

(ii) {(x, y) ∈ R2 : xy = 1} in (R2, d), d being euclidean metric.

(iii) {n+ 1
n
: n ∈ N} in (R, d), d being usual distance.

(5) Prove or disprove:

(i) A closed and bounded subset of a metric space is compact.

(ii) A closed ball B[x, r] in a metric space is compact.

(iii) A compact set in a metric space is not open.

(iv) Interior and closure of a compact set are compact.

(6) Determine which of the following subsets of (R2, d), where d is Euclidean distance is com-
pact. Justify your answer.

(i) {(x, y) ∈ R2 : |x|+ |y| ≤ 1}
(ii) {(x, y) ∈ R2 : |x| ≤ 1}
(iii) {(x, y) ∈ R2 : x ≥ 1, 0 ≤ y ≤ 1

x
}

(iv) {(x, y) ∈ R2 : x2

a2
+ y2

b2
= 1}, (a, b > 0)

(v) {(x, y) ∈ R2 : xy = 0}

(7) Let A,B be compact subsets of R, distance being usual. Show that

(i) A+B is a compact subset of R.

(ii) A ∪ B is a compact subset of R.

(iii) A× B is a compact subset of (R2, d), d being Euclidean distance.

(8) Show that A = (0, 1] is not a compact subset of (R, d), d being Euclidean distance by

(i) exhibiting a sequence in A which has no convergent sequence.

(ii) exhibiting an infinite subset of A which has no limit point in A.

(9) Show that {(x1, x2, . . . , xn) ∈ Rn : x2
1 + 2x2

2 + · · ·+ nx2
n ≤ (n+ 1)2} is a compact subset of

(Rn, d), d being Euclidean.

(10) If A,B are disjoint non-empty subsets of (X, d) and A is closed, B is compact then show
that d(A,B) > 0.
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(11) Consider the set A = (−
√
2,
√
2) ∩ Q in a metric space (Q, d) where d is a usual metric

from R. Is the set A:

(i) closed and bounded in (Q, d)?

(ii) compact in (Q, d)?

(12) Show that the closed unit ball B[0, 1] in l2 is not compact, where l2 := {(xn) in R :
∞
∑

n=1

|xn|2 < ∞ i.e. convergent }; Further, for any x = (xn) ∈ l2; define ||x||2 =

√

√

√

√

∞
∑

n=1

|xn|2.

The metric on l2 is the metric corresponding to this norm.
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Topology of Metric Spaces: Practical 3.7

Miscellaneous.

. Revised Syllabus 2018-19

UNIT 1

(1) Define a metric space (X, d) and a normed linear space (X, ‖ ‖). Show that on a normed
linear space d : X ×X −→ R defined by d(x, y) = ‖x− y‖ is a metric.

(2) Define an open ball B(x, r) in a metric space (X, d). Show that an open ball is an open
set.

(3) State and prove Hausdorff property in a metric space (X, d)

(4) Show that in a metric space (X, d)

(i) an arbitrary union of open sets is open.

(ii) a finite intersection of open sets is open.

(5) Give an example to show that an arbitrary intersection of open sets need not be open.

(6) Let (X, d) be a metric space. Show that a subset G of X is open if and only if it is a union
of open balls.

(7) Prove that any nonempty open subset of R (distance being usual) can be written as a finite
or countable union of open mutually disjoint intervals.

(8) Let (X, d) be a metric space and A ⊆ X. Show that

(i) A◦ is an open set and is the larges open set contained in A.

(ii) A is open if and only if A = A◦

(9) Let (X, d) be a metric space and A ⊆ X. Show that

(i) A ⊆ B =⇒ A◦ ⊆ B◦

(ii) A ∩ B)◦ = A◦ ∩ B◦

(iii) A◦ ∪ B◦ ⊆ (A ∪ B)◦ and the inequality may be strict.

(10) Show that two metrics d and d′ on a non-empty set X are equivalent if and only if for
each x ∈ X, any open ball Bd(x, r) contains an open ball Bd(x, r,

′ ) for some r′ > 0 and
any open ball B′

d(x, s) contains an open ball Bd(x, s
′) for some s′ > 0.

(11) Let (X, d) be a metric space and F be a subset of X. Show that the following statements
are equivalent:
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(i) X \ F is open.

(ii) F contains all its limit points.

(12) Show that in a metric space (X, d) , the following statements are equivalent for a subset
G of X.

(i) G is open

(ii) G does not contain any limit point of X \G.

(13) Let (X, d) be a metric space and A ⊆ X. Show that

(i) A is a closed set.

(ii) A is closed if and only if A = A.

(14) Let (X, d) be a metric space and A,B ⊆ X. Show that

(i) A ⊆ B =⇒ A ⊂ B

(ii) A ∪ B = A ∪B

(iii) A ∩ B ⊆ A ∩ B and the inequality may be strict.

(15) Let (X, d) be a metric space and A ⊆ X. Show that D(D(A)) ⊆ D(A) where D(S) denotes
the set of limit points of S ⊆ X. Hence show that D(A) is closed.

(16) Bolzano-Weierstrass Theorem: Consider a metric space (R, d), where d is the usual metric.
Prove that every infinite bounded subset of R must have a limit point in R.

UNIT II

(1) Let (X, d) be a metric space and A ⊆ X. Show that p ∈ A if and only if there is a sequence
of points in A converging to p.

(2) Let (X, d) be a metric space and A be a subset of X. Show that p is a limit point of A if
and only if there is a sequence of distinct points converging to p.

(3) Prove: Every bounded sequence in R with usual metric, has a convergent subsequence.

(4) Show that a sequence (xk) in (Rn, d) (where d is Euclidean distance) converge to a point
p = (p1, p2, . . . , pn) ∈ Rn if and only if xi

k −→ pi, for 1 ≤ ni in R with respect to the usual
distance, where xk = (x1

k, x
2
k, · · · , xn

k). Hence deduce that (Rn, d) is a separable metric
space.

(5) Let (X, d) be a metric space and Y be a non-empty subset of X. Show that

(i) A subset G of Y is open in the subspace (Y, d) if and only of G = V ∩ Y where V is
an open set in (X, d)
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(ii) A subset F of Y is closed in the subspace (Y, d) if and only if F = H ∩ Y where H is
closed set in (X, d).

(6) Let (X, d) be a metric space. Show that a convergent sequence in (X, d) is Cauchy. Give
an example to show that the converse is not true. further show that a Cauchy sequence
(xn) in (X, d) is convergent if and only if it has a convergent subsequence.

(7) Show that the metric spaces (X, d1) and (X, d2) are equivalent if and only if (xn) converges
to p in (X, d1) if and only if (xn) converges to p in (X, d2)

(8) Let (X, d) be a metric space . Show that a subset A of X is dense in X if and only if
G ∩ A 6= ∅ for each non-empty open subset G of X.

(9) Let (X, d) be a metric space. If A ⊆ X is dense in X and B is a non-empty open subset of
X then A ∩ B = B.

(10) Prove that the metric space (R, d) is complete where d is the usual distance.

(11) Prove that the metric space (R2, d) is complete where d is the Euclidean distance.

(12) Prove that the metric space (C, d) is complete with respect to the distance given by
d(z1, z2) = |z1 − z2|

(13) Show that the metric space (C[a, b], d) is complete where d(f, g) = sup{|f(x)− g(x)| : x ∈
[a, b]}.

(14) Let (X, d) be a metric space and (Y, dY ) be a subspace of (X, d). If (Y, dY ) is complete
then show that Y is closed.

(15) Let (X, d) be a complete metric space. If Y is a closed subspace of X then show that the
subspace (Y, dY ) is complete.

(16) State and prove Cantor’s intersection theorem in a metric space (X, d).

(17) If in a metric space (X, d), for every decreasing sequence {Fn} of non-empty closed sets
with d(Fn) −→ 0,∩n∈NFn is a singleton set then prove that (X, d) is complete.

(18) Nested Interval Theorem (As a particular case of Cantor’s intersection theorem): Let
Jn = [an, bn] be a sequence of intervals in R such that Jn+1 ⊆ Jn∀n ∈ N. Then show

that
⋂

n∈N

Jn 6= ∅. If further we assume that lim
n−→∞

`(Jn) = 0 then show that
⋂

n∈N

Jn contains

precisely one point.
As a consequence of Nested Interval Theorem:

(19) Show that set R of real numbers is uncountable.

(20) Density of rationals: Let x < y be real numbers. Show that there exists a rational number
r ∈ Q such that x < r < y.

31



US/AMT503 Sem V, Paper 3: Topology of Metric Spaces Revised Syllabus 2018

(21) Intermediate Value Theorem: Let f : [a, b] −→ R be continuous. Assume that f(a) and
f(b) are of different signs, say, f(a) < 0 and f(b) > 0. Show that there exists c ∈ (a, b)
such that f(c) = 0.

UNIT III

(1) Show that a compact subset of a metric space is closed and bounded. Give an example to
show that a closed and bounded subset of a metric space is not compact.

(2) Prove: A closed subset of a compact metric space is compact.

(3) Let (X, d) be a metric space and K is a compact subset of X. If F is a closed subset of X
then show that F ∩K is compact.

(4) Suppose (X, d) is a metric space and C is a non-empty collection of compact subsets of X
then

(i)
⋂

K∈C

K is a compact subset of X.

(ii) If C is finite then
⋃

K∈C

K is a compact subset of X.

(5) Prove that a set A in a discrete metric space (X, d) is compact if and only if A is a finite
set.

(6) Consider a metric space (R, d) where d is usual metric, ∅ 6= A ⊂ R. Prove that A is closed
and bounded if and only if A satisfy Hein-Borel property. (A set is said to satisfy Hein-
Borel property if every open conver of that set admits finite subcover).
Remark: The above result can be generalised to (Rn, d) as follows(without proof):
A subset A of (Rn, d) is closed and bounded if and only if it satisfy Hein-Borel property.
Hence, A ⊂ Rn is compact if and only if it is closed and bounded.

(7) Consider a metric space (R, d) where d is usual metric, ∅ 6= A ⊂ R. Prove that A is closed
and bounded if and only if A is sequentially compact. (A set A is said to be sequentially
compact if every sequence in A has a covergent subsequence).

(8) Consider a metric space (R, d) where d is usual metric, ∅ 6= A ⊂ R. Prove that A is
sequentially compact if and only if A satisfy Bolzano-Weierstrass property. (A set A is said
to satisfy Bolzano-Weierstrass property if every non-empty, infinite subset of A has a limit
point in A).
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Numerical Methods 1

Secant method, Regula-Falsi method.

Numerical Methods Objective Questions 1

(1) If f(x) is a polynomial function with f(4) = 0, f ′(4) = 7, f ′′(4) = 10, f ′′′(4) = 30 and all other
higher derivatives of f(x) at x = 4 are zero. Then f(x) is

(a) 5x3 − 55x2 + 207x− 268

(b) x3 − 5x2 + 20x− 26

(c) 5x3 − 100x2 + 155x− 299

(d) None of the above.

(2) The interval in which the smallest positive root of the equation x3 − x− 4 = 0 lies is

(a) (0, 1) (b) (1, 2) (c) (0.5, 1.5) (d) (2, 3)

(3) The negative root of the smallest magnitude of the equation 3x3 + 10x2 + 10x+ 7 = 0 lies in the
interval

(a) (−1, 0) (b) (−3,−2) (c) (−2,−1) (d) (−4,−3)

(4) Suppose p must approximate 150 with relative error at most 10−3. Then the largest interval in
which p must lie is

(a) [149.85, 150.15]

(b) [149.8, 150.2]

(c) [149.5, 150.5]

(d) None of the above.

(5) Errors present in the statement of a problem before its solution are called

(a) truncation error (b) rounding error.

(c) inherent error (d) relative error.

(6) Errors caused by using approximate results or on replacing an infinite process by a finite one is

(a) truncation error (b) rounding error.

(c) inherent error (d) relative error.

(7) The absolute error of
13
4
− 6

7

2e− 5.4
using 3 digit rounding arithmetic is

(a) 0.0788 (b) 0.154 (c) 0.55 (d) None of these

(8) Which of the following statement is true:

(a) Rate of convergence of Regular-falsi method is of second order.

(b) Rate of convergence of Secant method is of second order.

(c) Rate of convergence of Secant method is of order
√
5+1
2

.

(d) None of the above.

1



(9) If xk−1 and xk are k − 1-th and k-th approximations to the root of f(x) = 0 by secant method,
then the next approximation xk+1 is

(a) xk −
xk − xk−1

f(xk)xk − f(xk−1)xk−1

(b) xk −
xk − xk−1

f(xk)− f(xk−1)
only if f(xk)f(xk−1) < 0

(c) xk −
xk − xk−1

f(xk)− f(xk−1)
f(xk)

(d) xk −
f(xk)xk−1 − f(xk−1)xk

f(xk)− f(xk−1)

(10) Consider the equation cos x− xex = 0. Taking x0 = 0, x1 = 1, then the approximations x2, x3, x4

by Secant method are

(a) x2 = 0.3147, x3 = 0.4467, x4 = 0.5317.

(b) x2 = 0.3147, x3 = 0.4467, x4 = 0.5103.

(c) x2 = 0.3147, x3 = 0.4467, x4 = 0.4523

(d) None of the above.

(11) The secant method of finding roots of non-linear equations falls under the category of

(a) bracketing method (b) graphical method

(c) open method (d) random method.

(12) The secant method formula, for finding the square root of a real number R from the equation
x2 −R = 0 is

(a)
xixi−1 +R

xi + xi−1

(b)
xixi−1

xi + xi−1

(c)
1

2

{

xi +
R

xi

}

(d)
2x2

i
+ xixi−1 −R

xi + xi−1

(13) The next iterative value of the root x2 − 4 = 0 using secant method, if the initial guesses are 3
and 4 is

(a) 2.2857 (b) 2.5000

(c) 5.5000 (d) 5.7143

(14) The root of the equation f(x) = 0 is found by secant method.Given one of the initial estimates is
x0 = 3, f(3) = 5 and the angle of the secant line makes with x− axis is 57o, the next estimate of
the root x1 is

(a) −3.2470 (b) −0.24704

(c) 3.247 (d) 6.2470

(15) For finding the root of sin x = 0 by the secant method, the following choices of initial guesses
would not be appropriate

(a)
π

4
and

π

2
(b)

π

4
and

3π

4

(c)
−π

2
and

π

2
(d)

π

3
and

π

2

2



(16) Let f(x) = x2 − 6. With p0 = 3 and p1 = 2, the value of p3 by Regula Falsi method is

(a) 2.44444

(b) 2.45454

(c) 2.44949

(d) None of the above.

(17) A solution to x − cos x = 0 in the interval [0, π/2] that is accurate to within 10−4 using Regula
Falsi method is

(a) 0.7390835

(b) 0.6110155

(c) 1.4330021

(d) None of the above.

(18) Order of convergence of Regula Falsi method is

(a) 1.321 (b) 1.618

(c) 2.231 (d) 2.312

(19) In Regula Falsi method, the first approximation is given by

(a) x1 =
af(b)− bf(a)

f(b)− f(a)
(b)x1 =

bf(b)− af(a)

f(b)− f(a)

(c) x1 =
bf(a)− af(b)

f(a)− f(b)
(d) x1 =

af(a)− bf(b)

f(a)− f(b)

(20) For finding a real root of a equation using Regula Falsi method, the curve y = f(x) is replaced by

(a) Parabola (b) Circle

(c) Straight line (d) Tangent to a curve

(21) In Regula Falsi method, if a root of f(x) = 0 lies between x1 and x2 then the approximate value
of the desired root is x1 + h

(a)
(x1 − x2)|y1|

|y1|+ |y2|
(b)

(x2 − x1)|y1|

|y1|+ |y2|

(c)
(x1 − x2)|y2|

|y1|+ |y2|
(d)

(x2 − x1)|y2|

|y1|+ |y2|

(22) While finding the root of an equation by method of False position the number of iterations can
be reduced if we start with

(a) large interval (b) smaller interval

(c) random interval (d) None of the above

(23) If φ(a) and φ(b) are of opposite signs and the real roots of the equation φ(x) = 0 is found by False
position method, then first approximation x1 of the root is

(a)
aφ(b) + bφ(a)

φ(b) + φ(a)
(b)

aφ
′

(b) + bφ
′

(a)

φ(b) + φ(a)

(c)
abφ(a)φ(b)

φ(a)− φ(b)
(d)

aφ(b)− bφ(a)

φ(b)− φ(a)
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Numerical Methods Descriptive Questions 1

(1) For the equations

(i) x4 − x− 10 = 0

(ii) x− e−x = 0

(iii) x4 − 3x2 + x− 10 = 0

(iv) e−x = sin x.

(v) x = 1
2
+ sin x.

Determine the initial approximations to find the smallest positive root. Find the root correct to
five decimal places by

(a) Secant Method.

(b) Regula Falsi Method

(2) Let f(x) = e−x(2x2 + 5x+ 2) + 1. Taking x0 = −1 and x1 = 2.2, find a root correct to 4 decimal
places using Secant method.

(3) A real root of the equation x3 − 5x + 1 = 0 lies in (0, 1). Perform three iterations of the Secant
method. Take each iteration correct to six places of decimals.

(4) (i) Solve 5 sin2 x− 8 cos5 x = 0 for the root in the interval (0.5, 1.5) by Regula Falsi method.

(ii) Find the solution to (x − 2)2 − ln x = 0, in the interval [1, 2] accurate to within 10−4 using
Secant method.

(5) Find a root of x cos( x

x−2
) = 0 using Regula Falsi method correct to 3 decimal places.

(6) Find a root of x2 = e
−2x−1

x
using Regula Falsi method correct to 3 decimal places.

(7) Find a root of ex
2−1 + 10 sin(2x)− 5 using Regula Falsi method correct to 3 decimal places.

(8) Find a root of ex − 3x2 = 0 using Regula Falsi method correct to 3 decimal places.

(9) Find a root of tan(x)− x− 1 = 0 using Regula Falsi method correct to 3 decimal places.

(10) Find a root of sin(2x)− e(x−1) = 0 using Regula Falsi method correct to 4 decimal places.
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Numerical Methods 2

Fixed-point Iteration method,Newton-Raphson method

Numerical Methods Objective Questions 2

(1) The iterative method that can be used to solve the quadratic equation 2x2 + x− 3 = 0 is

(a) xn+1 = −3 + 2x2
n.

(b) xn+1 =
3

2xn+1
.

(c) All of the above.

(d) None of the above.

(2) Let f(x) = x2 − a. Then the Newton-Raphson method leads to the recurrence

(a) xn+1 =
1
2

(

xn +
a
xn

)

.

(b) xn+1 = xn +
a
xn

.

(c) xn+1 =
1
2

(

xn − a
xn

)

(d) None of the above.

(3) The equation cos

(

π(x+ 1)

8

)

+0.148x−0.9062 = 0 has roots of smallest magnitude in the intervals

(a) (−2,−1) and (1, 2) (b) (−1, 0) and (0, 1)

(c) (−7π
8
,−3π

4
) and (3π

4
, 7π

8
) (d) None of the above

(4) Applying Newton Raphson method to find
√
18, taking initial approximation x0 = 4 and rounding

off to four decimal places, the next iterations are

(a) x2 = 4.5123 and x3 = 4.5121

(b) x2 = 4.2426 and x3 = 4.2426

(c) x2 = 4.5813 and x3 = 4.5813

(d) x2 = 4.1419 and x3 = 4.1419

(5) Newton-Raphson method applied to the equation f(x) = c, where c is a constant and

f(x) =

{

cos x when |x| ≤ 1
cos x+ (x2 − 1)2 when |x| > 1

gives xn = (−1)n for each n, where initial approximation is x0 = 1. Then c equals

(a) sin 1− 2 cos 1 (b) cos 1 + 2 sin 1

(c) 2 sin 1− cos 1 (d) cos 1− 2 sin 1

(6) Let f(x) = 1− x2 and x0 = 0. Then by Newton Raphson method the value of x1 is

(a) 0.12928 (b) 0.17294 (c) 0.12478 (d) undefined

(7) Newton-Raphson method is applied to find 1
N

where N is a positive integer. For the sequence of
iterates xn to converge, the initial approximation x0 should

1



(a) lie between 0 and N
2

(b) lie between 0 and 2
N

(c) lie between 0 and 4
N

(d) lie between N
2
and N

(8) Let f(x) = x− 2 sin x. Then

(a) with the initial approximation x0 = 1.1, the sequence {xn} diverges and with initial approx-
imation 1.5, the sequence {xn} converges.

(b) with the initial approximation x0 = 1.1, the sequence {xn} converges and with initial ap-
proximation 1.5, the sequence {xn} diverges.

(c) with the initial approximation x0 = 1.1, and 1.5, the sequence {xn} converges.

(d) with the initial approximation x0 = 1.1, and 1.5, the sequence {xn} diverges.

(9) Applying Newton Raphson method with x0 = 0.8 to the equation x3 − x2 − x+ 1 = 0 which has
exact root 1, then the rate of convergence for the first three root is

(a) of first order. (b) of second order.

(c) of third order. (d) of order
√
5+1
2

.

(10) Suppose the Newton Raphson method produces a sequence that converges linearly to the root
x = α of order p > 1, then the Newton Raphson iteration formula

xk+1 = xk −
pf(xk)

f ′(xk)

will produce a sequence {xk} that converges

(a) quadratically to p

(b) linearly to p

(c) cubically to p

(d) None of the above.

(11) Newton-Raphson method has rate of convergence of order

(a) 1 (b) 2

(c) 3 (d) None of the above.

(12) Iteration method had rate of convergence of order

(a) 1 (b) 2

(c) 3 (d) None of the above.

(13) To find the smallest root of the equation f(x) = x3 − x − 1 = 0 by iteration method, f(x) = 0
should be rewritten as

(a) x = x3 − 1 (b) x = (x+ 1)
1

3

(c) x = 1√
x2−1

(d) x = x+1
x2

(14) Newton-Raphson converges if

2



(a)
∣

∣

∣

f
′

(x)f
′′

(x)
[f(x)]2

∣

∣

∣
< 1 (b)

∣

∣

∣

f(x)f
′′

(x)

[f
′
(x)]2

∣

∣

∣
< 1

(c)
∣

∣

∣

f(x)f
′

(x)

[f ′′ (x)]2

∣

∣

∣
< 1 (d) None of the above

(15) Which one of the following is not correct

(a) Newton-Raphson method has quadratic rate of convergence.

(b) To solve f(x) = 0 by iteration method the given equation is written in the form x = φ(x)
where |φ′

(x)| < 1 is an interval containing root.

(c) The method of Regular-Falsi converges faster than the secant method.

(d) None of these.

Numerical Methods Descriptive Questions 2

(1) Obtain polynomial approximation to f(x) = ex (around x = 0) using Taylor series expansion.Find
the number of terms in the approximation so that truncation error is less than 10−6 for 0 ≤ x ≤ 1

(2) Solve the following equations using iteration method

(1) x2 − 4x+ 2 = 0

(2) x3 + 2x+ 1 = 0

(3) Find a real root of the equation x3 = 1 − x2 in the interval [0, 1] with an accuracy of 10−4using
iteration method.

(4) Find a real root correct to three decimal places of the equation 2x−3 = cos(x) lying in the interval
[3
2
, π
2
] using iteration method.

(5) Show that the iterative scheme xi+1 =
4xi−ax4

i

3
is of second order.Process for calculation of the

cube root of a.Use the scheme to find 4
−1

3 to four decimal places.

(6) Use the method of iteration to find a positive root of the equation xex = 1 given that root lies in
[0, 1]

(7) Use iterative method to find a real root of the equation sin x = 10(x− 1) correct to three decimal
places.

(8) Use iterative method to find a real root of the equation 2x = cos x + 3 correct to three decimal
places.

(9) Use iterative method to find a real root of the equation 2x − log10 x + 7 correct to four decimal
places.

(10) Use iterative method to find a real root of the equation sin2 x = x2 − 1 correct to four decimal
places.

(11) For the equations

(i) x4 − x− 10 = 0

(ii) x− e−x = 0

(iii) x4 − 3x2 + x− 10 = 0

(iv) e−x = sin x.

(v) x = 1
2
+ sin x.
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(vi) x sin x+ cos x = 0

Determine the initial approximations to find the smallest positive root. Find the root correct to
five decimal places by Newton-Raphson Method

(12) Perform four iterations of the Newton Raphson method to obtain approximate value of (17)1/3

correct to six decimal places taking initial approximation as x0 = 2.

(13) The equations 2e−x = 1
x+2

+ 1
x+1

has two roots greater than −1. Calculate the roots correct to
five decimal places using Newton-Raphson Method.

(14) Find all roots of cos x− x2 − x = 0 correct to five decimal places by Newton-Raphson method.

(15) Apply the Newton-Raphson method with x0 = 0.8 to the equation x3 − x2 − x+ 1 = 0 and verify

that the convergence is of first order. Apply Newton-Raphson method xn+1 = xn −m
f(xn)
f ′(xn)

where

m = the multiplicity of root (= 2) and verify that the convergence is of order 2.

(16) Show that the equation f(x) = 1 − xe1−x has a double root at x = 1. Obtain the root by
Newton-Raphson method taking x0 = 0.

(17) Find the negative root of the equation f(x) = cos
(

π(x+1)
8

)

+ 0.148x − 0.9062 = 0. Correct to 4

decimals by Newton-Raphson method taking x0 = −0.5.

(18) The equation f(x) = 0 has a simple root in the interval (1, 2). The function f(x) is such that
|f ′(x)| ≥ 4 and |f ′′(x)| ≤ 3 ∀ x ∈ (1, 2). Assuming Newton Raphson method to converge for all
initial approximations in (1, 2). Find the maximum number of iterations required to obtain root
correct to 6 decimal places after rounding.

(19) Using Newton-Raphson method compute the point of intersection of the curve y = x3 and straight
line y = 8x+ 4 near the point x = 3 correct to 2 decimal places.

4
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          Numerical Analysis 3 
 

Iteration methods based on second degree equation - Muller 
Method, Chebyshev Method, Multipoint iteration Methods 

 
Numerical Methods Objective Questions 3 

 
(1) For the equation x3–5x+1=0 taking approximations x0=0, x1=0.5,x2=1  Muller's method 

gives next approximation 3x as  
 

(a) 234516.0         (b) 191857.0          (c) 282314.0     (d) 120416.0  

 

(2) In Muller's method the equation f(x)=0 is approximated by 
 

(a) a cubic polynomial passing through three points lying on f(x)=0 
 

(b) a quadratic polynomial passing through three points lying on f(x)=0. 
 

(c) a linear equation passing through the given points.  
 

(d) None of the above.  
 

(3) Using Chebyshev's, to find the root of f(x)= x3–5x+1=0 taking initial approximation 
x0=0.5, the next approximation 1x is  

723145.0)(a          (b) 213414.0           (c) 631423.0          (d) 123160.0  

 

(4) Chebyshev method and Muller's method require for each iteration  
 

(a) three function evaluations for both.  
 

(b) two function evaluations for both.  
 

(c) One function evaluation for Muller's method and three function evaluations 
for Chebyshev's method.  

 
(d) None of the above. 

 

(5) The equation ���� � 0cos 2
=−− xxx has 

         (a) two real roots , one in the interval )0,1(−  and the other in the  

               interval )1,0( .  

(b) two real roots, one in the interval )1,2( −−  and the other in the interval ).1,0(  
 

(c) three real roots, one in the interval )1,2( −− , one in the interval )1,0( and the 

other in the interval ���� 	 
�� 
 

(d) None of the above. 

  
(6) Using multipoint method to find the root of���� 
 �� � � � �, taking initial 

approximation x0 = 0:5, we get next approximation ��as  
 
(a) 0.354281 (b) 0.204732 (c) 0.532412 
 

(7) The rate of convergence of Muller method is                

     (a)���           (b)����            (c)2         (d)3                      

 
(8) Using Chebyshev method to find an approximate value of ���� , taking initial 
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approximation as �� � ���, the next approximation ��is  
 

(a) ����
 (b)�����
 (c)������ (d) ��
�� 
 

(9) Muller's method to find a root ���of����� � �, the initial approximations 
��	 ��	 ��satisfy 

  
    (a) |� 
 �� |<��� , for � � �	�	
� 
    (b) |� 
 ��|<0.1 , for � � �	�	
� 
    (c) For all initial approximations. 
    (d) None of the above. 

 
(10) Consider the equation ���� � �� 
 �� 
 � � �. Taking approximations �� � �	 �� �
	 �� � �, the next approximation between 2 and 3 obtained by Muller method is  

 
(a) 
�� (b)�
��� (c)�
�
� (d) 2.84 

 
(11) Muller method  

 
        (a)will converge to only real roots from a real initial approximation.  
         (b)will converge to both real and complex roots from a real initial approximation. 
         (c)will converge to only complex roots from a real initial approximation.           

        (d)None of the above.  
 

(12) Muller method  
 

(a) converges cubically for both simple root and multiple root.  
 

(b) converges quadratically for both simple root and multiple root.  
 

(c) converges cubically for a simple root but the convergence becomes linear at a   
            multiple root.  
 

(d) converges quadratically for a simple root but the convergence be-comes linear 
at a multiple root.  

 
 Numerical Methods Descriptive Questions 3 

 
(1) Perform five iterations of Muller method to find an approximate root of the equation 

���� � � !� 
 �"# � �. Use initial approximations��� � 
�	 �� � �	 �� � �. 
 

(2) Perform two iterations with the Muller method for the following equations:  
     (i)��� 
 ���
� � �	 �� � �	�� � �	�� � ��
. 

     (ii)�$% 
 � � � � �	 �� � �
& 	 �� �

�
� 	 �� � �. 

 
(3) Use the Chebyshev method with ���� � �� 
 ' and (��� � � 
 '��� to obtain the 

iteration methods converging to�)' in the form 

         �*+� � �
� ��* �

,
#-
� 
 �

.#-
/�* 
 ,

#-
0
�
 

        �*+� � �
� �*��� 


#-1
, � � �#-

. �� 
 #-1
, �� 

    Perform two iterations with these methods to find the value of )' 
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(4) Perform two iterations with the (a) Chebyshev method, (b) Multipoint iteration method 
for the following equations:  

(i) x
3
−5x+1=0; x0=0.5, 

(ii) cos x − xe
x
=0; x0=1. 

(iii) x
4
−x−10=0; where the root lies in the interval(1,2). 

 
(5) Perform two iterations with the Chebyshev method to find an approximate value of 1/7. 

Take the initial approximation as x0=0.1.  
 

(6) Use Muller method to find two iterations of the function 

     (i) f(x) = (x2
−2)sin(x2

−2);  x0 = 1.2, x1 = 1.3, x2 = 1.4. 

    (ii) f(x) = x
6
 − 7x

4
 + 15x

2
 − 9, x0 = 1.5, x1 = 1.6, x2 = 1.7. 

Round off each iteration and final answer to 4 places of decimals. 

 
(7) The multiple root � of multiplicity two to the equation  

                         f(x) = 9x
4
 +30x

3
 + 34x

2
 + 30x + 25 = 0  

is to be determined. Take x0 = −1.4 and approximations correct to 4 places of decimals 

using multipoint method. Verify that the rate of convergence has order 3. 
 

(8) Perform four iterations of finding a root of the polynomial  p(x) = x
3
 + 3x

2
 + 5x − 7 

starting with the points x0 = 1; x1 = 2; x3 = 3 using Muller method. 
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Numerical Analysis 4  

Bierge Vieta method &Bairstow’s method 
 

Numerical Methods Objective Questions 4 
 

(1) The polynomial ���� � ��� � 	
�� � 
�� � 	��� � �� � � � 
 has  
 

(a) has maximum of three positive and two negative roots.  

(b) has maximum of four positive and one negative root.  
 

(c) has maximum of two positive and three negative roots.  
 

(d) None of the above.  
 
(2) The number of real roots of the equation ��� � ��� � 	 � 
�in the interval 

��	�	� is  

     (a)�� (b) � (c) 0 (d) 1 
 
(3) The number of real roots between 0 and 3 of ���� � �� � ��� � ��� �

�� � � � 
�using sturm sequence is  
 

(a) 4 (b) 2 (c) 0 (d) 1 
 
(4) The number of real and complex roots of the polynomial                     

���� � �� � ��� � ��� � �� � � � 
 is  
 

(a) 4 and 0 (b) 2 and 2 

(c) 0 and 4 (d) None of these 
 
(5) Then multiplicity of the root x = 1 of the polynomial equation  

������ � �� � ��� � ��� � �� � �� � 
 � 
� is  
 

   (a) 0 (b) 1 (c) 2 (d) 3 
 
(6) The sturm sequence of the polynomial equation ����� � �� � 
� � 	 � 
 

is  
 

(a) �� � 
� � 	���� � 
�	
� � ����� 

(b) ��� � 
�	
� � ����� 

      (c)  ��� � 
� � 	� ���� � 
��	
� � ����� 
        (d) None of the above 
 
(7) The sturm sequence of the polynomial equation ���� � �� � 
� � 	 � 
 

           (a)��� � 
� � 	���� � 
�	
� � �����,� 

           (b)���� � 
�	
� � ����� 

           (c)���� � 
� � 	� ���� � 
��	
� � ����� 

          (d)None of the above 

 
(7) For the polynomial ����� � �� � �� � � � �, taking initial approximation   

�� � �
��� �� � 
��, the first iteration by Bairstow's method is  
 

(a) �� � �
��	����� � 
����	. 
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(b) �� � �	�

����� � 	�

�	� 
(c) �� � �	���	���� � 	��
	�� 
(d) �� � �	�
�	���� � 	��	��� 

           
(9)  Consider the polynomial���� � �� � �� � 	. The first iteration���for the 

root in �
�	� by Birge Vista method taking initial approximation �� � 
 is  

(a) �� � 
�



       (b)��� � 
�����   

(b) (c)��� � 
��


  (d) �� � 
�		�	 

 
(10) Taking initial approximation as��� � 
�
� �� � 
�
, the quadratic factor of 

�� � �� � ��� � � � 	 � 
 by Bairstow's method is 
 

        (a)��� � � � 	                             (b)�� � � � 	 
      (c)�� � �� � 	                           (d)None of these 

  
(11) Let ���� � 	 � ��and�� � 
.Then by Newton Raphson method the value 

of ��is  
 

(a) �� � ��
�� �� � ��

� � �����        
          (b)����� � ��

� � ������ �� � ��
� � ����� � ����� 

          (c)����� � ��
� � ����� �� � ��

� � ����� � ����� 
          (d)������ � ��

�� �� � ��
� � ����� 

 

(12)The method which is used to find complex roots of a polynomial is  
 

(a) Graffe's root square method.  

(b) Bairstow method.  

(c) Muller method.  

(d) All of the above.  

 Numerical Methods Descriptive Questions 4 

(1) (a) Using synthetic division, find the value of ����� ������ ����� for 

 

     the polynomials: 
     (i)�� � �� � � � 
 � 
 
     (ii)�� � �� � ��� � �� � � � 
 

 
 

(b)  Find multiplicity of root of 

���� � �� � ��� � ��� � �� � �� � 
 � 
 
        using Sturm's sequence, obtain the exact number of the real and the   
        complex roots of the polynomials (In case of multiple roots, count the  
        multiplicity)  
 

(i) �� � � � 	 � 
 
        (ii)���� � �� � �� � 	 � 
 
        (iii) ��� � ��� � ��� � �� � � � 
 
 

(2) Use the Birge-Vieta method to find a real root correct to three decimal 
     places of the following equations:  
 

 

(i) �� � 		�� � �
� � �� � 
� �� � 
�
.  
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(ii) �� � � � 	 � 
� �� � �	�
. 

       (iii) ��� � �� � �� � 	 � 
� ��� � 	�
 

 
(3) Find all real roots of the equation �� � �� � 	�correct to two decimal 

places using Birge Vieta method.  
 
(4)  Find correct to four significant digits, the roots of the polynomial equation  

�� � ���!��� � ����
�� � 
�
����� � 
�



!��
 � 
:  
 

If the largest root is determined first and polynomial is deflated, show that 

the zeros of the deflated polynomial equation differ from those of the 
original polynomial and find their exact values.  

 
(5) It is given that ���� � ��� � 	��� � 	��� � 	�� � � � 
 has a double  

root near 0.5. Perform iterations to find this root by Birge-Vieta method.  
 
(6) Given two polynomials ���� � � � ��!�� � ����� � 
�

 and 
      "��� � � � ���! � #��� � ���� � #��� � �
�

 � #�   
 

 (i) Calculate all the roots of P .  
 

 (ii) when h << 1, the roots of Q are close to those of P . Estimate 
                  the difference between the smallest positive root of P and the 

                  corresponding root of Q.  

 

 (7) Use Bairstow's method to find the roots of $� � !$� � ��$� � ���$ �

	�
 � 
  with the trial factor $� � �
%

�
�$ �

�

�
� 
 in the first instance. 

 
(8) Show that if �� � � � 	 is an approximate quadratic factor of the poly-

nomial ���� � �� � � � 	, then one iteration of Bairstow's process gives 
the improved approximation��� � 	����� � �����By continuing the 
process further, estimate the complex zeros of the polynomial 
equation���� � 
.  

 
(9) Using Birstow's method, obtain the quadratic factor of the following 

equations performing two iterations.  
 

(i)  �� � ��� � �
�� � ��� � 
� � 
�with ��� �� � ����� 
 

(ii) �� � �� � ��� � 
� � 	
 � 
 with ��� �� � �	�	��	���� 
 

(iii) �� � ����� � ���
� � ��
�� � 
 with  ��� �� � ����
� 
 

(iv) �� � 
�� � 	
�� � 	
� � � � 
 with ��� �� � �
�
��
�
�  
 

(10) Use initial approximation to��� � 
�
� �� � 
�
 to find a quadratic factor 
of the form �� � �� � � of the polynomial equation �� � �� � ��� �
� � 	 � 
 using Bairstow method and hence find all its roots.  

 
(11) Use initial approximation��� � �� �� � � to find a quadratic factor of the 

form �� � �� � � of the polynomial equation �� � ��� � �
�� � ��� �


� � 
 using Bairstow method and hence find all its roots. 
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          Numerical Analysis 5 

Direct Methods to solve 
System of Equations 

 
Gauss Elimination Method, Triangularization Method, Cholesky’s 
Method. 

 Numerical Analysis Objective Questions 5 
 

(1) Consider the system of equations  �� � �,where 

 

�
�
�

�

�

�
�
�

�

�

=

�
�
�

�

�

�
�
�

�

�

=

�
�
�

�

�

�
�
�

�

�

=

24

7

4

b,

x

x

x

 X ,

425

013

002

A

3

2

1

 

 

The solution is given by 

(a) ��� � �	 ��
 � �	 ��� � 
 ,     (b)��� � �	 ��
 � �	 ��� � � 

(c)  �� � �	 ��
 ����	 ��� � �,  (d)    None of the above. 

 

(2) The system of equation AX=b,where 

  

�
�
�

�

�

�
�
�

�

�

=

�
�
�

�

�

�
�
�

�

�

=

�
�
�

�

�

�
�
�

�

�

=

24

7

4

b,

x

x

x

 X ,

500

200

312

A

3

2

1

 

(a) has one solution �� � ��	 �
 � ��	 �� � ��
 ,(b) is not solvable, (c) has infinitely 

many solutions, (d) None of the above. 

 

(3) The goal of forward elimination steps in the Gauss elimination method is to reduce 

the coefficient matrix to a (an) _____________ matrix. 

(a) diagonal, (b) identity, (c) lower triangular, (d) upper triangular 

 

(4)  Division by zero during forward elimination steps in Gaussian elimination of the set 

of equations AX=b implies the coefficient matrix A 

(a) is invertible, (b)  is nonsingular, (c) may be singular or nonsingular, (d) is 

singular 

 

(5) Partial pivoting involve searching for  

(a) the smallest coefficient of an unknown quantity amongst a system of equations. 

(b) an average of smallest and largest coefficient of an unknown quantity amongst a   

     system of equations. 

(c) the largest coefficient of an unknown quantity amongst a system of equations. 

(d) None of above. 
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(6) Pivoting equation of the following system is  

(i)       −3x+2y+z= 1   

 (ii)           −2y+6z= 0    

                                                    (iii)             12y+z= 37 

(a)  Equation (i), (b) Equation (ii), (c) Equation (iii), (d) None of the equations. 

 

(7) A square matrix is said to be triangular if  

(a) the elements above or below the main diagonal are zero.  

(b) the elements above and below the main diagonal are zero. 

(c) the elements above and below the main diagonal are one. 

(d) the elements above and below the main diagonal are one. 

  

(8) A square matrix A is triangular if   

(a) aij=0 for i > j and bij=0 for j > i,  

(b) aij=0 for i < j and bij=0 for j < i, 

(c) aij=0 for i > j and bij=0 for j < i, 

(d) aij=0 for i < j and bij=0 for j > i, 

 

(9) The LU decomposition method is computationally more efficient than Naïve Gauss 

elimination for solving 

 (a) a single set of simultaneous linear equations. 

  (b) multiple sets of simultaneous linear equations with different coefficient matrices  

       and the same right hand side vectors. 

(c) multiple sets of simultaneous linear equations with the same coefficient matrix 

and different right hand side vectors. 

 (d) less than ten simultaneous linear equations. 

 

(10) The u22 and u23 of upper triangular matrix U in the LU decomposition of the matrix 

given below 

   

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=

�
�
�

�

�

�
�
�

�

�

33

2322

131211

3231

21

u00

uu0

uuu

1

01

001

213

321

132

��

�  

is 

(a) 2, 5/2, (b) 1/2, 2/5,  (c) 5/2, 1/2 (d) 1/2, 5/2  

 

(11) The lower triangular matrix L in the LU decomposition of the matrix given below 

   

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=

�
�
�

�

�

�
�
�

�

�

33

2322

131211

3231

21

00

0

1

01

001

22128

16810

4525

u

uu

uuu

��

�  

is 
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(a) 

�
�
�

�

�

�
�
�

�

�

17333.132000.0

0140000.0

001

,   (b) 

�
�
�

�

�

�
�
�

�

�

− 2400.400

400.1460

4525

   

(c) 

�
�
�

�

�

�
�
�

�

�

0128

0110

001

,                  (d) 

�
�
�

�

�

�
�
�

�

�

15000.132000.0

0140000.0

001

 

 
(12) The upper triangular matrix U in the LU decomposition of the matrix given below 

   

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=

�
�
�

�

�

�
�
�

�

�

33

2322

131211

3231

21

00

0

1

01

001

22120

1680

4525

u

uu

uuu

��

�  

is 
 

(a) 

�
�
�

�

�

�
�
�

�

�

17333.132000.0

0140000.0

001

               (b) 

�
�
�

�

�

�
�
�

�

�

− 2400.400

400.1460

4525

 

(c) 

�
�
�

�

�

�
�
�

�

�

− 200

1680

4525

                            (d) 

�
�
�

�

�

�
�
�

�

�

− 240.400

4000.210

16000.02000.01

 

 
(13) Cholesky method to solve the system of equation �� � � is applicable for a 

symmetric matrix � 

(a) if ������� � �,                                     (b) if � is non singular, 

(c) if � is positive definite,                       (d) if � � �� 
 

(14) The value of a for which   

A = 

�
�
�

�

�

�
�
�

�

�

1061

583

a22

 

is positive definite is  

(a)� � �
������������ � �
������������� � 
��������������None of these. 

 
                   Numerical Methods Descriptive Questions 5 

(1) Solve the following system of equations by Gauss Elimination method: 
 

(a) ������� � ��
 � �� � �                                       (b)  ��� � �
 � ��� � �� 

        ��� � ��
 � ��� � ��              ������������������������������8�� � ��
 � ��� � �� ��       ��� � �
 � ��� � ��                                          4�� � ���
 ���� � �� 
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(2) Find the solution of the following system by pivot technique of  Gauss Elimination 

method: 

A= � 0003120.0 006032.0

5000.0 8942.0
   , X= �

�

�
�
�

�

2

1

x

x
 , b = �

�

�
�
�

�

9471.0

003328.0
 

 
(3) Solve the following system of equations by Gauss Elimination method by selecting 

pivot equation: 
 

(a) �����������������
 � ��� � !                                       (b)  ��� � ��
 � ��� � � 

        ��� � ��
 � �� � "                                           ������ � ��
 � ��� � �� ��       ��� � ��������
�� � "                                               ��� ������������� ���� � �# 
 
 

(c) �������� � ���
 � ��� � ���                             (d)  �� � �
 � ��� � ��" 

        ��� � �
�
 � ��� � ��              ������������������������������4�� � ��
 � �� � �
�# ��                   25�
 � 
�� � �
�                                     5�� � �
 � ���� � ��" 
 

(e) �����
�� � ���
 � ��� � �����                             

           2�� � �
 � �� � ��!�              ����������������������������� ��         3�� � ��
 �������� ���$                                      

 
(4) Solve the following system of equations by method of Triangularization: 

 

(a) ��� � �
 � ��� � ��                                 (b)  �� � �
 � �� � � 

        �� � 
�
 � �� � ��              ������������������������������ � ��
�
�� � �� 
       ��� � �
 � ��� � �#                                     3�� � ��
 � ��� � $ 

 

(c)  ��%����� � ��%���
 � ��%���� � �����         (d) ����� � ����
 � ����� � �.72 

      ��%����� � ��%���
 � ��%���� � �� ������������������������ � ����
������ � ���!�
      ��%$���� � ��%���
 � ��%����� � ��                3.2�� � ����
 � ����� � ��$� 
 

(e) ������ � ��
 � ��� � !                                 (f)       �� � �
 � ��� � �� 

        ��� � �
 � ��� � �              �������������������������������������� � ��
���� � �� 
       ����� � �
 � �� � $                                                 3�� � 
�
 � �� � �� 

 
 

(5) Solve the following system of equations by LU decomposition: 

A= 

�
�
�
�

�

�

�
�
�
�

�

�

−

−

1231

0223

1204

2111

    b = 

�
�
�
�

�

�

�
�
�
�

�

�

−

−

5

7

8

10

 

also find �&�. 
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(6) Find the inverse of the matrix using LU decomposition with  ��� � �

 � ��� � � 

A= 

�
�
�

�

�

�
�
�

�

�

221

232

123

 

             

(7) Show that the following matrices are non-singular, but cannot be written as the 
product LU where L is the unit lower triangular and U upper triangular.   

(a) A= 

�
�
�

�

�

�
�
�

�

�

132

142

321

               (b) A= 

�
�
�

�

�

�
�
�

�

�

−

−

736

324

212

 

 

(8) Factorize the matrix  

A= 

�
�
�

�

�

�
�
�

�

� −

353

111

134

 

into the product LU where L is the unit lower triangular and U upper triangular.   
 

(9) Apply Crout’s method to solve the following equations: 
 

(a)   �� � �
 � ��� � #                                 (b)  ������� � ��
 � ��� � � 

    ����� � ��
 � ��� � ��              ������������������������������� � ��
���� � �$ 

       ��� � ��
 � ��� � "                                           3�� � 
�
 � �� � �$ 
 

(10) Decompose the matrix  

A= 

�
�
�

�

�

�
�
�

�

�

−

353

134

111

 

by Crout’s method.  
 

(12) Solve the following systems of equations using Cholesky method.   

 

(a)   ��� � ��
 � ���� � ��                                 (b)  ����!�� � $�
 � ���� � �#� 

    ������� � �#�
 � 
�� � ����              ���������������������������$�� � ���
����� � ��$ 
       ���� � 
�
 � "��� � �

                                        2�� � ���
 � �$�� � ��" 

 

(c)   ��� � $�
 � "�� � �                                      (d)  ������� � ���
 � "�� � �� 

    ����$�� � ���
 � 
��� � ��$�              ���������������������������� � �$�
��$�� � ��" 
       "�� � 
��
 � ��!�� � ��
�                                    8�� � �$�
 � $��� � ��� 

 �
 

(13) Solve the following systems of equations using Cholesky method.  Also find '&� 



6 

 

 

(a) A= 

�
�
�

�

�

�
�
�

�

�

−

−−

−

410

141

014

    b = 

�
�
�

�

�

�
�
�

�

�

0

0

1

 

 �(���������) � �*+ � �
�	 �) � #* � + � ��	�) � * � $+ � $  
 

(14) Find inverse of the following matrices by using Cholesky method. 
 

(a) 

�
�
�

�

�

�
�
�

�

�

82223

2282

321

(b) 

�
�
�

�

�

�
�
�

�

�

−

−

2962

641

211

(c) ) 

�
�
�

�

�

�
�
�

�

�

−

−−

−

312

111

212
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          Numerical Analysis 6 

Iterative Methods to Solve 
System of Equations and Eigen Value Problems  

 
 
Iteration Methods: Jacobi iteration method, Gauss-Siedal method.  

Eigen Value Problem: Jacobi’s method, Power method. 

 
 Numerical Analysis Objective Questions 6 

 

(1) Let  

A =  

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−−

−

0
2

1

4

1

2

1
0

3

1

4

1

3

1
0

  

The spectral radius of A is 

 

(a) Greater than 1 ,(b) equal to 1, (c) less than 1, (d) equal to �� 

 

(2) For the matrix 

�
�
�
�

�

�

�
�
�
�

�

�

122

232

221

, 

the rotation matrix that will zero out ��� is  

(a)  

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�
−

2

1
0

2

1

010

2

1
0

2

1

   (b) 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−

2

1

2

1
0

2

1

2

1
0

001

 

(c)    

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�
−

100

2

1

2

1

0
2

1

2

1

   (d) None of these 
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(3) A square matrix [ ] nnA ×  is diagonally dominant if  

(a) ,
1

�
≠
=

≥
n

ji
j

ijii
aa  ni ,...,2,1=   

(b) ,
1

�
≠
=

≥
n

ji
j

ijii
aa  ni ,...,2,1=  and ,

1

�
≠
=

>
n

ji
j

ijii
aa  for any ni ,...,2,1=  

(c) ,
1

�
=

≥
n

j

ijii
aa  ni ,...,2,1=  and ,

1

�
=

>
n

j

ijii
aa  for any ni ,...,2,1=  

(d)  ,
1

�
=

≥
n

j

ijii
aa  ni ,...,2,1=  

 

(4) The interval, which contains the eigen values of the symmetric matrix is 

�
�
�

�

�

�
�
�

�

�

613

142

321

 

is  

 

 (a) [�6, 6]       (b) [��� �]     (c) [�	
� 	
]       (d) None of these 

 

(5) 

For 

�
�
�

�

�

�
�
�

�

�

−

=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

− 2

7

22

1172

151

3712

3

2

1

x

x

x

 

and using [ ] [ ]121321 =xxx  as the initial 

guess, the values of  [ ]321 xxx  are found at the end of each iteration as

 
       

Iteration # 1x  2x  3x  

1 0.41667 1.1167 0.96818 

2 0.93990 1.0184 1.0008 

3 0.98908 1.0020 0.99931 

4 0.99899 1.0003 1.0000 

 
At what first iteration number would you trust at least 1 significant digit in your 

solution? 
 

(a) 1               (b) 2                  (c) 3                    (d) 4 
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(6)  The eigen values of the matrix are diagonal elements if the matrix is 
 

(a) Diagonal     (b) lower triangular   
(c) Upper triangular              (d) all of these 

 
(7) The Strurm sequence of the matrix 

�
�
�

�

�

�
�
�

�

�

−

−−

−

210

121

012

 
is 

(a) �� 
 	� �� 
 � � �λ � ���� 
 �� � λ ��� �������� � 
 	� �� � 

(b) �� 
 	� �� 
 λ � �� ���� 
 �λ � ���� �������� � 
 	� �� � 

(c) �� 
 	� �� 
 λ � �� ���� 
 �λ � ���� �������� � 
 	� �� � 

 (d)  None of the above 
 

(8) Let  

A = 

�
�
�

�

�

�
�
�

�

�

−

−

05.00

011

115

, 

Then 
 

(a) There are 2 eigen values contained in the disc | λ��|  �  2. 

(b) There are 3 eigen values contained in the disc | λ��|  �  2. 

(c) There is exactly 1 eigen value contained in the disc | λ��|  �  2. 

(d) None of the above 

 
(9) The largest eigen value of the matrix  

�
�
�

�

�

�
�
�

�

�

−

−

210

112

021

 

lies in the interval  

 

(a)   (4, 5)  (b)���� �� (c) (1, 2) (d) None of the above 

 

(10) Consider the linear equation Ax =b. Let us express A= L+D+U, where L is a lower 

triangular matrix, D is a diagonal matrix and U is an upper triangular matrix. All 

diagonal elements of L and U matrices are zero. Using this definition, we can write: 

Dx= −(L+ U)+ b . This yields us: x
(k+1)

=D
−1

 [b− (L+ U)x
k
]  
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Which of the following iterative methods does the above expression represent?  

 

(a) Jacobi iteration  (b) Gauss-Seidel  (c) Power method   (d) None of the above. 

 

(11) For the system of equations  

��� ������ � ����� 
 ��� 

�� ��� ��� � ��� 
��� 

�� ��� ��� � ��� 
��� 
 

Taking initial approximation ���� 
� �
���� �
���� �
����. Jacobi iteration method 

gives  �� ���  as 

 

(a) ........2,1,0,

5

6

3

4

2

1

  

0
3

2

3

1

3

2
0

3

1

2

1

2

1
0

)(
=

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−

−+

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−−

−−

−−

kx
k

 

 

(b) ........2,1,0,

3

4

4

6

2

1

  

0
3

2

3

1

5

2
0

5

1

4

1

4

1
0

)(
=

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−

−+

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−−

−−

−−

kx
k

 

 

(c ) ........2,1,0,

2

3

3

4

2

1

  

0
5

2

5

1

5

2
0

5

1

3

1

3

1
0

)(
=

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−

−+

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−−

−−

−−

kx
k

 

 
(d)  None of the above 

 
(12) Let  

A= 

�
�
�

�

�

�
�
�

�

�

10k

312

k01

, b= 

�
�
�

�

�

�
�
�

�

�

3

2

1

b

b

b

, b1, b2, b3 ∈ R 

 
The necessary and sufficient condition on k so that the Jacobi method converges for 
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solving AX = b is 
 

(a) k > 0      (b) k < 0    (c) �k�< 1     (d) k > 2 
 

(13) Which of the following statements is false : 
 

(a) If A is strictly diagonally dominant matrix , then the Jacobi iteration scheme  
     converges for any initial starting vector  

(b) If A is strictly diagonally dominant matrix , then the Gauss-Seidel iteration    
      scheme converges  for any initial starting vector 

(c) Rate of convergence of Gauss-Seidel scheme is thrice as that of the Jacobi    
     scheme  

(d) None of the above 
 

(14) The rate of convergence of the Jacobi iteration method for solving the system of 

equations 3x + y + z = 2, x + 4y + 2z = �5, x + 2y + 5z = 2. 

 

(a)  0.17  (b) 1.17  (c) 2.17  (d) none of these 
 

(15) Consider the linear equation Ax =b. Let us express A= L+D+U, where L is a lower 

triangular matrix, D is a diagonal matrix and U is an upper triangular matrix. All 

diagonal elements of L and U matrices are zero. Using this definition, we can write: 

Dx= − (L+ U)+ b . This yields us: x
(k+1)

=H x
(k)

+c, k=0,1,2…. where H= − (D+L)
−1

U 

and c=(D+L)
 −1

b.  

 

Which of the following iterative methods does the above expression represent?  

 

(a) Jacobi iteration (b) Gauss-Seidel (c) Power method (d) None of the above. 

 
(16) For the system of equations  

     ��� ������ �����������
 ��� 

��� ��� ��� � �� 
 �	 

��� � ��� 
 �	 
 

Taking initial approximation ���� 
� �
��
�� 
��. Gauss Seidal iteration method gives  

�� ���  as 

(a) �� ��� =  
�
�
�

�

�

�
�
�

�

�

4/110/10

2/14/10

02/10

�� � +  
�
�
�

�

�

�
�
�

�

�

8/13

4/9

2/7
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(b) �� ��� =  
�
�
�

�

�

�
�
�

�

�

4/18/10

2/14/10

02/10

�� � +  
�
�
�

�

�

�
�
�

�

�

8/11

4/9

2/7

 

(c)  �� ��� =  
�
�
�

�

�

�
�
�

�

�

4/18/10

2/14/10

02/10

�� � +  
�
�
�

�

�

�
�
�

�

�

8/13

4/9

2/7

 

(d) None of above 
 

 

(17) To ensure that the following system of equations, 

  

17257

52

61172

321

321

321

=++

−=++

=−+

xxx

xxx

xxx

 

converges using the Gauss-Seidel method, one can rewrite the above equations as 

follows: 

 

(a) 

�
�
�

�

�

�
�
�

�

�

−=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

� −

17

5

6

x

x

x

257

121

1172

3

2

1

 
 

(b) 

�
�
�

�

�

�
�
�

�

�

−=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

− 6

5

17

1172

121

257

3

2

1

x

x

x

 
 

(c) 

�
�
�

�

�

�
�
�

�

�

−=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

− 17

5

6

1172

121

257

3

2

1

x

x

x

 
 

(d) The equations cannot be rewritten in a form to ensure convergence. 

 

(18) The eigen values of the matrix  

�
�
�
�

�

�

�
�
�
�

�

�

224

262

422

 

using Jacobi method is 
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(a) �1, 2, 3  (b)���� ���!� (c) ��� �� � (d) None of the above 

 
(19) Using Power method, the iterations reduce the original matrix to 

 

(a)  a diagonal matrix   (b)  an upper triangular matrix 

(c)  a lower triangular matrix  (d) a tridiagonal matrix 

 

(20) The largest eigen value in the magnitude of 

�
�

�
�
�

�

24

11
 

with initial approximation �� 
 "	��	#�, using Power method is 

 

(a) 1  (b) 9   (c) 10   (d) None of these 

 

 

 Numerical Analysis Descriptive Questions 6 

(1) For the following system of equations 

 

(i) �� � $ � �% 
 �                                   (ii) 	
� � �$ � �% 
 	� 

 �� � �$ � % 
 �                                             � � 	
$ � % 
 �	
 

    � � $ � �% 
 �                                         �� � �$ � 	
% 
 �� 
 

 

(a) Obtain the Jacobi iteration scheme in the matrix form. 

(b) Starting with ���� 
 �
� 
� 
��� &'()*'(�'+)((�'&,(-� 
(c) Show that the Jacobi iteration scheme converges. 

 
(2) For the following system of equations: 

  

6x+y+z=20 

x+4y−z =6 

x−y+5z=7 

 

(a) Obtain the Jacobi iteration scheme in the matrix form. 

(b) Starting with ���� 
 �������� 	��� 	����� &'()*'(�'+)((�'&,(-� 
 

(3) For the following system of equations  
 

9x1 + x2 + x3 = b1 

     2x1 + 10x2 + 3x3 = b2 

   3x1 + 4x2 + 11x3 = b3 

 

(a) Obtain the Jacobi iteration scheme in the matrix form. 

(b) Starting with ���� 
 �
� 
� 
��� . 
 �	
�	/� 
��� iterate three times. 
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(c) At each iteration, obtain maximum absolute relative error. 
(d) Show that the Jacobi iteration scheme converges. 

 

(4) Consider the system  

�
�

�
�
�

�

51

23
�
�

�
�
�

�

2

1

x

x
= �

�

�
�
�

�

6

5

 
 

(a) Obtain the Jacobi iteration scheme in the matrix form. 

(b) Starting with ���� 
 �
� 
� 
����iterate three times. 

(c) At each iteration, obtain maximum absolute relative error. 

(d) Show that the Jacobi iteration scheme converges. 
 

(5) Show that for each of the following matrices A, the system Ax = b can be solved by 

Jacobi iteration with guaranteed convergence. 

 

(a) 

�
�
�

�

�

�
�
�

�

�

−

−

−

402

182

315

,    (b) 

�
�
�

�

�

�
�
�

�

�

−

−

−

315

182

402

,        (c) 

�
�
�

�

�

�
�
�

�

� −

401

240

224

 

 

(6) For the following system of equations: 

 

(i)  

�
�
�

�

�

�
�
�

�

�

−

−

−

320

132

013

�
�
�
�

�

�

�
�
�
�

�

�

x

x

x

3

2

1

= 

�
�
�

�

�

�
�
�

�

�

−

−

1

0

2

 

(ii) 

�
�
�

�

�

�
�
�

�

�

−

−

−

532

143

215

�
�
�
�

�

�

�
�
�
�

�

�

x

x

x

3

2

1

= 

�
�
�

�

�

�
�
�

�

�

−

10

2

2

 

 

(a) Set up the Gauss-Seidel iteration scheme in matrix form. 

(b) Show that the iteration method is convergent and hence find its rate of 

convergence. 

(c) Starting with ���� 
 � �
� 
� 
��, iterate three times. 

 

(7) Apply Gauss-Seidel method to solve the system  

 

�� � $ � % 
 ������������ � $ � �% 
 ������������ � �$ � % 
 ����������������������������������������������� 
 

Give the condition of convergence of Gauss-Seidel’s iteration method and show that 

it is satisfied in this case.  
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(8) Find the solution to the following system of equations using the Gauss-Seidel 

method. 

 

 

 

15312 321   xx  x =−+      

2835 321  x  x  x  =++  

761373 321 =++  x  x  x  

 

(a) Starting with ���� 
 �	� 
� 	����iterate two times. 

(b) absolute relative approximate error at the end of each iteration  

(c) Is the solution converging? 

 

(9) Given the system of equations 

 

761373 321   x  x  x =++  

2835 321   x  x x =++  

15312 321   x - x x  =+   

find the solution using the Gauss-Seidel method.  Use �	� 
� 	�� as the initial guess. 

 

(10) Using tt
321 ]531[]xxx[ =  as the initial guess, find the values of ],,[ 321 xxx  after 

three iterations in the Gauss-Seidel method for  

 

  

�
�
�

�

�

�
�
�

�

�

−=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

− 6

5

2

1172

151

3712

3

2

1

x

x

x

 

 

(11) For  

�
�
�

�

�

�
�
�

�

�

−

=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

− 2

7

22

1172

151

3712

3

2

1

x

x

x

 

and using [ ] [ ] tt
321 121xxx =  as the initial guess, find the values of  

[ ]321 xxx  after three iterations using Gauss-Seidel method. 

 

(12) The upward velocity of a rocket is given at three different times in the following 

table 

Velocity vs. time data 

Time, t  (s) 5 8 12 

Velocity, v  (m/s) 106.8 177.2 279.2 
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The velocity data is approximated by a polynomial as 

( ) 125           , 32

2

1 ≤≤++= tatatatv  

Find the values of 321  and ,, aaa  using the Gauss-Seidel method.  Assume an initial 

guess of the solution as  

�
�
�

�

�

�
�
�

�

�

=

�
�
�

�

�

�
�
�

�

�

5

2

1

3

2

1

a

a

a

 

and conduct two iterations. Is the above system of equations converging? 

 
(13) Use Jacobi iteration to find the eigen values of the following matrices : 

 

(i)  

�
�
�

�

�

�
�
�

�

�

−

−

−

146

212

222

                  (ii)      

�
�
�
�

�

�

�
�
�
�

�

�

224

262

422

 
 

(14) Find all eigen values of the matrix 

�
�
�

�

�

�
�
�

�

�

321

232

123

   

 

using Jacobi Iteration till the off-diagonal. Elements in magnitude are less than 

0.0005. 

 

(15) Use Jacobi’s method to find the eigen values and eigenvectors of the matrix  

 

                                           (a) 

�
�
�

�

�

�
�
�

�

�

426

231

612

 

 

(b)

 
�
�
�

�

�

�
�
�

�

�

−

−

010.150058.0008.0

0058.0010.15000.0

008.0000.0010.15

 
 

(16) Determine the largest eigen values and the corresponding eigenvector of the 

following matrices correct to three decimal places using Power method. Take the 

initial approximate vector as 0� 
� "	��	��	#� 
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 (i)  

�
�
�

�

�

�
�
�

�

�

410

2201

014

                      (ii)    

�
�
�

�

�

�
�
�

�

�

−−

−−

−

10264

7172

5110

         (iii)   

�
�
�

�

�

�
�
�

�

�

−−

−−

−

16126

242012

367

   

 

(iv)  

�
�
�

�

�

�
�
�

�

�

−−

−−

−

342412

664724

423016

         (v)   

�
�
�

�

�

�
�
�

�

�

−−−

−−−

9122

23295

597212

   

 

(17) Find the largest and smallest eigen values and the corresponding eigenvectors of the 

matrix A = 

�
�
�

�

�

�
�
�

�

�

−

−

−

512

132

114

  take the initial approximate vector as 0��� 
� "	��	��	�#� . 

[ Hint: The smallest eigen value of A is the largest eigen value of  1��] 

 

(18) Find the smallest eigen value in magnitude of matrix  

A = 

�
�
�

�

�

�
�
�

�

�

−

−−

−

210

121

012

 

Using four iterations of the power method. Also obtain the corresponding 

eigenvector. Take the initial approximate vector as 0��� 
 � "	��	��	�#� . 
 

(19) Find the eigen value correct to two decimal places, which is nearest to 5 for the 

matrix. 

�
�
�

�

�

�
�
�

�

�

410

141

014

 
 

using inverse power method. Also obtain the corresponding eigenvector. Take the 

initial approximate vector as 0��� 
� "	���	��	�#� . [Hint: the eigen value of A, which 

is nearest to 5 is the smallest eigen value in magnitude of A – 5I. Hence, it is the 

largest eigen value in magnitude of (A – 5I)
-1

] 

 



Numerical Analysis 7

Miscellaneous Theoretical Questions

Unit 1

(1) (a) Derive the Newton-Raphson iteration method

xk+1 = xk −
f(xk)

f ′(xk)
k = 1, 2, · · ·

(b) Suppose Newton-Raphson method produce a sequence {xk}∞k=0 that converges to the root α of the
function f(x). Prove that

(i) If α is a simple root, then the convergence is quadratic and

|εk+1| ≈
|f ′′(α)|
2|f ′(α)| |εk|

2 for sufficiently large n.

(ii) If α is a multiple root of order m, then the convergence is linear and

|εk+1| =
m− 1

m
|εk| for sufficiently large n.

(c) Suppose that Newton-Raphson method produce a sequence {xk}∞k=0 that converges to the root α of
order m > 1 of the function f(x). Prove that the iteration method

xk+1 = xk −
mf(xk)

f ′(xk)

has quadratic rate of convergence. Hence find the double root near x = 1.1 of x3− 4x2+5x− 2 = 0.

(d) Show that Newton-Raphson iteration formula applied to the function f(x) = x2 − a (a > 0) leads
to the iteration formula

xk+1 =
1

2

(

xk +
a

xk

)

x0 > 0

for evaluating
√
a. Also considering the function f(x) = xp − a, show that the sequence given by

xk+1 =
1

p

(

(p− 1)xk +
a

x
p−1
k

)

x0 > 0

can be used to evaluate a1/p.

(2) (a) Derive the secant iteration formula

xk+1 = xk −
xk − xk−1

f(xk)− f(xk−1)
f(xk) for k = 1, 2, · · ·

to find the root of the continuous differentiable function f(x).

(b) Show that the rate of convergence of the secant method is p =
1

2
(1 +

√
5).

(c) Prove that if r is the root of f(x) = 0 and if the equation is rewritten in the form x = F (x) in such
a way that |F ′(x)| ≤ L ≤ 1 in an interval I, centered at x = r, then the sequence xn = F (xn−1) with
x0 arbitrary but in the interval I has lim xn = r

(d) Show that the iteration formula

xk+1 = xk −
f(xk)

f ′(xk)
− {f(xk)}2 {f ′′(xk)}

2 {f ′(xk)}3

is cubically convergent formula for finding the roots of the polynomial equation f(x) = 0

(3) (a) Derive the Regula-Falsi iteration formula

xk+1 = xk −
xk − xk−1

f(xk)− f(xk−1)
f(xk), f(xk)f(xk−1) < 0 for k = 1, 2, · · ·

to find the root of the continuous differentiable function f(x).

(b) Show that the rate of convergence of Regula-Falsi method is linear.

1



Unit 2

(1) (a) Derive the Muller’s iteration formula

xk+1 = xk −
2a2

a1 ±
√

a21 − 4a0a2
, k = 2, 3, ...

for finding the roots of the polynomial f(x) = a0x
2 + a1x+ a2.

(b) Show that the rate of convergence of Muller method is (approximately) 1.84.

(2) (a) Derive Chebyshev iteration formula

xk+1 = xk −
f(xk)

f ′(xk)
− 1

2

(

f(xk)

f ′(xk)

)2(
f ′′(xk)

f ′(xk)

)

, k = 1, 2, 3, ...

for finding the roots of the polynomial f(x) = a0x
2 + a1x+ a2, where a0, a1, a2 are constants.

(b) Show that the rate of convergence Chebyshev method is 3

(3) (a) Derive the Multipoint iteration formula of Type 1:

xk+1 = xk −
f(xk)

f ′

(

xk − 1
2
f(xk)
f ′(xk)

) , k = 1, 2, 3, ...

for finding the roots of the polynomial f(x) = a0x
2 + a1x+ a2, where a0, a1, a2 are constants.

(b) Derive the Multipoint iteration formula of Type 2:

xk+1 = xk −
f(xk)

f ′(xk)
−

f
(

xk − f(xk)
f ′(xk)

)

f ′(xk)
, k = 1, 2, 3, ...

for finding the roots of the polynomial f(x) = a0x
2 + a1x+ a2, where a0, a1, a2 are constants.

(4) (a) In a polynomial when do we say that a change of sign has occurred ? State the Descarte’s rule of
sign. Determine the number of positive and negative roots of the polynomial

f(x) = 4x5 + 10x4 − 5x3 + 13x2 − 6x+ 2

using Descarte’s rule of sign change.

(b) If pk is an approximation of the root of p of the polynomial equation pn = a0x
n + a1x

n−1 + · · · +
an−1x + an = 0, then show that the next approximation to the root using Birge-vieta method is
pk+1 = pk− bn

cn−1
, k = 0, 1, . . . where bk satisfies the recurrence relation bk = ak+pck−1 with a0 = b0

and ck satisfies the recurrence relation ck = bk + pck−1 with c0 = b0.

(c) Discuss Bairstow process for determining the roots of an algebraic equation.

(4) Derive Newton-Raphson method for system of non-linear equations in two unknowns as f(x, y) = 0 and
g(x, y) = 0.

2



Unit 3

(1) Explain forward and backward substitution method for the system of equation AX = B

(2) (a) Describe Triangularization method for solving numerically a system of linear equations.

(b) Describe Cholesky method for solving numerically a system of linear equations.

(c) Discuss the operational count for Gauss elimination method.

(3) Describe Jacobi iterative method for solving numerically a system of linear equations. Give sufficient
conditions for convergence of the process.

(4) Describe Gauss-Seidel iterative method for solving numerically a system of linear equations. Give sufficient
conditions for convergence of the process.

(5) (a) Prove that the iteration method of the form x(k+1) = Hx(x) + c, k = 0, 1, 2, . . . for the solution of
Ax = b converges to the exact solution for any initial vector if ‖H‖ < 1

(b) If A is a strictly diagonally dominant matrix, then show that the Gauss-Seidel iteration method
coverges for any initial starting vector.

(c) If A is a strictly diagonally dominant matrix, then show that the Jacobi iteration method coverges
for any initial starting vector.

(d) Let L and U denote lower and upper triangular matrices obtained by triangular decomposition and
consider the process

A = A0 = L0U0, A1 = U0L0 = L1U1, . . . , Ak = Uk−1Lk−1 = LkUk, . . .

show that A and Ak have the same eigenvalues. Also show that if Bk = L1L2 . . . Lk converges as
k → ∞, then Ak converges to an upper triangular matrix having the same eigenvalues of A.

(6) (a) Describe Jacobi iterative method for finding the eigenvalues of a symmetric matrix. Give sufficient
conditions for convergence of the process.

(b) Assume that the n× n matrix has n distinct eigenvalues λ1, λ2, . . . , λn and that they are ordered in
decreasing magnitude, i.e.

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.

If X0 is chosen appropriately, then show that the sequence
{

Xk = (x
(k)
1 , x

(k)
2 , . . . , x

(k)
n )t

}

and {ck}
generated recursively by

Yk = AXk and Xk+1 =
1

ck+1
Yk

where
ck+1 = x

(k)
j and x

(k)
j = max

{

|xki | : 1 ≤ i ≤ n
}

will converge to the dominant eigenvector V1 and eigenvalue λ1, respectively.

3



Practical No. 1

Congruences I

Objectives

1) The remainder obtained upon dividing the sum  1! +2! +3! + ……..(375)!  By 15 is

a) 3               b) 0               c) 1           d) None of these.

2)The remainder when the sum  1
3
+2

3
+3

3
+ ………..+(99)

3
+(100)

3
divided by 4 is

a) 3 b) 0 c) 2 d) None of these.

3) Which of the following statement is false:

(a) Cube of any integer is of the form 9k or 9k + 1 or 9k – 1

(b) Cube of any integer is of the form 7k or 7k + 1 or 7k – 1

(c) Cube of any integer is of the form 5k or 5k + 1 or 5k – 1

(d) None of the above

4) What  is  the  remainder  when   89  divides 2
44

a) 1       b) 13         c) 7            d) None of these.

5) Following is the  Complete Residue System  modulo 7.

a) A = {-2, -9, 11, 12, 4, 18, 25}.

b) B = { -19, -11, 4, 6, 15, 75, 84}.

c) C = {3, 19, 19, 23, 28, 35, 42}.

d) None of the above.

6) If S = {a1, a2, …….an} is a Complete Residue System mod n then

S1 = {aa1, aa2, …..aan} is also a  Complete Residue System mod n if.

a) (a,n) = 1       b) (a,n) > 1        c) a>ai for all ai ‘s       d) None of the above.

7)If r1, r2, ….. rp-1 is any Reduced Residue System  modulo a prime P then ∏ is

congruent mdulo p to

a) -1 b) p c) 1 d) None of these.

8) The number of elements in a Reduced Residue System  modulo 8 is

a) 4 b) 7 c) 8 d) None of these.



9) Which of the following set forms  a Reduced  Residue System  mod 12

A ) A = { 3,15,21,33}

B) B= { 4,20,28,44}

C) C = { 5, 25, 35, 55}

D  None of the above.

10) The least  positive  integer congruent to 17
35

mod 6  is

a) 1 b)  2 c)  3 d) 5

11)  The remainder when  9
250

divided by 17 is

a) 11 b) 12 c) 13 d) None of these.

12) If x  y (mod m) then

a) (x ,m) = (y, m) c) (x, m)  (y, m)

b) (x, m) = 2(y,m) d) Nothing can be said

13) If p is an odd prime then x
2
 -1 mod p has a solution if and only if

(a) p  1 mod 4     (b) p 2 mod 4    (c) p  3 mod 4  (d) Nothing can be said

14) If p, q are distinct primes such that for an a, a
p
 a mod q and

a
q
 a mod p then

(a) a
pq
 a mod pq    (b) a

pq
 1 mod pq    (c) a

pq
 0 mod pq d) None of these.

15) The remainder when 17!  divided by 19 is

(a) 1             (b) 2                (c) 3                       (d) 0



Practical No.1

Descriptive

1) If a  b (modn1) and a  c (mod n2) Prove that b  c (mod n) where

n =  gcd(n1, n2)

2) Prove that  97 divides (2
48

-1)

3) Verify that 0,1,2,2
2
, ….., 2

9
form a Complete residue system modulo 11 but

0,1
2
, 2

2
, ……. 10

2
do not

4) Show that 1
2
, 2

2
, ..……. m

2
is not a Complete residue system modulo m when

m>2

5) List all the elements in a Reduced Residue System modulo 30

6) Prove that n
12

– 1 is divisible by 7 if (n, 7) = 1.

7)Prove that n
13

– n is divisible by 2, 3, 5, 7 and 13 for any integer n.

8)Prove that n
12

- a
12

is divisible by 13 if n and a are prime to 13.

9)Prove that n
12

- a
12

is divisible by 91 if n and a are prime to 91.

10) Prove that n
5

+ n
3

+ n is an integer for every integer n.

11) What is the last digit in the ordinary decimal representation of 2
400

?

12) What are the last two digits in the ordinary decimal representation of 3
400

?

13) Show that 2, 4, 6,…….2m is a complete residue system modulo m if m is odd.

14) If p is an odd prime, prove that :1
2
.3

2
.5

2
……(p-2)

2
 (-1)

(p+1)/2
(mod p),

and    2
2
.4

2
.6

2
……(p-1)

2
 (-1)

(p+1)/2
mod p).

15)If p is a prime other than 2 or 5, Prove that p divides infinitely many of the

integers 9,99,999,9999,……..

16) For a prime p, and integers a, b if a
p
 b

p
mod p then prove that

(i) a  b mod p (ii) a
p
b

p
mod p

2

17) If p, q are distinct primes prove that p
q-1

+ q
p-1

 1 mod pq

18) Find a solution of x
2
 -1 mod 29.

19) Use Fermat’s method  to factor  the following numbers: 10541 , 340663, (2
11

) − 1

20)Employ the generalized  Fermat’s method  to factor  the following numbers:4573, 6923

21) Use Kraitchik’s method to factor the number 20437



Practical No.2

Congruences II

Objectives

1)The value of (728) is

a) 288 b) 290 c) 382 d) None of these

2) The number of positive integers ≤ 1200 and relatively prime to 1200 is

a) 420 b) 320 c) 520 d) None of these

3)The number of positive integers ≤ 4500 that have a factor greater than 1 in common with

4500 is

a)3700 b) 3300 c) 1200 d) None of these

4)  (3
100

) equals

(a) 3
100

(b) 3
99

(c) 2.3
99

(d) None of these

(5) If n is an positive integer then of  (2n) = 2 (n) is

(a) always true      (b) Never true    (c) true If n is odd   (d) true if n is even

6) Which of the following is false:

(a)  (x) = 12 has no solution          (b)  (x) = 13 has no solution

(c)  (x) = 14 has no solution          (d)  (x) = 15 has no solution

7)The number of distinct solutions of congruence 24x  6 (mod 108) is

a) 0 b) 2 c) 6 d)12

8) If f(x)  0 mod p has exactly n solutions and g(x)  0 mod p has no solutions

Then  f(x)g(x)  0 mod p has

(a) exactly n solutions          (b) more than n solutions      (c) less than n solutions

(a) Nothing can be said

9)The solution set of the congruence 20x  4 mod 30 is

(a) empty       (b) singleton       (c) infinite        (d) None of these



10) Simultaneous solution of 17x  9( mod 3) and 17x  9 (mod 4) are

(a) 9 mod 12    (b) 7 mod 12    (c) 5 mod 12    (d) None of these

11) A common solution to the pair of congruence  x 1 (mod 4); x  2 (mod 5)is

a) x 13 (mod 20) b) x  12 (mod 20)    c) x  17 (mod 20) d) None of these.

12) If f(x)  0(mod 9) has 3 distinct solutions and f(x)  0(mod 8) has 2  distinct  solutions

then f(x)  0(mod 72) has

(a)  5 solutions          (b) 6 solutions      (c) l solution       d)Nothing can be said

Practical No.2

Congruences II

Descriptive

(1) Find (1001),  (5040)

(2) Solve  (x) = 24

(3) If for an integer n > 1 has r distinct prime factors then prove that  (n) ≥

(4) If n > 1 is a composite number then show that (n) ≤ n − √
(5) If the integer n has r distinct odd prime factors then prove that 2 /  (n)

(6) If every prime factor that divide n also divide m then prove that  (nm) = n (m)

7) Find all incongruent solutions of the following congruences

1) 15x  25 (mod 85)           2)  30x  7 (mod 23)            3) 353 x  254 (mod 400)

8) Solve each of the following sets of simultaneous congruences:

1) x  5 (mod 11)  ;  x  14 (mod 29)  ;  x  15 (mod 31)

2) x  5 (mod 6)  ;  x  4 (mod 11)  ;  x  3 (mod 17)

3) x  1 (mod 4)  ; x  0 (mod 3)  ;  x  5 (mod 7)

4) 2x  1 (mod 5) ;  4x  1 (mod 7)  ;  3x  9 (mod 6)  ;  5x  9 (mod 11)



9) Find the smallest  positive  integer having the remainder 3,11,15 when divided by 10,13,17

respectively.

10) A band of 17 pirates stole a sack of gold coins. When they tried to divide equally among

them 3 coins remain. In the ensuing fight one of the pirates died. Again it was divided equally to

find 10 coins were left . Again a fight resulted in killing one more pirate. This time  they were

able to divide the gold equally among themselves . What was the least number of gold coins

they could have stolen?

11) Solve :

a)   5x
2

-6x + 2  0 (mod 13)       b)  x
2

+ 7x + 10  0 (mod 11)     c) 3x
2

+ 9x + 7  0 (mod 13)

d) 5x
2

+6x + 1  0 (mod 23)

12) Solve the Congruences:

a) x
3

+ 2x – 3  0 (mod 45)     b) x
3

– 9x
2
+ 23x – 15  0 (mod 143)    c) x

3
+ 4x + 8  0 (mod 15)



PRACTICAL NO. 3 (Diophantine Equations)

OBJECTIVE QUESTIONS:

1. Let (a,b)=g; (a,c)=d; (b,c)=e,  then the equation ax+by=c has a solution if

(i) g| (ii) d|b                         (iii)  e|a                      (iv)  None of the above

2. The equation ax+by=c has a solution if and only if

(i)  (a ,b)=(a ,b, c)        (ii)   (a, c) = (a, b, c)

(iii)  (b, c) = (a, b, c)                                                     (iv) None of the above

3. If   ax + by = c  has two  solutions   ( , )   and   ( , )  with =1+ and = 1+ and

(a, b)=1 then

(i)   b=0  or  b=1 (ii)   b=-1  or  b=0

(iii) b=-1  or b=1                                                           (iv) None of the above

4. Let A be the statement ‘ The equation ax + by=c is solvable’  and B be the statement       ‘

The  equation ax + by = a + c  is solvable’, then

(i) A is true whenever B is true but converse may not be true

(ii) B is true whenever A is true but converse may not be true

(iii)A is true if and only if B is true

(iv) None of the above

5. If  (a, b)=1  and a and b are of opposite signs  then the equation ax + by = c has

(i) Infinitely many solutions for c>0

(ii) Infinitely many solutions for any value of c

(iii) Has no integral solution whatever  the value of c

(iv) None of the above

6. Which of the statements is false?

(i)    The equation ax + by =c is solvable in integers iff (a, b, c) =(a, b)

(ii) The equation ax + by =c is solvable in positive  integers where a, b, c are positive then

a + b ≤ c

(iii) The equation ax + by =c  has a solution  in integers then the equation ax + by =a + c has a

solution in integers.

(iv)   101 x + 37y =3819  has two solutions in set of positive integers.

7. The equation ax + by = c has a solution in positive integers  where a, b, c are positive  then

(i) a + b ≤ c                                                                                                      (ii) a + b ≥ c

(iii) Cannot have any solutions whatever the values of a, b, c              (iv) None of the above

8. Let a, b, c  be positive  integers and  (a, b) = 1 with is not an integer but is an integer,

then the number of solutions of ax + by = c in the set of positive integers is

(i)  [ ]                    (ii) [ ]                    (iii) [ ] (iv)  None of the above



9. The equation 3x + 6y =100  has

(i) 0 integral solutions                                             (ii)   1 integral solution

(iii) 2 integral solutions                                           (iv) Infinitely many integral solutions

10. , , , ………… are non- zero positive integers and the equation

+ + + ⋯…… = has an  integral solution.  Also

d=( , , , ………… ) . Then

(i)  c|d                        (ii) d|c                                (iii ) d=c         (iv) None of the above

11. Let (a, b) =g,  (a, c) =d,  (b, c) =e then the equation ax + by =c  has

(i)  g number of integral solutions

(ii) d  number of integral solutions

(iii) e  number of integral solutions

(iv) None of the above

DESCRIPTIVE QUESTIONS:

1. A farmer sold chickens at Rs. 5/ each and geese at Rs 8/ each. He collected a total of Rs 99/-.

Assuming that he sold at least one bird of each kind, how many of each kind did he sell?

2. Show that if a and b are co-prime positive integers, then every integer c ≥ ab  has the form

ax+by   where x and y are non-negative integers.  Also  show that the integer  ab-a-b does

not have this form.

3.a)

b)

Determine all the solutions in positive integers of the following Diophantine equations.

i) 5 x + 3 y =52

ii) 15 x + 7 y =111

iii) 12 x + 510 y = 274

Determine all the  integral solutions of the following Diophantine equations.

i) 903 x + 731 y = 2107

ii) 101 x + 99 y =437

4. A certain number of sixes and nines is added to give a sum of 126.  If the number of sixes and

nines is interchanged, the new sum is 114. How many of each were there originally?

5. When Mr. X cashed a cheque at his bank, the teller mistook the number of paise for the

number of rupees and vice versa. Unaware of this , X spent 68 paise and then noticed to his

surprise that he had twice the amount of the original cheque. Determine the smallest value

for which the cheque could have been written.

6. There were 63 equal piles of fruits put together and 7 single fruits. They were divided evenly



7.

8.

9.

10.

among 23 travellers.  What is the number of fruits in each pile?

Find the number of men, women and children in a company of 20 persons if together they

pay 20 coins, each man paying 3, each woman 2 and each child ½  .

We have an unknown number of coins. If you make 77 strings then you are 50 coins short;

but if you make 78 strings then it is exact. How many coins are there?

A  father’s age is  1 less than twice that of his son, and the digits AB making up the father’s

age  are reversed in the son’s age(ie.  BA).  Find  their ages.

Clara wants to buy pizza  and  cola for her family  She has 400 Rs. If we know that each pizza

costs 57/- and each bottle of cola 22/-.  How many of each  can she buy?

Assume that there is discount for some stuff in the restaurant and pizza  price is changed

from 57 to 55. Then how many of each can she buy?

………………………………………………………………………………………………………………………………………………..



PRACTICAL NO. 4

OBJECTIVE QUESTIONS:

1. The equation − = n has solutions

(a) for every integer n

(b) only for integers of the form 4k+1

(c)  only for 2 and all integers of the form 4k+1

(d)  for all integers which are not of the form 4k+2

2. The equation + + 1 = has

(a) no solution in integers

(b) finitely many solutions in integers

(c)  infinitely many solutions

(d)  only two solutions

3. The equation  15 − 7 =9  has

(a) two solutions in integers

(b)  no solution in integers

(c)  four solutions in integers

(d)  infinitely many solutions in integers.

4. For a given integer n the number of Pythagorean triples having the same first

member is

(a) less than n

(b) equal to ( )

(c) greater than n

(d) none of the above

5. The number of Pythagorean triples (x, y, z)  for which

(a)  x, y, z are consecutive integers are infinitely many

(b)  x, y  are consecutive integers  are infinitely many

(c) x, y, z are odd are infinitely many

(d)  none of the above



6. The equation − = 2 has

(a) no solution in positive integers

(b) infinitely many solutions in positive integers

(c)  finitely many solutions in positive integers

(d) none of the above

7. If   p = + + where  p, , , are primes then

(a)  each is of the form 4k+1

(b) each ,is of the form  4k+3

(c)  at least one = 3

(d)  no is even

8. Let n be a positive integer.

(a) If n is  sum of three squares then 2n is also  a sum of three squares

(b) If n is sum of three squares then 2n cannot be a sum of three squares

(c) If n is sum of three squares then 2n is a perfect square.

(d) n or 2n is sum of three squares.

9. Which of the following statements is false?

(a) 2 is sum of two squares for all  natural numbers  n.

(b)   Any prime of the form 4k+1 can be expressed as a sum of two squares.

(c)  Any odd prime can be expressed as sum of two squares.

(d)  If = … . …… . where ’s are primes of the

form 4t+1  and ’s are primes of the form 4t+3  then ’s are even.

10. An integer of the form 8m + 7

(a)  can be expressed as sum of two squares

(b)  can be expressed as sum of three squares.

(c)  cannot  be expressed as sum of three squares.

(d)   may be a square.

11. If n is a sum of two squares then

(a)  2n is also a sum of two squares

(b)   2n is not a sum of two squares.

(c)   2n is sum of two squares if and only if n is odd.

(d)  none of the above.



DESCRIPTIVE QUESTIONS:

1)Show that the area of a Pythagorean triangle can never be equal to a perfect

square.

2) If x, y, z is a primitive Pythagorean triple , prove that x + y  and  x - y are

congruent modulo 8 to either 1 or 7.

3) Prove that in a primitive Pythagorean triple  x, y, z  the product xy is divisible

by 12 , hence 60|xyz.

4) Show that 3n, 4n, 5n  where n=1, 2,……… are the only Pythagorean triples

whose terms are in Arithmetic Progression.

5)Show that the radius of the inscribed circle of a Pythagorean triangle  is always

an integer.

6)      Show that a positive integer can be represented as the difference of two

squares if and only if  n is not of the form 4k+2.

7)      Establish each of the following:

i)  Each of the integers 2 , where n= 1,2,…… is a sum of two squares.

ii)  If n≡ 3 or 6 (mod 9) , then n cannot be represented as a sum of two squares.

iii)   If n is the sum of two triangular numbers, then 4n+1 is the sum of two

squares.

8)     If the positive integer n is not the  sum  of squares  of two integers, show that

n cannot be represented as sum of two squares of rational numbers.

9) Let p be an odd prime.  If p| + ,  wheregcd (a , b)=1,   prove that the

prime p ≡ 1(mod 4).

10)    Prove that a positive integer is representable as the difference of two

squares if and only if it is the product of two factors  that are both even or both

odd.



11)    Prove that a positive even integer can be written as the difference of two

squares if and only if it is divisible by 4.

12)   Prove that any positive integer can be written as the sum of  four squares ,

some of which may be zero.

13)    Let q be a prime factor of + .  If q ≡ 3(mod 4 ), then show that q|a

and q|b.

14)   Prove that every integer n ≥ 170 is a sum of five squares,  none of which is

equal to zero.

15)    Show that the following equations have no solutions in integers.

i)  15 − 7 =9

ii) = + 7

iii) = 41 + 3

iv) + = 9 + 3

…………………………………………………………………………………………………………………………



Number Theory 5

Order of an integer & primitive roots, Cryptography

1) The order of integer 2 modulo 17 is

a) 16               b) 8                    c) 17                 d) None

2) If a has order n-1 then n is

a) Prime         b) Composite    c) Power of 2   d) None

3) The odd prime divisor of + 1 is of the form

a) 4k + 3         b)4k - 1              c) 4k + 1            d) None

4) The order of a is h modulo n then

a) h/Φ(n)        b) Φ(n)/h         c) h≠Φ(n)           d) None

5) If a has order 8 modulo n then has order

a) 4                  b)  2                   c) 8                        d) None

6) 2 is not primitive root of

a) 17                 b) 19                   c) 9                       d) None

7) 3 is a primitive root of

a) 17                  b) 19 c) 9                        d) None

8) Number of primitive roots of 10 is

a) 4                   b) 2                      c) 5                       d) None

9) With Caesar cipher, = + 3( 26) , ”YES” is enciphered as,

a) NO                b) BHV c) XYZ                   d) YES

10) With Caesar cipher, encrypted message “ZKB” is deciphered as,

a) CNE                b) BKZ                    c) WHY                d) YES

11) The decryption function for the shift cipher = + 5( 26) is

a) = + 21( 26) b) = − 5( 26)

c) = − 21( 26) d) None

12) In an affine cryptosystem, = 7 + 12( 26) “PAYMENOW” is encrypted as

a) NOWPAYME b) NMYSOZGK         c) AYPNEMWO         d) None

13) The decryption function for = 7 + 12( 26) is given by

a) = 15 + 2( 26) b) = 12 + 7( 26)

c) = ( /2) − 12( 26) d) None



14) The number of distinct shift cipher mod26is

a) 26         b) 25        c) 3         d) 676

15) The number of distinct shift cipher mod26is

a) 676        b) 26        c) 12       d) 312

Descriptive Questions

1) In a 27-letter alphabet (A = 0, B = 1, ……………., Z = 25, blank = 26) use affine encryption

system = + ( 27) with a = 13, b = 9 to encipher the message “HELP ME”. Also

find the decryption function.

2) Encipher “JACK AND JILL” with

a) = 5 + 8( 26) (blanks are not taken into account)

b) = 5 + 8( 27) (blank = 26)

3) If VYKAR VAKEC is obtained using encryption function = 17 + 10( 26), then

decipher it.

4) If = + ( 26) interchanges N & S, then find a, b.

5) If = + 26 leaves N fixed, then find possible values of b.

6) Encipher “WHATASURPRISE” twice with = 3 + 2 26 .

7) Find the number of distinct shift encryption systems given by = + with

a) n = 27

b) n = 29

c) n = 30

8) Find the number of distinct affine encryption systems given by = + with

a) n = 27

b) n = 29

c) n = 30

9) Find the number of distinct affine encryption systems given by = +

where is a diagraph with

a) n = 26

b) n = 27

c) n = 29

d) n = 30

10) Find the order of the integers 2, 3 and 5.

a) modulo 17

b) modulo 19



c) modulo 23

11) Establish each of the statements below.

a) If a has an order hk modulo n, then has order k modulo n.

b) If a has an order 2k modulo the odd prime p, then ≡ − 1 ( ).

c) If a has an order n-1 modulo n, then n is a prime.

12) Prove that (2 − 1) is multiple of n for any n > 1.

13) Assume that the order of n modulo h and the order of b modulo n is k. Show that the order

of ab modulo n divides hk; in particular, if gcd (h , k) = 1, then ab has order of hk.

14) Given that a has order 3 modulo p where p is an odd prime show that a + 1 must have order

6 modulo p.

15) Verify the following assertion:

The odd prime divisors of integer + 1 are of the form 4k + 1.

16) Establish that there are infinitely many primes of each of the forms 4k + 1.

17) Prove that if p and q are odd primes and qI − 1, then either q I − 1 or else q = 2kp + 1

for some integer k.

18) a) Verify that 2 is a primitive root of 19, but not of 17.

b)Show that if 15 has no primitive root by calculating the orders of 2, 4, 7, 8, 11, 13 and 14

modulo 15.

19) Let r be a primitive root of the integer n. Prove that is a primitive root of n if and only if

gcd (k, Φ(n)) = 1.

20) Find 2 primitive roots of 10.

21) Assuming that r is a primitive root of odd prime p, establish the following facts:

a) The congruence ( )/ ≡ − 1 ( ) holds.

b) If r’ is any other primitive root of p then rr’ is not a primitive root of p.

c) If the integer r’ is such that rr’≡ 1 ( )then r’ is a primitive root of p.

22) Let r be a primitive root of the odd prime p, prove the following:

a) If p≡ 1 4 , then -r also has a primitive root of p.

b) If p≡ 3 4 then -r has order (p-1)/2 modulo p.

23) For a prime p >3, prove that primitive roots of p occur in incongruent pairs r, r’ where rr’

≡ 1 .

24) a) Find the four primitive roots of 26 and the eight primitive roots of 25.

b) Determine all the primitive roots of 3 , 3 and 3 .



25) For an odd prime p, establish the following facts:

a) There are as many primitive roots of 2 as that of .

b) Any primitive root r of is also a primitive root of p.

c) A primitive root of is also a primitive root of for n ≥ 2.



Practical No. 6

Cryptography

Objective Questions

1) A digraph xy has value 26x+y Then “NO” has value

(a) 0 (b) 260 (c) 352 (d) none

2) For a diagraph x, if f(x)= 159x+580(mod26) is

(a) 26 (b) 676 (c) 26! (d) none

3) The matrix A=
2 2

21 8
∈ ( ) is

(a) Invertible (b) singular (c)non-singular (d) none

4) The matrixA=
2 0

0 1
∈ ( ) is

(a) Invertible (b) singular (c)identity (d) none

5) The inverse of A=
2 3

7 8
∈ ( ) is

(a)
− 2 − 3

− 7 − 8
(b)

1 0

0 1
` (c))

14 11

17 10
(d) none

6) Let f(x)=Ax where A ∈ ( ) and x is block of two letters, then for x=”NO” and A=

2 3

7 8
ciphertext f(x) is given by

(a) QV (b)YES (c)ON (d) none

7) Let f(x)=Ax where A ∈ ( ) and x is block of two letters, then for f( x)=”FW” and A=

2 3

7 8
, x is

(a)FW (b)WF (c)AT (d)NO

8) Let A,B∈ ( ) with invertible A and x be block of 2 letters .For f(x)=Ax+B the decryption

Function (x) is given by

(a) Bx+A (b)Ax-B (c) x- B (d) none

9)The number of distinct Hill ciphers is

(a)157248 (b)26 (c)26! (d) none

10) Given n=19939, (n)=19656 .If n is product of primes p and q ,then p and q are

(a)151,129 (b) 157, 127 (c) 199 ,31 (d)none

11) If n=pq where p, q are distinct odd primes. if e=
( )

+1, then g. c. d. (e, ( )) is

(a) e (b) ( ) (c) 1 (d) 2

12) If f(x)≡ (mod187) then f (3) is



(a) 130 (b) 3 (c) 21 (d) none

13) If (n,e)=(3233,37) is enciphering key in RSA cryptosystem then deciphering exponent is

(a) 253 (b) 273 (c) 453 (d) none

14) In ElGamal cryptosystem k=15 is secret key of public encryption key

(a)(37,2,18) (b) (113,3,24) (c)31,2,22) (d)none

15)Using Vigenereautokey cipher with seed Q message HAPPY is enciphered as follows

(a)XHPEN (b)HPXEN (c)PEXHN (d)none

Descriptive Questions

1) Find inverse of a matrix mod n, if it exists

a) A =
1 3

4 3
mod 5

b) A =
1 3

4 3
mod 29

c) A =
15 17

4 9
mod 26

d) A =
40 0

0 21
mod 841

2) Encipher “SEND” by taking 2 blocks SE & ND, first applying
3 11

4 15
mod 26& then

10 15

5 9
mod 29. Explain how to decipher it.

3) For any matrix mod 26, show that “AA” is always fixed. Find condition such that it is

the only fixed block.

4) Let n = pq, product of 2 distinct primes. If n = 63083 & Φ(n) = 62568, find p, q.

5)

A) Encipher the message HAVE A NICE TRIP using a Vigenere cipher with the keyword MATH.

B) The ciphertext BS FMX KFSGR JAPWL is known to have resulted from a Vigenere cipher

whose keyword is YES. Obtain the deciphering congruences and read the message.

6) The message REPLY TODAY is to be encrypted in the ElGamal cryptosystem and forwarded to

a user with public key (47,5,10) and private key k=19,if the random integer chosen for

encryption is f=15, determine the ciphertext.

7) Suppose that the following ciphertext is received by a person having ElGamal public key

(71,7,32) and private key k=30:



(56, 45) (56,38) (56,29) (56,03) (56,67)

(56,05) (56,27) (56,31) (56,38) (56,29)

Obtain the plain text message.

8)

A) Encipher the message HAPPY DAYS ARE HERE using the autokey cipher with seed Q.

B) Decipher the message BBOT XWBZ AWUVGK, which was produced by the autokey cipher

with seed RX.

9) When the RSA algorithm is based on the key (n, k) = (3233,37), what is the recovery

exponent for the cryptosystem?

10) Encipher “MATH” using RSA with n= 33 and e=5.

11) Decrypt the cipher text 00 41 46 04 01 43 00 that was encrypted with RSA algorithm with

key (n, e) = (65, 7).



Miscellaneous Unit I

1) State & Prove Fermat’s Theorem.

2) State & Prove Euler’s generalization of Fermat’s Theorem.

3) State & Prove Wilson’s Theorem.

4) Let p be a prime. Show that x
2
 −1 (mod p) has solutions if and only if p=2 or p  1 (mod 4)

5) State & Prove Chinese Remainder Theorem.

6) Prove that ax  ay(mod m) iff  x  y (mod
( , )

)
7) P-T x  y(modmi) for i=1 to n iff x  y (mod [m1, m2,…..,mn]).

8) If x  y (mod m) them (x,m) = (y,m).

9) Let (a,m) =1 and {r1, r2, …., r(m)} be a reduced residue system mod m then { ar1, ar2, …., ar(m)) is

also a reduced residue system mod m.

10) Let m and n denote any two positive, relatively prime integers. Then (nm) =(n)  (m).

11) If n> 1 then (n) = n∏ (1 − 1/p)/ . Al so (1)=1.

12) For n 1 we have d/n (d) = n.

13) The linear congruence ax  b (mod n) has a solution if and only if d/b where d =(a,n) .If d/b then

it has d mutually incongruent solutions modulo n.

14) Explain  the method for solving congruence ax
2

+bx  + c  0 (mod p) of degree 2 where p is an

odd prime.

15) Let N(m) denote the number of solutions of the congruence f(x) 0 (mod m) . Then N(m)

= ∏ ( )  where m = 1 . 2 ………….. is the canonical  factorization of m

MISCELLANEOUS QUESTIONS: Unit II

1) Show that the linear Diophantine equation a x + b y =c has a solution if and

only if d| c , where d= gcd (a, b). If , is any particular solution of this

equation , then all other solutions are given by

= + ; = − , where t∈ ℤ

2) If a and b are relatively prime positive integers, prove that the

Diophantine equation ax-by=c  has infinitely many solutions in positive

integers.

3) Let a, b, c be positive integers.  Prove that there is no solution of ax+by=c

in positive integers if a+b>c.

4) Prove that   a x + b y = a + c  is solvable if and only if    a x + b y = c  is

solvable.

5) Show that all the solutions of the Pythagoras equation + =



satisfying the conditions  gcd(x, y, z)=1,  2|x;  x>0, y>0 ,z>0  are given by

the formulae     x= 2st             y = − z = + for integers

s>t>0 such that gcd (s, t)=1  and    s ≢ t(mod 2)

6) Prove that the Diophantine equation + = has no solution in

positive integers.

7) Prove that the equation + = has no solution in positive integers.

8) Prove that the  Diophantine equation − = has no solution in

positive integers.

9) Prove that a positive integer n is representable as the sum of two squares

if and only if each of it’s prime factors of the form 4k+3 occurs to an even

power.

10) An odd prime p is expressable as a sum of two squares if and only if

p≡1(mod 4).

11) No positive integer of the form 4 (8 + 7) can be represented as the

sum of three squares.

12) Any prime p can be written as sum of four squares.

Miscellaneous Questions : Unit III

1) Let n = pq, product of 2 distinct primes. If then prove = ( ) with e and d, the

enciphering & deciphering exponents of RSA system.

2) If e =
( )

+ 1 in RSA system, then prove for any x, ≡ ( )

3) In n is prime, then show that f(x) = ax + b(mod n) that ≠ 1 , has a unique fixed point, i.e. f(x) =

x.

4) Explain “shift” cryptosystem modulo n.

5)

A) Explain “affine” cryptosystem modulo n.

B) Find number of affine transformations ax + b(mod n) , for given ∈ .

6) If affine transformation is given by f(x) = ax + b(mod n) where b = 0 then prove f has at least 1

fixed point.

7) Explain hill Cipher with blocks of 2 letters.



8) Let   A = ∈ ( ).Prove, A is invertible iff g.c.d. (D, n) = 1 where D = detA modulo n

9) Explain RSA cryptosystem.

10)

A) Define order of an integer modulo n. If the integer a have order k modulo n prove that

≡ 1 ( )iff k/h.

B) If the a has order k modulo n, prove that ≡ ( ) iff ≡ ( ).

C) If the integer a has order k modulo n & h > 0 then show that has order k/g.c.d.(h,k)modulo n.

11)

A) Define primitive root of integer n. If (a,n) = 1. If (a,n) = 1 & if , … . . … . . . ( ) are positive

integers less than n relatively prime to n. If a is primitive root of n then a, ,…….. ( ) are

congruent modn to , … . . … . . . ( ) in same order.

B) If a has primitive root. Show that it has exactly Φ(Φ(n)) primitive roots.

C) For k ≥ 3 prove that 2 has no primitive.

D) If g.c.d. (m,n) = 1 where m > 2 & n > 2 then prove that the integer mn has no primitive roots.

E) If p is an odd prime, prove that there exists a primitive root of p such that ≡ 1(mod

).

F) Let p be an odd prime and r be a primitive root of p with the property that ≡ -1 (mod

) Prove that for each positive integer k ≥ 2, ≡ 1(mod ).

G) If p is an odd prime no. & k ≥ 1 then prove that there belongs a primitive root for .

H) Prove that an integer n > 1 has a primitive root if and only if n = 2, 4, or 2 .



T.Y.B.Sc- Mathematics Semester VI (2018-19) 

Paper 1        Practical  1 

Limits, Continuity and Derivatives of functions of a Complex variable 

Objective Questions 

1. lim�→0 �ÿ(ÿ)ÿ  

(a) 1          (b) ÿ       (c) 3 ÿ      (d) does not exist  

2.  lim�→0 ÿÿ 

(a) 1          (b) ÿ       (c) 3 ÿ      (d) does not exist  

3. If Ā(ć) = {ć̅3    ÿĀ ć b 0ć     ÿĀ ć = 0    then  

(a) Ā is not continuously only at 0        (b) Ā is continuous on ℂ  

(c) Ā is discontinuous at 0                    (d) None of the above  

4. Ā(ć) = ÿ2+1ÿ3+9   
(a) Continuous and bounded in |ć| f 2       (b) Continuous but not bounded in |ć| f 2 

(c) Neither continuous nor bounded in |ć| f 2         (d) Continuous and bounded everywhere  

5. Ā(ć) = 1ÿ is  

(a) Continuous and bounded in |ć| > 0                     (b) Continuous but not bounded in |ć| < 0 

(c) Neither continuous nor bounded in |ć| > 0         (d) Continuous and bounded everywhere  

6. limý→∞ Ā ÿĀ  is  

(a) Does not exist         (b) 1          (c) 0       (d) None of these   

7. 
(12�)23(√32�)13  in the polar from equals  

(a) 223 2   ⁄ ÿ5�� 12⁄             (b) ÿ5� �/12                  (c)  223/2                (d) None of these   

8. 5ÿ3�� 4⁄ + 2ÿ2�� 6⁄  equals  

(a) (25√2+2√32 ) +  ÿ (5√2222 )     (b)  0         (c)  1         (d) ÿ 
9. ć = þ + ÿÿ, ćĀ = 1.  Then ćĀ21 expressed in the form ý + ÿþ is  

(a) þĀ21 + ÿÿĀ21            (b) þĀ21 2 ÿÿĀ21         (c) 0        (d) None of these   

10. ć1 = 1 2⁄ + ÿ, ć2 = √2 + ÿ(√2 + 1), ć3 = 2 + 3ÿ,   ć4 = 212 + ÿ√3, which of the points lie inside the 

circle |ć 2 ÿ| = 2  

(a) ć1, ć2, ć3         (b) ć1, ć2, ć4           (c)  ć2, ć3, ć4        (d) None of these    

11. Non- zero vectors ć1 & ć2 are perpendicular iff  

(a) �ÿ(ć1ć2) = 0           (b) �ÿ ć1 × �ÿ ć2 = 0         (c) �ÿ(ć1 ć̅2) = 0              (d) �ÿ(ć1̅, ć2) = 0 

 

12. Let |ć| = 1 or |Ą| = 1. Then |ć 2  Ą| = 

(a) |1 2 ć̅Ą|            (b) |1 2 ć Ą|               (c) |1 2 ć̅ Ą̅|               (d) None of these   

13. (i)  ć̅ = ć      (ii) �ÿ(ć) = ÿ+ÿ̅2     (iii) �ÿ(ć) = ÿ2ÿ̅2�     (iv) �ÿ (ÿć) = 2�ÿ(ć)  (v)  Im(ÿć) = �þ(ć) 

a) Only (i), (ii), (iii) are true.                b) Only (iv) (v) are true  

c) All statements (i) (v) are true             d) None of the above.  

14. (2√3 2 ÿ)30 = 

(a) 230              (b) 2230             (c) 2230 2 ÿ                                                    (d) 230 + ÿ  



15. Ā(ć) = 4ą2 + ÿ 4Ć2 = 

(a) ć + ć̅                 (b)  ć ć̅           (c) (1 2 ÿ)ć2 + (2 + 2ÿ)ć ć̅ + (1 2 ÿ)ć̅2       (d) None of these  

16.  If an ellipse Ā(ā) = 2 ĀāĀā + ÿ sin ā , 0 f ā f 2ć is rotated by ć 6⁄  and centre shifted to 2 + ÿ, then 

parametric equation ÿ(ā) of the resulting ellipse is  

(a) ÿ(ā) = (√3 ĀāĀā, √2 ĀÿĀā)        

(b) ÿ(ā) = (√3 ĀāĀā 2 12 sin ā + 2, ĀāĀā + √32 sin ā + 1) ; 0 f ā f 2�               

(c) ÿ(ā) = (√2 ĀāĀā, √3ĀÿĀā ) 

(d) None of these  

17.   The image of a circle under a linear transformation is  

(a) straight line           (b) circle            (c) can be a straight line or a circle         (d) any curve   

18.  �(ć) = þ0 + þ1ć + ⋯ + þĀćĀ  is a polynomial of degree Ā g 1 

Then for � = 0 to Ā, þ� =  

(a) � ! Ă�(0)               (b) 
��(0)�!                (c) 

��(0)(�+1)!                 (d) None of these 

19. 
ýýÿ ćĀ = Ā%Ā21 is valid if  

(a) Ā ∈ %, ć ∈ ℂ                                            (c) Ā ∈ ℕ, ć ∈ ℂ \{0}         
(b)  Ā ∈ % \ {0}, ć ∈ ℂ                                    (d) Ā ∈ %\{0}, ć ∈ ℂ\{0} 

20. Ā′(ć0), ā′(ć0) exists ā′(ć0) b 0    Ā(ć0) = 0 = ā(ć0). Then limÿ→ÿ0 ÿ(ÿ)Ā(ÿ) =  

(a) does not exist          (b) 0                 (c) 
ÿ′(ÿ0)Ā′(ÿ0)          (d) [Ā′(ć0)  2 ā′(ć0)][ā′(ć0)]2 

21. Ā(ć) = 1 ć⁄  , ć b 0,   Ā′(ć) =  
(a) does not exist                      (b) 2 1ÿ2                   (c) 0               (d) None of these  

22. Ā(ć) = �ÿć.  Ā′(ć) exists  

(a) ∀ ć ∈ ℂ       (b) only at ć = 0       (c) no where on ℂ           (d) exist only on real axis  

23. Ā(ć) = �ÿ ý,   Ā′(ć) exists   
(a) ∀  ć ∈ ℂ        (b) only at ć = 0             (c) no where on ℂ        (d) exists only on imaginary axix  

24. Ā(ć) = ć 2 ć̅ , Ā′(ć) exists    
(a) only at 0               (b) only at ÿ           (c) on ℂ                (d) nowhere on ℂ  

25. Ā(ć) = ÿ2ýÿ2�þ 

(a) Ā′(ć) exists no where on ℂ               (b) Ā′(ć) exists on ℂ 

(c) Ā′(ć) exists only at ÿ                         (d) None of these  

26. Ā(ć) = ą3 + ÿ(1 2 Ć)3. Then   
(a) Ā is differentiable only at ć = Ā′(ć) = 3ą2                   

(b)  Ā is differentiable only at ć = ÿ,   Ā′(ć) = 3ć2 

(c)  Ā is differentiable only on ℂ & Ā′(ć) = 3ą2 2 ÿ 3(1 2 Ć)2  

(d) Ā is differentiable only at ć = 0 & Ā′(ć) = 0 

27. Ā(ć) = {ÿ̅2ÿ0          ć b 0āā/ÿÿĄÿĀÿ  
(a) Cauchy Riemann equations are not satisfied at (0,0) 

(b)  Cauchy Riemann equations are satisfied at (0,0) but Ā is not differentiable at (0,0) 

(c) Cauchy Riemann equations are not satisfied at (0,0) but Ā is differentiable at (0, 0)  

(d) None of the above 

 



 

28. Ā(ć) = �ÿ(ć), ā(ć) = �ÿ (ć), /(ć) = ć̅ Then which of the following statements hold 

(a) Ā, ā, / satisfies Cauchy Riemann  equations at every Ăā 

(b)  Ā, ā, / does not satisfies Cauchy Riemann  equations at any Ăā.  
(c) Ā, ā satisfies Cauchy Riemann  equations but / does not satisfy Cauchy Riemann  equations. 

(d) Ā, ā does not satisfy Cauchy Riemann equations but / does satisfy Cauchy Riemann equations.  



  

 

 

DESCRIPTIVE QUESTIONS 

1) Use � 2 � definition of limit to show that  

            limÿ→0 ÿ̅2ÿ = 0   limÿ→12�[ą + ÿ(2ą + Ć)] = 1 + ÿ    limÿ→0(ć̅2 + 2) = 2ÿ + 2 

2) Use � 2 � definition of limit to show that  that limÿ→0  (ÿÿ)2
 does not exist  

3)  Compute following limits  

       (i) limÿ→4�  ÿ2+16ÿ24�     (ii) limÿ→� ÿ421ÿ221       (iii) limÿ→� �ÿ321ÿ+�   

4)  Show that  

  (i) limÿ→∞ 4ÿ2(ÿ21)2 = 4        (ii) limÿ→∞ ÿ2+1ÿ21 = ∞        (iii) limÿ→1 1(ÿ21)3 = ∞ 

5) Test for the continuity of the function  

(i) Ā(ć) = { ÿ2+9ÿ23�     ÿĀ ć b 3ÿć 2 3ÿ  ÿĀ ć = 3ÿ 
(ii) Ā(ć) = { ÿ̅3ÿ�þÿ     ÿĀ ć b 0 0         ÿĀ ć = 0 

         

6) Represent the following subsets of ℂ in the plane  

(a) |ć 2 1 + 3ÿ| = 2,   |ć + 2| = |ć 2 1|, |ć 2 ć0| = |ć 2 ć̅0| where �ÿ ć0 b 0, 

 |ć 2 ć0| = |ć + ć̅0| where �ÿ  ć0 b 0 , 
                   |ć 2 2| = 2|ć 2 2ÿ|, |ÿ2ÿ0ÿ2ÿ1| = Ā, Ā b 1, ć0 b ć1 0 < �ÿ ć < 2�, �þ ÿ|ÿ21| > 1 , �ÿ ć < 3 

(b) |ć + 1 2 2ÿ| = 2, �ÿ(ć + 1) = 0, |ć = 2ÿ| f 1, �ÿ(ć 2 2ÿ) > 6 

(c) �ÿ(ć) g 2, �ÿ (ć2) f∝ , �ÿ(ć2) f ∝,   |ć2 2 2| f 1, |1ć| < 1, |ć 2 1ć + 1| f 1  
(d) |ć + 1| 2 |ć 2 1| = ±2 

7) Ā: Ω ⊆  ℂ →  ℂ  Define differentiability (or complex differentiability) of Ā at ć0  ∈ Ω  

Using the definition above, discuss differentiability of the following function Ā at the point Ā 

mentioned. 

(a) Ā(ć) = ć2  for any ć ∈ ℂ                 (b) Ā(ć) = ć̅      for any ć ∈ ℂ      

(c)  Ā(ć) = |ć|2  for any ć ∈ ℂ              (d) Ā(ć) = {ć̅2 ć⁄0                 ć b 0            ć = 0       þā (0, 0) 

8) Write the function Ā(ć) = |ć| in the form Ă(ą, Ć) + ÿ ă(ą, Ć) .Using   Cauchy Riemann equations, 

decide whether they are any points in ℂ at which Ā is differentiable  

9) Use (i) Definition of differentiability  

       (ii) Cauchy Riemann equations  

to check differentiability of Ā(ć) = �ÿ  ć, Ā(ć) = �ÿ ć 

10) Test differentiability of the following function at (0, 0). Ā(ć) = ć �ÿ ć, Ā(ć) = ć �ÿ ć, Ā(ć) = ć|ć| 
11) Use polar co-ordinates to show that Ā(ć) = |ć|2 is complex differentiable at 0. what can you say 

about Ā(ć) = |ć|? Justify your answer.   



12) Show that Ā(ć) = |ć| is differentiable everywhere except at ć = 0, when Ā is considered as a 

function from =2 → =2. Is Ā ℂ differentiable? Justify your answer. 

13) Show that Ā(ć) = ć |ć| is differentiable everywhere when Ā is treated as a function from =2 → =2 

but ℂ differentiable only at ć = 0. 
14) Show that Ā(ą, Ć) = √|ąĆ| satisfies Cauchy Riemann equations at (0, 0) but Ā is not ℂ 

differentiable at (0,0). 
15) Ā(ć) = Ā(ą, Ć) = {( ýþý2+þ2  , 0)  Āāÿ (ą, Ć) b (0, 0)(0, 0)                     āā/ÿÿĄÿĀÿ    

Show that Ā satisfies Cauchy Riemann equation at (0, 0) but not ℂ- differentiable at (0, 0)  

16) Ā(ć) = ć̅ÿ2|ÿ|2.  Determine the points at which Ā′(ć) exist and find Ā′(ć) at these points.  

17) Ā is ℂ-differentiable on an open disk such that its image id contained in a line, a circle, a parabola or 

a hyperbola. Show that Ā is a constant.  

18)  (a) Ā(ć) = ć3. Ā is differentiable at ć1 = 1 and ć2 = ÿ. Show that there does not exist a point Ā on 

the line Ć = 1 2 ą between 1 & ÿ such that 
ÿ(ÿ2)2ÿ(ÿ1)ÿ22ÿ1 = Ā′(Ā) 

(b) Does mean Value Theorem for derivatives of real valued functions hold for complex functions? 

Justify your answer.  

19) Does mean value theorem for integrals hold for complex valued functions justify?  

(Consider the function Ą ∶  [0, 2�] → ℂ , Ą(ā) = ÿ�� Note- can this function also be used to show 

Mean value theorem is not true for derivatives for complex valued functions.)    



PRACTICAL NO. 2 

Stereographic Projection,  Analytic functions,  Finding Harmonic Conjugates 

 

(1)  �(ÿ) = ý3 + 3ýþ2 + ÿ(þ3 + 3ý2þ) is analytic  

a) only at 1, ÿ          b) only at 0           c) only at 0, 1, ÿ     d) nowhere on *  

(2) Ā(ÿ) = (2ý 2 þ) + ÿ(ýý + þþ) is an entire function then  

a) ý =       , þ =     b)                          c)                           d) 

(3) Ā(ÿ) = ÿþ cos ý + ÿ ÿþ sin ý,   ā(ÿ) = ÿ + ÿ̅. Then  

a) Both Ā, ā are analytic on ℂ          b) Ā analytic on ℂ but ā is not analytic on ℂ 

c)   Ā not analytic on ℂ but ā is not analytic on ℂ  d) Both Ā, ā are not analytic on ℂ 

(4) Ā(ÿ) = (ÿ2 2 2)ÿ2ý ÿ2�þ , ā(ÿ) = ýþ + ÿþ 

 /(ÿ) = 2ýþ + ÿ(ý2 2 þ2)   

a) Ā is an entire function, ā and / are no where analytic             

b) ā is an entire function, Ā and / are no where analytic 

c) / is an entire function, Ā and ā are no where analytic 

d) Ā, ā, / all of them are analytic on  ℂ 

(5) Ā(ÿ) = ý3 + 3ýþ2 + ÿ(þ3 + 3ý2þ) is  

a) an entire function             b) analytic on the unit disk           

c) differentiable an ý-axis       d) differentiable on ý & þ axes but analytic nowhere   

(6) The singular point of Ā(ÿ) = 2ÿ+1ÿ(ÿ2+1) are  

a) only at 0                b) 0, ± ÿ         c) only at ±  ÿ      d) None of these 

(7) Ā(ý + ÿ þ) = ý3 2 3ýþ2 + ÿ(3ý2þ 2 þ3) 

a) Ā is analytic on ℂ                                b) Ā is analytic only on the unit disk  

c) Ā is analytic only on ℂ \ {0}                 c) None of these  

(8) The singular point of Ā(ÿ) = ÿ2+1(ÿ+2)(ÿ2+2ÿ+2) are  

a) ±  ÿ           b) 22, 21 ±   ÿ            c) 0          d) None of these  

(9) þ(ý, þ) = ý2 2 þ2, ÿ = 2ýþ 

a) ÿ & þ are harmonic conjugates of each other    

b) þ is a harmonic conjugate of 
ÿþ but ÿ is not  

c) ÿ is a harmonic conjugate of 
þÿ but þ is not  

d) None of these  

 



(10) þ = ÿý3 + Āýy. For u to be harmonic, the value of a and b are 

a) a=    b=   b)         c)          d) 

(11) Ā(ÿ) = 1ÿ , ÿ b 0. level sets of  level sets of Ā real and imaginary parts of Ā are  

a) Not orthogonal       b) orthogonal         c) equal        c) None of these      

(12) The image of a line under a fractional linear transformation is  

a) a line              b) a circle         c) a line or a circle               d) None of these   

(13) The image of a circle under a Mobius transformation is  

a) a point         b) a line        c) a circle         d) a line or a circle   

(14)  Ā(ÿ) = ÿ 12ÿ1+ÿ. The image of the unit circle under is  

a)         b) unit circle         c) the imaginary axis          d) the real axis    

 

 

DISCRIPTIVE QUESTION  

 

(1) Determine where the following functions are differentiable and where they are 

analytic  

a) Ā(ÿ) = ý3 + 3ýþ2 + ÿ(þ3 + 3ý2þ)  

b) Ā(ÿ) = 8ý 2 ý3 2 ýþ2 + ÿ(ý2þ + þ3 2 8þ) 

c) Ā(ÿ) = ý2 2 þ2 + ÿ 2|ýþ| 
(2) Does there exist a complex differentiable function Ā = þ + ÿÿ with real part þ(ý, þ) = ýÿþ? Justify your answer. 

(3) Show that þ(ý, þ) is harmonic in some domain and find a harmonic conjugate ÿ(ý, þ) when  

a) þ(ý, þ) = 2ý(1 2 þ)              b) þ(ý, þ) = ý3 2 3ýþ2               

    c) þ(ý, þ) = ýþ3 2 ý3þ                d) þ(ý, þ) = 2ý 2 ý3 + 3þ2        

e) þ(ý, þ) = sin / ý sin þ            f) þ(ý, þ) = þý2+þ2 

(4)  Show that if þ & ÿ are harmonic conjugates of þ(ý, þ) in a domain D then ÿ(ý, þ)  &  �(ý, þ) can different at most by an addictive constant.  

(5) Prove the following functions harmonic? If so, function is corresponding 

analytic function   Ā(ÿ) = þ(ý, þ) + ÿ ÿ(ý, þ) where  

a) þ 2 ý3 + þ2              b) ÿ = ÿý sin 2þ          c) ÿ = (2ý + 1)þ  



 

6)  Describe stereographic projection and show that it is given by the �ÿ�  � ∶ þ2 \ {(0,0, 1)} → ℂ          �(ý1, ý2, ý3) = ý1+�ý212ý3   

(6) Interpret the transformation  Ā: ℂ → ℂ, Ā(ÿ) = (1 + √3ÿ)ÿ Geometrically  

(7) Show that ÿ(ý) = ÿ0 + ýÿ and ýÿ((ÿ 2 ÿ0)ÿ ÿ̅) = 0 represents the same line in ℂ 
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T.Y.B.Sc- Mathematics – Semester VI 

Paper 1 

 

                                                           Unit-I 

1. If ć0 and Ą0 are points in ć and Ą plans respectively then show that  

(a) limć→ć0
ÿ ć = ∞ if and only if limć→ć0

1ÿ(ć)
= 0. 

(b) limć→∞ ÿ ć = ÿ0 if and only if limć→0 ÿ  1ć = ÿ0 

(c) limć→∞ ÿ ć = ∞ if and only if limć→0
1ÿ 1/ć = 0. 

2. Suppose Ą = ÿ(ć)  is continuous at ć0 and  ć = Ā ÿ  is continuous at ÿ0 .  If ć0 = Ā ÿ0 ,  then show that 

function ÿĀĀ is continuous at ÿ0 . 

3. If a function ÿ: Ω → ℂ  is continuous at ć0 ∈ Ω and ÿ ć0 ≠ 0 then show that ÿ(ć) ≠ 0 throughout some 

neighbourhood of ć0. 

4. If a function ÿ is continuous throughout region ý that is closed and bounded then show that exist a non-

negative integer Ā such that  ÿ(ć) ≤ Ā   ∀ć ∈ ý. 

       5. ÿ: ý ⊆ ℂ → ℂ  is differentiable at ć0 ∈ ý. Show that ÿ is continuous at ć0. 

       6. Using definition of differentiability, show that if ÿ ′ ć0 , Ā′ ÿ ć0   exist then prove that the function  � ć = Ā ÿ ć   has a derivative at ć0 and �′ ć0 = Ā′ ÿ ć0  ÿ′ ć0 . 

      7. Let ÿ: Ω ⊂ ℂ → ℂ  such that ÿ is differentiable at ć0 ∈ Ω. Show that ∃ a function Ā(ć) such that ÿ ć = ÿ ć0 + ÿ ′ ć0  ć − ć0 + Ā(ć) ć − ć0  where Ā(ć) → 0 as ć → ć0. 

 

8. ÿ ć = Ă ą, Ć +  �ă ą, Ć . ÿ ′(ć) exists at a point ć0 = ą0 +  �Ć0. Then prove that the first order partial 

derivatives of Ă & ă exist at  ą0, Ć0  and they satisfy Cauchy- Riemann equations Ăą = ăĆ  , ĂĆ = −ăą . 

 Also show that ÿ ′ ć =  Ăą ć=ć0
+ � ăą ć=ć0

. Show that the converse is not true. 

 

9. Ω ⊂ ℂ is a domain. If Ă, ă ∶  Ω → ℝ are such that   

i) Ăą , ĂĆ , ăą , ăĆ   exist and satisfy Cauchy Riemann equations  

ii) Ăą , ĂĆ , ăą , ăĆ   are continuous on Ω, 

then prove that ÿ ć = Ă ą, Ć +  �ă (ą, Ć) is analytic in Ω. 

10. If ÿ′(ć) = 0 everywhere on a domain Ā then show that ÿ(ć) must be constant through out Ā. 

11. Suppose that function ÿ(ć) and  ÿ(ć)       are both analytic in a given domain Ā then show that ÿ(ć) must be 

constant throughout Ā. 

12. ÿ is analytic throughout on a given domain Ā. If  ÿ(ć)  is constant on Ā, show that ÿ(ć) must be constant 

on Ā. 

 

13.    If a function ÿ ć = Ă ą, Ć +  �ă(ą, Ć) is analytic in a domain Ā, then show that its component function           Ă and ă are harmonic in Ā. 



14. Show that ÿ ć = Ă ą, Ć +  �ă(ą, Ć) is analytic in a domain D if and only if ă is a harmonic conjugate 

of u. 

15. Suppose that ă is a harmonic conjugate of Ă in a domain Ā and  also that Ă is a harmonic conjugate of ă 

in Ā. Show that both Ă(ą, Ć) and ă(ą, Ć) must be constant through out Ā. 

16. Show that ă is a harmonic conjugate of Ă in a domain Ā, iff −Ă is a harmonic conjugate of ă in Ā.  

17. Let ÿ ć = Ă ą, Ć +  �ă(ą, Ć)  be analytic in a domain Ā  and consider the family of level curves Ă ą, Ć = ā1 and ă ą, Ć = ā2 where ā1, ā2 ∈ ℝ. Prove that these families are orthogonal. 

 

 

 

Unit-II 

 

1. State and Prove Cauchy Goursat  theorem. (weaker form ie with the hypothesis of f’(z) being continuous) 

(along with a problem)  

2. Let ý be an open connected subset of ℂ and ÿ: ý → ℂ be an analytic function in ý. Let ć0 ∈ ý and ÿ > 0 such 

that þ ć0, ÿ ⊂ ý.  Then for any ÿ ∈  ć0, ÿ prove that ÿ ÿ =
1

2��  ÿ(ć)ć−ÿ Ăć.Āþ ć0  ,ÿ   (Cauchy Integral 

Theorem) 

3. State and Prove extension of Cauchy’s Integral formula. ÿ is a analytic inside and on a simple, closed curve ÿ, taken in the positive sense. Prove that ÿ ′ ć =
1

2��  ÿ Ā ĂĀ Ā−ć 2ÿ  . Further state the result generalizing  the 

formula to ÿÿ ć . 

4. State and prove Taylor’s theorem. 
5. Suppose that a function ÿ is analytic throughout a disk  ć − ć0 < ý0, centered at ć0 and with radius ý0. Then 

prove that ÿ(ć)  has the power series representation ÿ ć =  ÿÿ ć − ć0 ÿ  ,∞ÿ=0  ć − ć0 < ý0  where ÿÿ =ÿÿ  ć0 ÿ!
 ie the series converges to ÿ(ć) when ć lies in the stated open disk.  (Taylor’s theorem). 

6. Ą ā : [ÿ, Ā] → ℂ is a piecewise continuous function, then show that    Ą ā ĂāĀÿ  ≤   Ą ā Ăā Āÿ . Use this 

to prove Āÿ Inequality. 

7. Let ÿ denote a contour of length ÿ and suppose that a function ÿ(ć) is piecewise continuous on ÿ. If Ā is 

a non negative constant such that  ÿ ć  ≤ Ā  ∀ ć ∈ ÿ at which ÿ(ć) is defined then   ÿ ć Ăćÿ  ≤ Āÿ. 

(ML Inequality) 

8. State and Prove Cauchy Goursat  theorem. (weaker form ie with the hypothesis of f’(z) being continuous)  

9. State Cauchy Integral formula (extension). Hence, prove that  

(i) If a function ÿ is analytic at a given point then its derivatives of all orders are analytic at that point too. 

(ii) If a function ÿ ć = Ă ą, Ć +  �ă(ą, Ć) is analytic at a point ć =  ą, Ć , then the componenet functions Ă 

and ă have continuous partial derivatives of all orders at that point. 

  (iii) (Cauchy’s Inequality) Suppose that a function ÿ is analytic inside and on a positively oriented circle ÿý , centered at ć0  and with radius ý. If Āý  denotes the maximum value of  ÿ(ć)  on ÿý  then  ÿÿ ć0  ≤ÿ !Āýýÿ , ÿ = 1,2,3, … 

 

 

 

 

 

 



 

Unit-III 

 

1. If the power series  ÿÿ ć − ć0 ÿ∞ÿ=0  converges for ć = ć1 ≠ ć0 , then it is absolutely convergent for 

each ć ∈ þ ć0, ý1  where ý1 =  ć1 − ć0   
2. If ć1 is a point inside the circle of convergence  ć − ć0 = ý of a power series  ÿÿ ć − ć0 ÿ∞ÿ=0  then 

show that the series must be uniformly convergent in the closed disk  ć − ć0 ≤ ý1, where ý1 =  ć1 −ć0 . 
3.  A power series  ÿÿ ć − ć0 ÿ∞ÿ=0  represents a continuous function þ(ć) at each point inside its circle  

of convergence  ć − ć0 = ÿ 

4. Let ÿ be a simple closed curve in the interior of the disc of convergence of the power series þ ć = ÿÿ∞ÿ=0  ć − ć0 ÿ  and let Ā(ć)  be any function which is continuous on ÿ.  Then the series  Ā(ć)ÿÿ ć − ć0 ÿ∞ÿ=0  can be integrated term by term over ÿ and   Ā ć þ ć Ăć =   Ā ć ÿÿ ć − ć0 ÿĂć.

∞

ÿ=0

∞

ÿ=0ÿ  

5. Let ÿ be a simple closed curve in the interior of the disc of convergence of the power series  þ ć =  ÿÿ ć − ć0 ÿ ,∞ÿ=0 þ ′ ć =  ÿÿÿ ć − ć0 ÿ−1.∞ÿ=1 (Term by term differentiation of Power Series in 

the interior of its disk of convergence) 

6. If a series  ÿÿ  ć − ć0 ÿ  converges to ÿ(ć) at all ponts within the disc of convergence  ć − ć0 < ý then 

it is the Taylor series expansion for ÿ centered at ć0. (Uniqueness of Taylor series expansion)  

7. State Laurent’s  Theorem. (with problems on Laurent’s expansion in  different domains)   

8. State Cauchy’s Residue Theorem (with problems) 
9. Define  

(a) An isolated singular point          (b) a removable singularity   

(c) a pole                                          (d) an essential singularity  

with problems 

Note :2 results may  be combined for appropriate weightage 

 

Problems may get added or theory bits may get combined /shuffled depending on the weightage  
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Practical no 1. Normal subgroups and Quotient groups

1. Let H1 = {I, (12)} and H2 = {I, (123), (132)}. Then

(a) H1, H2 are normal subgroups of S3.

(b) H1 is a normal subgroup of S3 but H2 is not a normal subgroup of S3.

(c) H1, H2 are not normal subgroups of S3

(d) H2 is a normal subgroup of S3 but H1 is not a normal subgroup of S3.

2. Let H1 = {σ ∈ Sn : σ(n) = n}, H2 = {σ ∈ Sn : σ(k) = k, for some k, 1 ≤ k ≤ n}.
Then

(a) H1, H2 are normal subgroups of Sn.

(b) H1 is a normal subgroup of Sn but H2 is not a normal subgroup of Sn.

(c) H1, H2 are not normal subgroups of Sn

(d) H2 is a normal subgroup of Sn but H1 is not a normal subgroup of Sn.

3. Let G =
Z

20Z
, H =

4Z

20Z
(under addition). Then order of quotient group

G

H
is

(a) 4 (b) ∞ (c) 5 (d) 20

4. Let H be a normal subgroup of G. Let |aH| = 3 in G
H

and ◦(H) = 10, then order of
a is
(a) 1 (b) 30
(c) one of 3, 6, 15 or 30 (d) none of these.

5. Let G be a group of order 5. If Φ : Z30 → G is a group homomorphism, then ker Φ
has order
(a) 5 (b) 30 or 6 (c) 30 or 5 (d) 1

6. Let G be a finite group. If f1 : G → Z10 and f2 : G → Z15 are onto group homomor-
phisms, then order of G is
(a) 30k, where k ∈ N (b) 5k, where k ∈ N (c) 10 or 15 (d) 5

7. In the quotient group
Z18

< 6̄ >
(under addition), the order of the element 5̄+ < 6̄ > is

(a) 5 (b) 6 (c) 2 (d) 3

8. Let H be a subgroup of order 29 of a group G. If K is a subgroup of H, then

(a) K is abelian and normal subgroup of G.

(b) K is normal subgroup of H.

(c) K is cyclic but may not be a normal subgroup of H .

(d) H is normal subgroup of G and K is normal subgroup G.

9. Let G = GL2(R), K =

{(

a b
0 d

)

: a, b, d ∈ R, ad 6= 0

}

, H =

{(

1 b
0 1

)

: b ∈ R

}

.

Then



(a) H is a normal subgroup of K and K is a normal subgroup of G.

(b) H is a normal subgroup of K but K is not a normal subgroup of G.

(c) H is a not normal subgroup of K but K is a normal subgroup of G.

(d) None of these.

10. Let H be a normal subgroup of a finite group G. If |H| = 2 and G has an element of
order 3 then

(a) G has a cyclic subgroup of order 6.

(b) G has a non-abelian subgroup of order 6.

(c) G has subgroup of order 4.

(d) None of these.

11. Let G be a group of order 30. If Z(G) has order 5, then

(a)
G

Z(G)
is cyclic. (b)

G

Z(G)
is abelian but not cyclic.

(c)
G

Z(G)
is non-abelian. (d) None of these.

12. Let G = GL2(R), H = {A ∈ G : detA ∈ Q}, then
(a) H is a normal subgroup of G. (b) H is not a subgroup of G.
(c) H is a subgroup which is not normal in G. (d) H ⊆ Z(G).

13. Let G = GL2(R), H = {A ∈ G : detA = 2m3n, for some m,n ∈ Z}, then
(a) H is a normal subgroup of G. (b) H is not a subgroup of G.
(c) H is a subgroup which is not normal in G. (d) H ⊆ Z(G).

14. Let G = U(16), H = {1̄, 1̄5}, K = {1̄, 9̄}, then

(a) H,K are isomorphic groups and
G

H
,
G

K
are isomorphic groups.

(b) H,K are not isomorphic groups but
G

H
,
G

K
are isomorphic groups.

(c) H is not isomorphic to K.

(d)
G

H
,
G

K
are not isomorphic groups.

15. Let H =

{(

a b
c d

)

: a, b, c, d ∈ 2Z

}

, G = M2(Z), under addition of 2 × 2 matrices.

The quotient group
G

H
has

(a) 4 elements (b) 16 elements (c) 12 elements (d) 8 elements

16. LetG = D4 = {e, a, a2, a3, b, ab, a2b, a3b}, a4 = e = b2, aba = b,H = {e, b, a2b, a2}, K =
{e, b}
(a) K is normal in H and H is normal in G. (b) K is not normal in H.
(c) K is normal in G. (d) H is not normal in G.
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17. The quotient group

(

Q

Z
,+

)

is

(a) an infinite group in which only identity is of finite order.
(b) is an infinite cyclic group of finite index.
(c) an infinite group in which every element is of finite order.
(d) None of these.

Practical 1 Descriptive Question

1. Let G = GL2(R), K =

{(

a b
0 d

)

: a, b, d ∈ R, ad 6= 0

}

. Prove or disprove: K is

normal subgroup of G.

2. Let G =

{(

a b
0 d

)

: a, b, d ∈ R, ad 6= 0

}

, H =

{(

1 b
0 1

)

: b ∈ R

}

. Prove that (i) H

is a normal subgroup of G. (ii)
G

H
is abelian.

3. Find the order of 5̄ + 〈1̄4〉 in
Z42

〈1̄4〉
.

4. Find the order of 1̄4 + 〈8̄〉 in
Z24

〈8̄〉
.

5. In the following examples show that K is a normal subgroup of H and H is a normal
subgroup of G, but K is not a normal subgroup of G.

(i) G = D4 = {e, a, a2, a3, b, ab, a2b, a3b}, a4 = e = b2, aba = b,H = {e, b, a2b, a2},
K = {e, b}.

(ii) G = A4, K = {I, (12)(34), (13)(24), (14)(23)}, H = {I, (12)(34)}.

6. Let Q8 = {±1,±i,±j,±k}, i2 = j2 = k2 = −1 = ijk. Show that

(i) Z(Q8) = {1,−1}.

(ii) Every subgroup of Q8 is normal in Q8.

7. Let H =

{(

a b
c d

)

: a, b, c, d ∈ 2Z

}

, G = M2(Z), under addition of 2 × 2 matrices.

Find order of the quotient group
G

H
and describe

G

H
.

8. Let G =

{(

a b
0 d

)

: a, b, d ∈ R, ad 6= 0

}

, H =

{(

1 b
0 1

)

: b ∈ R

}

. Prove that H is a

normal subgroup of G and
G

H
∼= (R+, )̇. (the group of positive real numbers under

multiplication).

9. Show that
R∗

{1,−1}
∼= R+, for the multiplicative groups R∗ = R−{0}, R+ of positive

reals.

10. Show that A4 has no subgroup of order 6.
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11. Show that order of each element of the quotient group
Q

Z
is finite.

12. Let G be a cyclic group of order 36 generated by a. Let H = 〈a6〉. Describe the

quotient group
G

H
.

13. G = A4, K = {I, (12)(34), (13)(24), (14)(23)}, H = {I, (12)(34)}. Show that
A4

H
∼=

A3.

14. Let H be a normal subgroup of S4, ◦(H) = 4. Prove that
S4

H
∼= S3.

15. Show that
Q

Z
has a unique subgroup of order n for each positive integer n.

16. Let G be a finite abelian group of order n. If x3 = e ∀x ∈ G, show inductively that
the order of G is 3k for some k ∈ N ∪ {0}.

17. Let K be a cyclic subgroup of a group G which is normal in G. Show that any
subgroup H of K is a normal subgroup of G.

18. Let G be a subgroup s.t. (ab)n = anbn for some position integer n. Show that
G(n) = {xn / x ∈ G} is a normal subgroup of G.

19. Let H and K be subgroup of a group G such that H ∩ K = {e} then show that
hk = kh, h ∈ H , k ∈ K.

20. Suppose G/Z(G) is cyclic then prove that G is Abelian. Further if G is a group of
order 30 and Z(G) has order 5 Show that G/Z(G) is cyclic.

21. Let H be a normal subgroup of G of order 2. Show that H ⊆ Z(G). Further if G is
of order 10 show that G is Abelian.

22. If H is a subgroup of G such that x2 ∈ H for each x ∈ G then show that H is a
subgroup of G and G/H is Abelian.

23. Prove that the map θ : GL2(R) → (R∗, ·) given by θ(A) = detA is an onto homomor-
phism. Prove SL2(R) is a normal subgroup of GL2(R).

24. Let G be a subgroup and H = {g2 / g ∈ G} is a subgroup of G. Show H is normal in
G.

25. Let H be a normal subgroup of a finite group G. If G/H has an elements of order n
show that G has an element of order n.

26. Let G =< a > be a cyclic group of order 21. LetH =< a7 >. Find the order of
element a5H in the quotient group G/H.

27. Let G =< a > be a cyclic group of order 24. Let H =< a12 > and K =< a6 >.

(i) In G/H, find orders of a2H, a3H, a4H, a5H.

(ii) In G/K, find orders of a2K, a3K, a4K, a5K.
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28. Show that the map φ : Q → S1 defined by φ(m/n) = e2πmi/n, where m/n ∈
Q, (m,n) = 1 and S1 = {z ∈ C |z|2 < 1} is a homomorphism of groups (Q,+)
and (S1, ·). Find ker φ ,Im φ.
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Practical no 2. Cayley’s theorem and external direct product of
groups

1. Z2 × Z2 × Z2 has
(a) 3 subgroups of order 2. (b) 7 subgroup of order 2 (c) 6 subgroups of order
2. (d) 9 subgroups of order 2.

2. The order of any non-identity element in Z3 × Z3 is
(a) 3 (b) 9 (c) 6 (d) none of these.

3. Which of the following statements is false?
(a) Z3 × Z5 is isomorphic to Z15 (b) Z3 × Z3 is isomorphic to Z6

(c) Z9 × Z9 is isomorphic to Z27 (d) Z4 × Z3 is isomorphic to Z12

4. The group S3 × Z2 is isomorphic to
(a) Z12 (b) A4 (c) D6 (d) Z6 × Z2

5. Let G1 = Z4 × Z15 and G2 = Z6 × Z10, then

(a) G1 and G2 are cyclic groups of order 60.

(b) G1 and G2 are not cyclic groups.

(c) G1 is cyclic but G2 is not cyclic group.

(d) G1 is not cyclic but G2 is a cyclic group.

6. . Which is true about groups?

(a) Z4 × Z2 is isomorphic to V4 × Z2.

(b) Z2 × Z2 × Z2 is isomorphic to V4 × Z2.

(c) V4 × Z2 is not isomorphic to Z4 × Z2.

(d) D4 (the dihedral group of order 8) is isomorphic to Quaternion group Q8 of
order 8.

7. A group of order n is isomorphic to
(a) a subgroup of Zn × Zn. (b) a subgroup of An.
(c) a subgroup of Dn. (d) a subgroup of Z2n

8. Z3 is isomorphic to the following subgroup of S3

(a) < (12) >. (b) < (13) > (c) A3 (d) S3 itself.

9. A group of order 4 in which every element satisfies the equation x2 = e is isomorphic
to
(a) Z2 × Z2. (b) µ4, the group of forth roots of unity under multiplication.
(c) (Z4,+) (d) {1̄, 3̄, 7̄, 9̄}.

10. The smallest positive integer n for which there are two non-isomorphic groups of order
n equals.
(a) 2 (b) 4 (c) 6 (d) 8



11. For each positive integer n,
(a) There is a cyclic group of order n. (b) There are two non-isomorphic groups
of order n.
(c) There is a non-abelian group of order n. (d) The number of non-isomorphic
groups of order n is equal to n

12. A non-cyclic group of order 6 is isomorphic to
(a) Z3 × Z2 (b) µ6, the group of sixth roots of unity under multiplication.
(c) U(14) = {1̄, 3̄, 5̄, 9̄, 1̄1, 1̄3}. (d) S3

13. Let G1 = Z3 × Z5,G2 = Z3 × Z9. Then

(a) G1 is isomorphic to Z15 and G2 is isomorphic to Z27.

(b) G1 and G2 are not isomorphic to Z15, Z27 respectively.

(c) G1 is not isomorphic to Z15 but G2 is isomorphic to Z27

(d) G1 is isomorphic to Z15 but G2 is not isomorphic to Z27

14. The number of elements of order 4 in Z8 × Z4 is
(a) 4 (b) 8 (c) 20 (d) 16

15. Consider the following groups i) Z4 ii) U(10) ii) U(8) iv) U(5). The only non-
isomorphic group among them is
(a) U(8) (b) U(10) (c) Z4 (d) All are isomorphic.

16. Consider the following groups i) S3 ii) µ6 ii) Z6 iv) Z2 × Z3 v) U(9). The only non-
isomorphic group among them is
(a) S3 (b) µ6 (c) Z2×Z3 (d) S3 ' U(9) and µ6,Z6,Z2×Z3 are isomorphic. .

17. If for positive integers m,n have Zm ×Zn is isomorphic to(Zmn,+) then which is not
true,

(a) m,n are relatively prime.

(b) m,n are odd.

(c) m,n are prime.

(d) m = pr, n = qs for primes p, q and r, s ∈ N.

18. Let G = Z4 × Z4 and H = Z4 × {0̄, 1̄}, K =< (1̄, 2̄) > be subgroups of G Then
(a) G/H is isomorphic to G/K (b) G/H is isomorphic to Z2 × Z2

(c) H and K are isomorphic. (d) none of these.

19. From the given list of pairs group, pick the pair of non-isomorphic groups
(a) 3Z/12Z and Z4 (b) 8Z/48Z and Z6

(c) Z4 and V4 (d) (Z× Z)/(2Z× 2Z) and Z2 × Z2

20. From the given list of pairs of groups, pick the pairs of isomorphic groups
(a) Z2 × Z2 × Z2 and Z4 × Z2 (b) Z8 and Z4 × Z2

(c) D4 and Z4 × Z2 (d) Z2 × Z2 × Z2 and V4 × Z2

Practical 2 Descriptive Question
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1. (a) Find all subgroup of order 2 in the group Z2 × Z2 × Z2

(b) Find all subgroups of order 4 in the group Z4 × Z4.

(c) Prove or disprove: Z× Z is a cyclic group.

2. (a) Find a subgroup of S4 isomorphic to i) Z4 ii) V4.

(b) Find a subgroup of S6 isomorphic to Z6.

3. Find the left Cayley representation of S3 in S6.

4. Find the Cayley representation of Z3 in S3.

5. Check whether ,

(a) Z3 × Z9 and Z27 are isomorphic groups.

(b) Z3 × Z5 and Z15 are isomorphic groups.

6. Show that φ : Z× Z → Z defined by φ(a, b) = a− b is a group homomorphism. Find
Ker φ and describe the set φ−1(3).

7. Let G1 × G2, where G1 = (Z4,+), G2 = {1̄, 3̄} modulo 4 under multiplication. Let
H =< (2̄, 3̄) > K =< (2̄, 1̄) > be subgroups of G. List elements in H and K,G/H
and G/K. Show that H is isomorphic to K but G/H is not isomorphic to G/K.

8. Show that Z8 × Z4 and Z8,00,000 × Z4,00,000 have same number of elements of order 4.

9. Find all subgroups of order 4 in Z4 × Z4.

10. Find the number of elements of order 2 in Z2,00,000 × Z4,00,000.

11. Find a subgroup of Z12 × Z4 × Z15 of order 9.

12. Let m,n be fixed positive integers. Consider the map φm,n : Z → Zm ×Zn defined by
φm,n(x) = (x mod m, x mod n). Show that φm,n is a group homomorphism. Find ker
φm,n.
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NES RATNAM COLLEGE OF ARTS, SCIENCE & COMMERCE, BHANDUP-78 
(i)  

Paper II                 Practical No.3     Semester VI 
                                        Rings, Subrings, Integral Domains 
Objective Questions 
 

1. Let ý be a ring and þ, ÿ be non-zero elements of ý. The equation þĂ = ÿ has  

a) a unique solution in ý 

b) at most one solution in ý 

c) may have more than one solution in ý 

d) None of the above   

 

2. The group of units of the ring %25 is  

a) {1̅, 3, 5̅, 7̅, 23̅̅̅̅ }ÿāā 25 

b) {1̅2̅, 3̅, 4̅, 6̅, 7̅, 8̅, 9̅, 11̅̅̅̅ , 12̅̅̅̅ , 13̅̅̅̅ , 14̅̅̅̅ , 16̅̅̅̅ , 17̅̅̅̅ , 18̅̅̅̅ , 19̅̅̅̅ , 21̅̅̅̅ , 22̅̅̅̅ , 23̅̅̅̅ , 24̅̅̅̅ } ÿāā 25 

c) {1̅, 4̅, 8̅, 12̅̅̅̅ , 16̅̅̅̅ , 20̅̅̅̅ }ÿāā 25 

d) {1̅, 3̅, 6̅, 9̅, 12̅̅̅̅ , 15̅̅̅̅ , 18̅̅̅̅ , 21̅̅̅̅ , 24̅̅̅̅ } ÿāā 25 

3. The group of units of a ring is  

a) abelian but may not be cyclic            (b) Cyclic        (c) may not be abelian       (d) finite   

4. Consider the ring �2(%) = {(þ ÿĀ ā) = þ, ÿ, Ā, ā ∈ %} under addition and multiplication of 2 × 2 matrices. 

Then � ∈ �2(%) is a unit iff  

(a) det � b 0     (b) det � = 1        (c) det � > 0         (d) det � = ±1 

5. Consider the following rings  

(i) (%5, +,∙)                            (ii)  (%15, +,∙) 

(iii) % × % under component wise addition and multiplication          (iv) =[Ă] 
Then  

(a) (i), (iv) have no proper zero divisors.       (b) (i), (iii) have no proper zero divisors  

(c) (i), (ii) have no proper zero divisors         (d) (i), (iii), (iv) have no proper zero divisors 

6. The number of units in the ring %20 is  

(a) 5         (b) 6           (c) 7          (d) 8  

7. Which of the following is a subring of ℚ(+,∙) 

(i) ý = {ÿĀ  ; þ, ÿ ∈ % (þ, ÿ) = 1, ÿ �ý Āāþ ā�Ā�ý�ÿþĂ ÿă 3} 

(ii) ý = {ÿĀ  ; þ, ÿ ∈ % (þ, ÿ) = 1, ÿ b 0, ÿ �ý ā�Ā�ý�ÿþĂ ÿă 3} 

(iii) ý = {Ă2 ∶ Ă ∈ ℚ} 

(iv) ý = {ÿĀ = þ, ÿ ∈ %, ÿ b 0   (þ, ÿ) = 1  þ �ý ā�Ā�ý�ÿþĂ ÿă 3} 

(a) (i) and (iv)      (b) (ii) and (iv)      (c) (i) and (ii)      (d) only (i)  

8. Let ý and þ be rings. Consider ý × þ under componentwise addition and multiplication  

(i) If ý and þ are integral domains then ý × þ is an integral domain.  

(ii) ý × þ is an integral domain iff ý and þ are integral domains.  

(iii) ý × þ is not an integral domain whatever ý, þ may be.  

(iv) ý × þ is not commutative even if ý, þ are commutative.  



 

9. Let ý be an integral domain, then the equation Ă2 = 1 has  

(a) exactly two solutions                                     (b) may not have any solution              

(c) may have more than two solutions                (d) None of these 

10. Consider the following rings  

(i) %18      (ii) %12      (iii) %10       (iv) %14        Then  

(a) (i), (ii), (iii) ,(iv) have nilpotent elements         (b) (i), (ii) have nilpotent elements 

(c) (iii), (iv) have nilpotent elements                      (d) None of these  

11. In an integral domain the number of elements which are their own inverses is  

(a) 1       (b) 1 or 2          (c) infinitely way          (d) cannot say  

 

12. In a ring (%Ā, +, ∙) where Ā is a positive integer > 1 

              (i) þ̅2 = þ̅ ⟹ þ̅ = 0 or þ̅ = 1̅ for þ̅  ∈ %Ā. 
              (ii) þ̅  ∙ ÿ̅ = 0̅ ⟹ þ̅ = 0̅ or ÿ̅ = 0 for þ̅, ÿ̅  ∈ %Ā. 
              (iii) þ̅ ∙ ÿ̅ = þ̅ ∙ Ā̅, þ̅  b = 0 ⟹ ÿ̅ = Ā̅ for ÿ̅, Ā̅  ∈ %Ā. Then,  

 (a) the statements (i), (ii), (iii) are true.  

(b) the statements (i) is true but (ii), (iii) may not be true.  

(c) the statements (i), (ii), (iii) are true if Ā is prime. 

(d) None of the above 

 

13. If ý is a ring and þ, ÿ are zero divisors in ý, then  

(a) þ + ÿ is always a zero divisor                (b) þ + ÿ is not a unit in ý 

(c) þ + ÿ may not be a zero divisor             (d) None of these  

 

14. In the ring ý = {(þ ÿ0 ā) ∶ þ, ÿ, ā ∈ %2}, the number of non-zero divisors is  

(a) 6            (b) 7               (c) 3           (d) None of these  

 

15. If Ă is an idempotent element in %Ā(Ă2 = Ă), then  

(a) 1 2 Ă is a unit          (b) 1 + Ă is a unit            (c) 1 2 Ă is a idempotent         (d) None 

of these  

 

16. Let ý be a commutative ring such that þ2 = 0 ⟹ þ = 0 ∀ þ ∈ ý. then  

(a) ý has no proper zero divisors                          (b) ý has no nilpotent elements         

(c) ý is an integral domain but not a field             (d) None of these   

 

17. Consider the rings ý1 = (%10, +,∙), ý2 = (%23, +,∙), ý3 = �2(%), ý4 = % × % under 

component wise addition and multiplication.  

(a) ý1, ý2, ý3, ý4 are all integral domains              (b) Only ý2, ý3, ý4 are integral domains  

(c) ý2 is an integral domain                                    (d) ý2, ý4 are integral doamins  

 

18. Let ý be an integral domain of characteristic Ă. Then,  

(a) (Ă + ă)ÿ = Ăÿ + ăÿ  ∀Ă , ă ∈ ý if and only if ÿ = Ă. 
(b) (Ă + ă)ÿ = Ăÿ + ăÿ  ∀Ă , ă ∈ ý if and ÿ = ýĂ. 
(c) (Ă + ă)�� = Ă�� + ă��   ∀Ă , ă ∈ ý  and  for all Ā ∈ ℕ. 
(d) None of the above 

19. Consider the subset þ = {0̅, 2̅, 4̅, 6̅, 8̅} of %10. 
(a) þ is a subring of %10 



(b) þ is not a subrings of %10. 
(c) þ is a subrings with multiplicative identity 6̅. 
(d) þ is a ring with multiplicative identity 6̅. 
 

20. Let ý be a commutative ring such that þ2 = 0 ⟹ þ = 0 for þ ∈ ý. then,  

(a) ý has no proper zero divisors                                (b) ý has no nilpotent elements  

(c) ý is a an integral domain but not a field                (d) None of these   

 

21. Let ý be a ring in which Ă2 = Ă for all Ă ∈ ý. Then,  

(a) ý is an integral domain with characteristic 3. 
(b) ý is field with characteristic 3. 
(c) Characteristic of ý is 2. 
(d) None of these   

 

22. In a ring ý = {(þ ÿ0 ā) ∶ þ, ÿ, ā ∈ %2}, the number of zero divisors are  

(a) 6            (b) 7        (c) 3              (d) None of these  

 

23. The characteristics of the ring %12 × %15 under component wise addition and   

multiplication is  

     a) 180   b) 3    c) 60    d) 5. 

DESCRIPTIVE QUESTIONS  

 

1) Let ý(+,∙) be a ring. Show that ý(⊕,⊙) is a ring where  þ ⊕ ÿ = þ + ÿ 2 1� , þ ⊙ ÿ = þ + ÿ 2 þÿ 

2) a) Let ý be a ring. If Ă3 = Ă  ∀ Ă ∈ ý, show that ý is commutative . 

b)Let ý be a ring. If Ă4 = Ă  ∀ Ă ∈ ý, show that ý is commutative.   

c)Let ý be a ring in which þÿ = Āþ ⇒ ÿ = Ā for þ, ÿ, Ā ∈ ý, þ b 0. Show that ý is 

commutative. 

d) If ý is ring with more than one element. If þĂ = ÿ has a solution for all non-zero þ ∈ ý and for all ÿ ∈ ý, then show that ý is a division ring.  

 

3) Show that % × % under componentwise addition and multiplication is a ring. Is it an 

integral domain? Justify your answer.  

4) Show that ý� = {ÿ/Ā ∶ ÿ, Ā ∈ ý ; (ÿ, Ā) = 1; Ă ∤ Ā} for a fixed prime Ă is a ring.  

5) Show that %[�] + {þ + ÿ� ∶ þ, ÿ ∈ %} is a integral domain.  

6) a) Show that a ring that is cyclic under addition is commutative.  

b)Let ý be a ring having 6 elements. Show that ý is commutative. Is ý an integral 

domain? Justify your answer 

7) Show that every non-zero element in %Ā is either a unit or a zero divisor. 

8) Let ý be an integral domain and þ, ÿ ∈ ý 

(i) If þ7 = ÿ7, þ12 = ÿ12 show that þ = ÿ 

(ii) If þÿ = ÿÿ, þĀ = ÿĀ, ÿ, Ā ∈ ℕ  (ÿ, Ā) = 1, then þ = ÿ 

9) Let ÿ = {( Ą ā2ā̅̅̅̅̅ Ą̅ ) , Ą, ā ∈ ÿ} Show that ÿ is a non-commutative subring of �2(ÿ) 

which is a division ring. 



10) Show that ý = {(þ 2ÿÿ þ ) ∶ þ, ÿ ∈ %7} under usual matrix addition and 

multiplication and modulo 7 addition and multiplication of entries is commutative 

ring. Is ý an integral domain? Justify your answer.  

What happens If ý = {( þ ÿ2ÿ þ) ∶ þ, ÿ ∈ %5}. 

 

11) a)Let ý be a commutative ring. If ÿ is a unit and þ is nilpotent in ý. Show that ÿ + þ 

is unit.  

b)If þ, ÿ are nilpotent elements of a commutative ring, show that þ + ÿ is also nilpotent. 

Give an example to show that this may fail if the ring is not commutative.  

c)Let Ă be a non-zero element of a ring ý. If there exists a unique ă ∈ ý such that ĂăĂ =Ă, then show that Ă is invertible in ý. 
d)Determine all zero divisors, units and idempotent and nilpotent elements of the 

following rings- 

(i)  (%18, +,∙)         (ii) %3 × %6 under component wise addition and multiplication.  

(iii) � × � where � is a field                  (iv) (�(�), +,∩) 

e) Find zero divisors, idempotent, nilpotent elements in %3 ⊕ %6. 
f) Find two elements þ and ÿ in a ring such that both þ and ÿ are zero-divisors,þ +ÿ b 0, and þ + ÿ is not a zero-divisor. 

12) a) Let þ belong to a ring ý with unity and þĀ = 0 for some positive integer Ā. (Such 

an element is called Ā�þĂāþĂĀþ. ) Prove that 1 2 þ has a multiplicative inverse in ý.                                                 
(Hint: Consider (1 2 þ)(1 + þ + þ2 + ⋯ +  þĀ−1). ] 
b)Show that the nilpotent elements of a commutative ring form a subring. 

c) Show that 0 is the only nilpotent element in an integral domain. 

d) A ring element þ is called an  idempotent if þ2 = þ. Prove that the only 

idempotents in an integral domain are 0 and 1.  

e) Find a zero-divisor and a nonzero idempotent other than 1 in 

  ý5[�] = {þ + ÿ� |þ, ÿ ∈  ý5, �2 = 21}. 
 

f) If þ is an idempotent in ýĀ, show that 1 2 þ is also an idempotent. 

 

14. Let ý be an integral domain with characteristic 2. Show that-  

(a) (þ + ÿ)2 = þ2 + ÿ2 ∀þ, ÿ ∈ ý. 
(b) þ = {þ ∈ ý þ2 = þ} is a subrings of ý. 

 

15. Determine all subrings of the following rings  

(a) (%12, +,∙)               (b) (%7, +,∙)             (c) (%, +,∙) 

 

16. In the following examples, show that þ is a subring of given ring ý 

(i) þ =  {(þ ÿĀ ā) ∶ þ, ÿ, Ā, ā ∈ = ý. þ. þ + Ā = ÿ + ā} , ý = �2(=). 

(ii) þ = {(þ ÿÿ þ) ∶ þ, ÿ ∈ =}  ý = �2(=) 

(iii) þ = {(þ 2ÿÿ þ ) : þ, ÿ ∈ ℚ}  ý = �2(ℚ) 



(iv) þ = {ÿĀ ∶ þ, ÿ ∈ %, (þ, ÿ) = 1, ÿ āāā} ý = ℚ 

(v) þ = {ÿĀ ∶ þ, ÿ ∈ %, ÿ b 0 (þ, ÿ) = 1, ÿ ĂĀĂĀ}  ý = ℚ 

17. Show that %[√2] has infinitely many units.  every (3 + 2√2)Ā
is a unit where Ā is a 

positive integer.  

18. a) Prove or disprove: If ý is a ring with characteristic �, ý is finite. 

b)Consider the ring ý =  {0,2,4,6,8,10} under addition and multiplication modulo  

12. What is the characteristic of R. 

c)Let ý be a ring in which Ă4 = Ă ∀ ∈ ýFind characteristic of ý. 
19. Give example –  

(a) of a finite ring which is non-commutative 

(b) of a ring ý such that þ2 = þ for all þ ∈ ý. 
(c) of a commutative ring without zero-divisors that is not an integral domain. 

20. Let Ă and ă belong to an integral domain of prime characteristic Ă. 
(a) Show that (Ă + ă)� = Ă� + ă�. 
(b) Show that, for all positive integers Ā, (Ă + ă)�� = Ă�� + ă�� . 
(c)  Find elements Ă and ă in a ring of characteristic 4 such that (Ă + ă)4 b  Ă4 +ă4. 

(d) Let ý be an ĀĀ of characteristic 2 Show (Ă + ă)2 = Ă2 + ă2. further show (Ă + ă)2� = Ă2� +ă2�   ∀ Ā ∈ ℕ. 
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  Paper II                                  Practical No.4    Semester VI 
Ideals, Quotient Rings, Homomorphism and Isomorphisms of rings 

Objective Questions 
 

1. Consider the ring % × % under component wise addition and multiplication.  

Let Ā = {(þ, 2þ) = þ ∈ %}         ā = {(þ, 0) = þ ∈ %} 

(a) Ā and ā are ideal of  % × %          (b) Ā and ā are subrings of % × % 

(c) neither Ā nor ā are ideal of % × %        (d) ā is a subring of % × %, but Ā is not  

2.  Consider the ring ý2(%) = {(þ ÿĀ ā) ∶ þ, ÿ, Ā, ā ∈ %} 

Let Ā = {(þ ÿĀ ā) ∶ þ, ÿ, Ā, ā þÿĂ āÿÿÿĀÿÿþĂ ÿĂ 5} . Then  

(a) Ā is a subring of ý2(%) but not an ideal of ý2(%) 

(b) Ā is an ideal of ý2(%) but not a subring. 

(c) Ā is not an ideal of ý2(%) 

(d) Ā is both a subring and an ideal of ý2(%). 
3. Consider the ideals Ā = 10 % and ā = 12% then  

(a) Ā + ā = 22%   Ā ā = 120%       (b) Ā + ā = 2%   Ā ā = 60%          

(c) Ā + ā = 2%   Ā ā = 120%       (d) None of these  

4. In the ring of integers Z, consider the ideals   Ā = 4ý + 6ý, ā = ÿý + Āý, ÿ, Ā ∈Āþ. Then, 
      a) Ā = 2ý,     ā = āý,    Ā/ĂÿĂ  ā = ĄĀā  āă ÿ  þĀā  Ā.   

b) Ā = 24ý,     ā = ÿĀ ý 
      c) Ā = 12ý,     ā = 3 ý  Ā/ĂÿĂ  3 = þĀÿ  āă ÿ  þĀā  Ā.   

d) None of these. 
 

5. In the ring of integers Z, consider the ideal Ā = (6ý) (4ý) 
      a) Ā =  24ý   b) Ā =  12ý       c) Ā =  2ý        d) None of these 

6. The number of ring homomorphisms from ý ⊕ % × % are  

(a) 0           (b) 1             (c) 2            (d) 3   

7. The number of ring homomorphisms from ý to itself are  

(a) 1                  (b) 2          (c) infinitely many       (d) none of these   

8. The number of ring homomorphisms from ÿ to itself are  

 (a) 1                  (b) 2          (c) infinitely many       (d) none of these   

9. From the following pairs of rings, the isomorphic pair is  

(a) %[√2] and %[√5]           (b) %6 ⊕ %4 þĀā %24           

(c) þ and ÿ                          (d) þ = {(þ 2ÿÿ þ ) ∶ þ, ÿ ∈ þ}  þĀā  ÿ 

10. The Kernel of the ring homomorphisms  �: =[ā] →∈ defined by �(ă(ā)) = ă(2 + ÿ)  is  

(a) The principal ideal (ā2 + 2ā + 1)            



(b) the principal ideal (ā 2 2) 

(c) the principal ideal (ā2 2 4ā + 5)              

(d) the principal ideal (ā2 + 4ā + 1) 

11. Consider the following maps from ý2(%�) → %� defined by  ă = (þ ÿĀ ā) = þ,   Ą (þ ÿĀ ā) = þ + ā, / (þ ÿĀ ā) = det ý  

(a) ă, Ą, / are all ring homomorphisms.      

(b) ă is a ring homomorphisms, Ą and / are not  

(c) only / is a ring homomorphism             

(d) none of these   

12. Consider the following pairs the rings. 

(i) %[√2]  and  %[√5 ].(ii) %[√22]   and %[√25]. 
(ii) ℚ  and  =.      

(iii) (iv) ý and ℂ where ý = {[ þ ÿ2ÿ þ] |þ, ÿ ∈  =}. 
Then 

(a) (i) and (iv) are isomorphic pairs of rings. 

(b) (i) and (ii) are isomorphic pairs of rings. 

(c) Only (iv) is an isomorphic pair of rings. 

(d) (i), (ii) and (iv) are isomorphic pairs of rings. 

 

13. Let %[ā]  and %Ā[ā] denote polynomial rings. The map ∅Ā ∶  %[ā] → %Ā[ā] defined by ∅Ā ∶ %[ā]  → %Ā[ā] defined by ∅Ā(þ0 + þ1ā + ⋯ + þāāā) = þ0̅̅ ̅ + þ̅1ā +& . +þ̅āāā , 
where þ̅ÿ = þÿ mod Ā, for 0 ≤ ÿ ≤ ý, is a ring homomorphism only if 

(a) Ā is prime. (b) Ā is a positive integer    (c) Ā is odd.          (d) Ā is even. 

 

14. The quotient ring 
%[ÿ](1+ÿ)  is 

(a) An integral domain which is not a field.                     (b) a field having 2 elements. 

(c) a field having 5 elements.                                            (d) a ring with proper zero divisors. 

 

15. The kernel of the ring homomorphism ∅ ∶ =[ā] → ℂ defined by ∅(ă(ā)) = ă(2 + ÿ) is  

(a) The principal ideal (ā 2 2).                                    
(b)  The principal ideal (ā2 2 4ā + 5) 

        (c) The principal ideal (ā2 2 4ā 2 5)    

        (d) The principal ideal (ā2 2 4ā + 2). 
 

16. Consider the maps �1 ∶  % × % → % and ÿ1: % → % × % defined by �1(ÿ, Ā) =ÿ,  ÿ1(ÿ) = (ÿ, 0)where % × % denotes the ring with componentwise addition and 

multiplication. 

(a) �1 and  ÿ1  are ring homomorphisms 

(b) Both �1 and  ÿ1  are not ring homomorphism 

(c) �1 is a ring homomorphism but ÿ1 is not a ring homomorphism 

(d) ÿ1 is a ring homomorphism and �1 is not a ring homomorphism  

 

17. The number of ring homoomorphisms from %  to % are 

(a) One       (b) >                    (c) two                      (d) None of these 



.       

 

 

18. Consider the ring homomorphism ∅ ∶  =[ā] → = defined by ∅(þ0 + þ1ā + ⋯ + þĀāĀ) = þ0 + þ1 + ⋯ + þĀ. 
    Then ker ∅ is 

(a) principal ideal (ā)   

(b) principal ideal (ā + 1) 

(c) principal ideal (ā 2 1)    

(d) None of the above. 

 

 

DESCRIPTIVE QUESTIONS 

1. Check whether following sets are ideals of the ring % × % under component wise addition 

and multiplication.  

(a) Ā = {(þ, þ) ∶ þ ∈ %}                 (b) Ā = {(2þ, 2ÿ) ∶ þ, ÿ ∈ %} 

(c)  Ā = {(2þ, 0) ∶ þ ∈ %}               (d) Ā = {(þ, 2þ) ∶ þ ∈ %}  

2. Check whether of the following are ideals of the polynomial ring %[ā]. 
(a) Ā = {ă(ā) = þ0 + þ1ā + ⋯ þĀāĀ ∈ %[ā]: 3|þ0}.  

(b) Ā = {ă(ā) = þ0 + þ1ā + ⋯ þĀāĀ ∈ %[ā]: 3|þ2}.  

(c) Ā = {ă(ā) = þ0 + þ1ā + ⋯ þĀāĀ ∈ %[ā]: ă(0) = 0}.  

(d) Ā = {ă(ā) = þ0 + þ1ā + ⋯ þĀāĀ ∈ %[ā]: ∑ þÿ = 0Āÿ=0 }.  

 

3. (a) Let þ be a commutative ring and þ ∈ þ be non-zero. Show that, annihilator of          þ, þĀĀ(þ) = {ÿ ∈ þ ∶ ÿþ = 0} is an ideal of þ. 
(b) If ý, þ are ideals of a commutative ring þ such that þ = ý + þ, show that ý ∩ þ = ýþ. 
(c) Let A and B be ideals of a ring R. If ý ∩ þ = {0}then show þÿ = 0 when þ ∈ ý and ÿ ∈þ. 

 

4. Let ÿ = {þ + ÿÿ | þ, ÿ ∈ ý, ÿ ÿĀ ĂÿĂĀ }. Show that ÿ is a subring of ý[ÿ], but not an ideal 

of ý[ÿ]  
5. Show that Ā = {(þ ÿĀ ā) : þ, ÿ, Ā, ā ∈  %, þ, ÿ, Ā, ā þÿĂ ĂÿĂĀ ÿĀāĂĄĂÿĀ} is an ideal of ý2(%) 

6. Show that Ā = {(0 þ0 0) ∶ þ ∈ =} is an ideal of the ring þ = {(þ ÿ0 ā) ∶ þ, ÿ, ā ∈ =}. 

7. Show that Ā = {(þ ÿĀ ā) ∶  þ, ÿ, Ā, ā ∈  % þÿĂ āÿÿÿĀÿÿþĂ ÿĂ 5} is an ideal an ý2(%). 

8. Is Ā = {4þ + ÿÿ ∶ þ, ÿ ∈ %} an ideal of %[ÿ]? Justify your answer.  

 

9. Let þ be a ring and Ā be an ideal of þ. Show that Āÿ = {∑ þÿ1þÿ2  þÿĀ = þÿĀ ∈ Ā, þ ∈�1=1ℕ} is an ideal of þ. 
 

 

10. Let þ be a commutative ring and ÿ be the set of all nilpotents elements of þ. Show that ÿ 

forms an ideal of þ.Is ÿ a subring of þ? Justify your answer.  

 

11. Find the characteristic of 
�[ÿ]+2+ÿ, 



12. Show that the following are isomorphic: 

(a) Rings %[√2] = {þ + ÿ√2|þ, ÿ ∈ %}, ÿ = {[þ 2ÿÿ þ ] |þ, ÿ ∈ %}. 
(b) Rings þ = {[ þ ÿ2ÿ þ] |þ, ÿ ∈ =}  and ℂ. 

13. Prove or disprove: 

(a) The map ∅ ∶ ý2(%) → % defined by ∅ ([þ ÿĀ ā]) = þ is a ring homomorphism. 

(b) Let þ = {[þ ÿ0 Ā] |þ, ÿ, Ā ∈ %}. The map ∅ ∶ þ → % defined by ∅ ([þ ÿ0 Ā]) = þ is a ring 

homomorphism. 

14. Consider the map ∅ ∶  =[ā] → ý2(=) defined by ∅(þ0 + þ1ā + ⋯ + þĀāĀ) = [þ0 þ10 þ0]. 
Show that ∅ is a ring homomorphism. Determine Ker ∅. 

 

15. Let þ be a commutative ring of characteristic Ă. Show that the map ă ∶ þ → þ defined by ă(ā) = ā� is a ring homomorphism.  

16. Show that the following maps are ring isomorphism 

(a) Let þ = {( þ ÿ2ÿ þ) ∶ þ, ÿ ∈ =}  ă: þ → ℂ defined by  ă ( þ ÿ2ÿ þ) = þ + ÿ ÿ 
(b) Let þ = {(þ 2ÿÿ þ ) ∶ þ, ÿ ∈ %}  ă: þ → ℂ defined by ă (þ 2ÿÿ þ ) = þ + ÿ√2 

17. Determine whether the following pairs of rings are isomporphic  

(i) %[√2] and %[√5]            (ii) %[√22] and %[√25]       (iii) %4 × %6 þĀā %24 

(iv) =(+,∙) and ℚ(+,∙)        (v) =(+,∙) and ℂ(+, ∙) 

18. Show that the union of ideals of a ring þ in a chain Ā1 ⊆ Ā2 ⊆ ⋯ ⊆ ĀĀ ⊆ ĀĀ+1  is an ideal. 

19. Let þ be a commutative ring and Ā be an ideal in þ. 
(i) Show that ā = {ā ∈ þ ∶ ā þ = 0  ∀ þ ∈ Ā} is an ideal in þ. 

(ii) Show that ā = {ā ∈ þ ∶  āĀ ∈ Ā ăāÿ ĀāÿĂ Ā ∈ ℕ} is an ideal in þ.  
20. Find all ideals of the ring % 12%⁄  using correspondence Theorem.  

21. Let þ = {(þ ÿ0 ā) , þ, ÿ, ā ∈ %} show that � ∶ þ → % × % defined by � (þ ÿ0 ā) = (þ, ÿ) 

is a ring homomorphism. Find ker �.  
22. Show that %[ÿ]/(2 + ÿ) is a finite field, where (2 + ÿ) = {(2 + ÿ)(ÿ + ÿ Ā): ÿ + ÿĀ ∈  %[ÿ]} 

 

 

 



 

  Paper II                                      Practical No.5    Semester VI 

Prime and Maximal Ideals, Divisibility in Integral Domains 

Objective Questions 

 

1. Let ý = ý2(%) and ý = {(þ ÿĀ ā) : þ, ÿ, Ā, ā þÿĂ �ÿ % þÿā þÿĂ ā���Ā�ÿýĂ ÿþ 5} Then  

(a) ý is not an ideal.               (b) ý is a prime ideal but not a maximal ideal.  

(c) ý is a maximal ideal          (d) ý is an ideal but not a prime ideal.   

2. Let ý be a commutative ring. If 0 is a maximal ideal then  

(a) ý = 0               (b) ý is a finite non-zero ring  

(c) ý is a field        (d) ý is an integral domain which is not a field.   

3. The number of maximal ideals in %16 are  

(a) 4     (b) 2        (c) 1        (d) 3  

4. Let ý = ý2(%2) and  ý = {(1 00 0)  �: � ∈ ý} Then  

(a) ý is not an ideal in ý.           (b) ý is a prime ideal which is not maximal. 

(c) ý is a maximal ideal             (d) ý is an ideal but not a prime ideal   

5. Let ý = �[0, 1], ý = {ă ∈ ý ∶ ă (12) = 0}  �[0, 1] = Ring of continuous real valued functions on [0, 1] under pointwise addition and multiplication.  

(a) ý is not an ideal in ý           (b) ý  is a prime ideal which is not maximal 

(c) ý is a maximal ideal             (d) ý is an ideal but not a prime ideal  

6. If ý is an integral domain and þ is a proper ideal then  

(a) ý/ý is an integral domain            (b) ý/ý is a field  

(c) ý/ý is finite                                  (d) ý/ý may not be commutative  

7. Let ý be a finite commutative ring. Then  

(a) ý is a field                                          (b) 0 is the only proper ideal of ý 

(c) every prime ideal is maximal             (d) ý is an integral domain   

8.  If �1 and �2 are prime ideals in a commutative ring ý. then  

(a) �1 , �2 and �1 + �2 are prime ideals in ý. 
(b) �1 + �2 may not be a prime ideal in ý 

(c) �1 + �2 is a prime ideal in ý but �1 , �2 may not be  

(d) None of these  

9. Let þ = {þ + ÿ� ∶ þ, ÿ ∈ ý, þ, ÿ  þÿĂ  ā���Ā�ÿýĂ  ÿþ  5}.  Then, 

   a) S is not an ideal but is a sub ring of Z[i ]  

b) S is  an ideal as well as sub ring of Z [ i ]  

  c) S is an ideal of Z [ i ]     

d) None of these. 

 

10. Consider the ring ý2(ý) =  {(þ ÿĀ ā) ∶ þ, ÿ, Ā, ā ∈ ý}.   

Let ý =  {(þ ÿĀ ā) ∶ þ, ÿ, Ā, ā are even integers} 

  a) I is not an ideal of ý2(ý).    

b) I is an ideal of ý2(ý) which is not a prime ideal. 



  b) I is a prime ideal in ý2(ý)    

d) None of these. 

 

11. Let R be a commutative ring. If {0} is a maximal ideal in R, then 

   a) R is a finite ring        

 b) R is a field 

  c) R is an integral domain, which is not a field    

d) None of these 

 

12. The number of maximal ideals in ý20 are  

  a) 2   b) 4    c) 1   d) None of these 

 

 

13. Let F be a field. In the ring � × � under component wise addition and multiplication, the  

                   number of maximal ideal are 

   a) 1   b) 2     c) 3    d) 0. 

 

14. Let ý be a commutative ring. If (0) is the only maximal ideal in ý, then 

(a) ý is a finite ring                     (b) ý is an integral domain, but not field 

(c) ý is a field                              (d) None of these 

 

15. In the polynomial ring %[ý], consider ý = {ă(ý): ă(0) = 0}, then 

(a) ý is an ideal                         (b) ý is an prime ideal but not maximal ideal 

(c) ý is a maximal ideal             (d) ý is ideal but neither prime ideal nor maximal 

16. Let ý be a commutative ring, and ā1 and ā2 are prime ideals of ý, then  

(a) �1 , �2 and �1 + �2 both and prime ideals of ý. 
(b) �1 + �2 is prime ideal of ý always but �1 , �2  may not be. 

(c) If  �1 ⊆ �2 or �2 ⊆ �1 then �1 + �2 is prime ideal of ý. 
(d) None of the above                      

 

17. Which of the following is irreducible in %[√5] 
(a) 9 + 4√5              (b) 1 + √5       (c) 5       (d) 4 + √5 

 

18. Which of the following is true in %[√25] 
(a) 2 + √25 is irreducible but not prime.          (b) 2 + √25 is prime 

(c) 3 is prime                                                      (d) 4 is reducible  

 

19. The number of maximal ideals in = × = × = is  

(a) 1       (b) 3        (c) 6       (d) 9 

 

20. Which of the following is prime in %[�],  
(a) 2        (b) 5           (c) 17          (d) 3  

 

 



21. Consider the ring homomorphismsă1: %[�] → %2 defined by ă(þ + ÿ�) = (þ 2 ÿ)þĀā 2 and ă2: %[�] → %5 defined by ă(þ + ÿ�) = (þ 2 2ÿ)þĀā 5. Then  

(a) ker ă1 is a maximal ideal but ker ă2 is not a maximal ideal.  

(b)  both ker ă1 and ker ă2 are not maximal ideals.  

(c) both ker ă1 and ker ă2 are maximal ideals.  

22. In the polynomial ring Z[x],  consider    ý = {ă(ý) ∶ ă(0) =  0}. 

   a) I is not an ideal in Z [x]   

 b) I is a prime ideal which is not maximal. 

  c) I is a maximal ideal    

 d) I is an ideal which is neither prime nor maximal. 

23. Consider the polynomial ă(ý) = þ0 + þ1ý + ⋯ + þ�ý�, þ� b 0  ∈ =[ý],   ă(ý) is a unit in =[ý] iff  
(a) each þ� = 1                  (b) þ0 b 0, þ� = 0 for 1 ≤ � ≤ ÿ 

(c) þ0 = 0, þ� = 1            (d) þ� = ±1 

24. In the polynomial ring Z[x],  consider    ý = {ă(ý) ∶ ă(0) =  0}. 

   a) I is not an ideal in Z [x]   

 b) I is a prime ideal which is not maximal. 

  c) I is a maximal ideal    

 d) I is an ideal which is neither prime nor maximal. 

25. The kernel of the ring homomorphism   � ∶  =[ý] → ℂ defined by � (ă(ý)) = ă(1 + �) is  

(a) (ý 2 1)        (b) (ý2 2 ý + 1)       (c) (ý2 2 2ý + 2)       (d) (ý2 + ý + 1) 

26. In the ring =[ý] and ℂ[ý], consider the ideal ý = (ý2 2 ý + 2), 
(a) ý is a maximal ideal in both =[ý] and ℂ[ý].       (b) ý is a maximal ideal in =[ý] but not ℂ[ý] 
(c) ý is a maximal ideal in ℂ[ý] but not in =[ý]       (d) ý is a not maximal ideal in =[ý] and ℂ[ý]. 

 

DISCRPTIVE QUESTIONS  

 

1. Let ý, þ be commutative rings. And ă ∶ ý → þ be an onto ring homomorphism. Prove that  

(i) If � is a prime ideal in þ, then ă′(�) is a prime ideal in ý. 
(ii) If ý is a maximal ideal in þ  ă21(ý) is a maximal ideal in ý. 
Do the above results hold if ă is not onto? Justify your answer.  

2. Prove or disprove:  

If ý, þ are commutative rings and ă: ý → þ is a ring homomorphism then  

(i) � is a prime ideal in ý ⇒ ă (�)  is a prime ideal in þ. 
(ii) ý is a maximal ideal in ý ⇒ ă(ý) is a maximal ideal in þ. 

3. Prove that  

(i) ý is an integral domain iff {0} is a prime ideal in ý.  
(ii) ý is a field iff {0} is a maximal ideal in ý.  
 

4. Let ý be a ring and ý be an ideal of ý. Let ý be an ideal of ý containing ý, and let ý̅ = ý/ý be the 

corresponding ideal of ý/ý. Prove that ý is maximal if and only if ý̅ is maximal.  



5. Let ý = {(þ ÿÿ þ) ∶ þ, ÿ ∈ %}.Let  � ∶ ý → % be defined by � (þ ÿÿ þ) = þ 2 ÿ  Then,  

           Is ker � a prime ideal? Is ker � maximal ideal? Justify your answer. 

6. Show that the following ideals are maximal in the indicated ring  

 

 (a) ý = {þ + ÿ√25 ∶ þ, ÿ ∈ %, þ 2 ÿ �Ā Ă�Ăÿ } in %[√25] 
 (b)  +ý2 + 1, in =[ý] 
 (c)  ý = {(3ý, þ): ý, þ ∈ %} in % × % 

 (d) ý = {ă ∈ ý: ă(0) = 0} in the  ring of continuous function from = to =  

 (e)  (√2)  in %[√2]   
(f) I= {þ + ÿ �/ þ  þĀā 2 = ÿ þĀā 2} in %[�] 

7. Find the maximal ideals of the following rings  

  a) ý8  b) ý10  c) ýý × ýýunder component wise addition and multiplication. 

(d) %24          (e) ℚ             (f) % ⊕ % 

8. Determine the maximal ideals of each of the following  

(a) = × =         (b) =[ý]/(ý2)          (c) =[ý]/(ý2 2 3ý + 2)        (d) =[ý]/(ý2 + ý + 1) 

(e)ý = {ÿĀ ∶ þ, ÿ ∈ %, (þ, ÿ) = 1, ÿ �Ā Āāā} 

9. Is (2) a maximal ideal in %[�]? Justify your answer.  

 

10. Show that the following ideals are prime ideal in the indicated ring  

(a)  ý is set of all polynomials all of whose coefficients are even in %[ý]. 
(b) ý = {ă(ý): ă(0) = 0} in %[ý]. Also show that ý is not maximal ideal.  

(c) ý = {(ý, 0): ý ∈ %} in % × %  . Also show that ý is not maximal ideal. 

(d)  ý = {(þ ÿĀ ā) : þ, ÿ, Ā, ā ∈ % ā���Ā�ÿýĂ ÿþ 5} in ý2(%) 

(e) (ý3 + ý + 1) �ÿ  ý2 [ý]    

(f) ý = {(3ý, þ): ý, þ ∈ ý} in ý × ý under component wise addition and multiplication. 

(g)  (ý2 + 1) in  %[ý]. Also show it is not maximal 

 

 

11. Determine which of the following are prime ideals in %[�]? 

(i) (2)            (ii) (3)         (iii) (1 + �)             (iv) (2 + �)  

12. Show that (2 + �) is a maximal ideal in %[�]. How many elements does %[�]/(2 + �) have?  

13. Consider the ring %[√ā], where ā is not 1 and is not divisible by square of number. Define þ: %[√ā] → %+ as þ(þ + ÿ√ā) = |þ2 2 āÿ2|. Show that  

(a) þ(ý) = 0 if and only if ý = 0            (b) þ(ýþ) = þ(ý)þ(þ) 

(c) þ(ý) = 1 if and only if ý is unit         (d) ý is irreducible if þ(ý) is prime   

 

14. In %[√5], prove that 2 and 1 + √5 are irreducible but not prime. 



 



  Paper II                                            Practical No.6    Semester VI 

Polynomial Rings, Fields 

Objective Questions 

 

1. If þ1 = %[√2 ] = {þ + ÿ√2 ∶ þ, ÿ ∈ %}, þ2 = %[√ 5] = {þ + ÿ√5 ∶ þ, ÿ ∈ %}, þ3 = ℚ[√2 ] ={þ + ÿ√2 ∶ þ, ÿ ∈ ℚ}, þ4 = %[�] = {þ + ÿ� ∶ þ, ÿ ∈ %} , then  

(a) þ1, þ2, þ3, þ4 are integral domains which are not fields. 

(b) þ1, þ2, þ4 are integral domains which are not fields and þ3 is a field.   

(c) þ1, þ2, þ3, þ4 are all fields  

(d) None of the above 

2. Consider the ring ÿ = {(þ þþ þ)  þ ∈ ℚ} 

(a) ÿ is an integral domain which is not a field            

(b) ÿ is a field with multiplicative identity (12 1212 12) 

(c) ÿ is a non-commutative ring                                    

(d) None of these  

3. The quotient ring 
%[�](1+�) 

(a) an integral domain which is not a field         (b) a field having 2 elements 

(c) a field having 4 elements                               (d) a ring with proper zero divisors   

 

4. The ring 
=[�](�4+1) is  

(a) an infinite integral domain         (b) an infinite field  

(c) a finite field                                 (d) None of these   

 

5. Let þ and ÿ be rings. Consider the ring þ × ÿ under component wise addition and multiplication. 

(a) If þ, ÿ are fields, then þ × ÿ is a field 

(b) If þ, ÿ are integral domains, then þ × ÿ is an integral domain 

(c) þ × ÿ is not a field, whatever þ, ÿ may be. 

(d) None of these  

6. Let �1 and �2be fields having 9 and 16 elements respectively. Then, the number of (non-trivial) ring 

homomorphism from �1 to �2 are 

(a) One                          (b) zero                     (c) two                        (d) None of the above.  

7. 
=[�](�4+�) is  

(a) a finite field                    (b) an infinite integral domain which is not a field 

(c) an infinite field               (d) None of these   

8. Consider the following rings  

(i) %10        (ii) %17        (iii) {ÿĀ ∶ þ, ÿ ∈ %, ÿ b 0, ÿ Ā��} Then  

(a) (i), (ii) and (iii) are fields.        (b) (i), (ii) are fields  

(c) (ii), (iii) are fields                     (d) only (ii) is a field  

9. Let � be a field and þ be a subring of �. Then  

(a) þ is a field                                                (b) þ is an integral domain but may not be a field 



(c) þ may not be an integral domain               (d) þ may not be commutative  

10. There exists field of  

(a) 10 elements          (b) 7, 8, 9 elements        (c) 12 elements        (d) 6 elements   

11. Let þ = %[�]/(2�) Then  

(a) þ is a field                                        (b) þ is an integral domain but not a field 

(c) þ is not an integral domain               (d) þ is a finite commutative ring   

12. Let �1, �2 be fields, then �1 × �2 under component wise addition and multiplication is  

(a) a field                                         (b) an integral domain which is not a field  

(c) not an integral domain               (d) a field iff �1, �2 are finite 

13. The quotient field of quotients of %[√2] is  

(a) ℚ[√2]     (b) =          (c) ℚ         (d) ℂ 

14. The quotient field of quotient of %[�] is  

(a) ℚ[�]       (b) ℂ          (c) =       (d) None of the above   

15. The field of quotients of ℚ[�] is  

(a) =[�]          (b) ℂ[�]     (c) ℚ(�) = {ÿ(�)Ā(�) : ÿ(�), Ā(�) ∈ ý[�]. Ā(�) b 0, }      (d) None of these 

16. Which of the following statement is true?  

(i) þ is ring ⇒ þ[�] is ring          (ii) þ is division ring ⇒ þ[�] is division ring  

(iii) þ is field⇒ þ[�] is field.      (iv) þ is integral domain ⇒ þ[�] is integral domain.  

17. The polynomial ÿ(�) = 2�2 + 4 is reducible over  

(a) %          (b) ℚ           (c) =          (d) None   

18. Which of the following polynomials in %[�] satisfy an Eisenstein criterion for irreducibility in ℚ. 
(i) �2 2 12                                     (ii) 8�3 = 6�2 2 9� + 24 

(iii) 4�10 2 9�3 + 24� 2 18         (iv) 2�10 2 25�3 + 10�2 2 30 

(a) All are irreducible                                 (b) (ii) and (iii) are irreducible  

(c) (ii), (iii) and (iv) are irreducible            (d) only (i) is true  

19. The polynomial 8�3 2 6� + 1 is  

(a) reducible over %              (b) is reducible over ℚ 

(c) is irreducible over ℚ        (d) is irreducible over = 

20.  Let ÿ(�) ∈ %[�]. Which of the following is true?  

(a) If ÿ(�) is reducible over ℚ, then it is reducible over % 

(b) ÿ(�) is reducible over ℚ, but it may not be reducible over % 

(c)  ÿ(�)is reducible over ℚ 

(d) None of these   

21. Let ÿ(�) = �2 2 2, then  

(a) ÿ(�) is reducible in ℚ[�] 
(b) ÿ(�) is irreducible in ℚ[�] but reducible in ℚ[√2][�]. 
(c) ÿ(�0 is reducible over ℚ 

(d) None of these  

22. Let ÿ(�) = �2 2 2, then 

(a) ÿ(�) is reducible in %3[�] and %5[�] 
(b) ÿ(�) is irreducible in %3[�] but reducible in %5[�]. 



(c) ÿ(�) is reducible in %3[�] but irreducible in %5[�] 
(d) ÿ(�) is irreducible in %3[�] as well as in %5[�]. 

23. Let þ be a commutative ring and ÿ(�) be a polynomial of degree ÿ over þ. 
Then the no of roots of ÿ(�) in þ is  

(a) less than or equal to ÿ             (b) equal to ÿ 

(c) strictly less than ÿ                   (d) may be greater than ÿ  

24. The polynomial 2� + 1 is  

(a) unit in %8[�]                   (b) zero divisor in %8[�] but not nilpotent.  

(c) nilpotent in %8[�]           (d) None of the above 

25. Let ý = (�2 + � + 1) in ý�[�], 1 f ÿ f 10 Then, %�[�]/ý is a field if  

(a) ÿ f 5      (b) ÿ = 2       (c) ÿ = 3     (d) ÿ = 7 

26. The polynomial � is irreducible in  %�[�] 
(a) for each ÿ          (b) for ÿ g 3              (c) ÿ iff ÿ is prime      (d) not for all ÿ  

27. The polynomial �4 + 1 is irreducible over  

(a) =             (b) ℚ              (c) ℂ              (d) %2  

28. The number of roots of the polynomial �25 2 1 in %37 is  

(a) 25            (b) 5          (c) 24             (d) 1  

29. Let ÿ(�) = �3 2 �2 + 1 

(a) (ÿ(�)) is a maximal ideal in %2[�],  %3[�] and %5[�] 
(b) (ÿ(�)) is a maximal ideal in %3[�] þÿ� %5[�] but not in  %2[�] 
(c) (ÿ(�)) is a maximal ideal in %2[�]þÿ� %3[�] but not in  %5[�] 
(d) None of the above  

30. In the ring %[�], 
(a) (�) is a maximal ideal                           (b) (�) is a prime ideal which is not maximal   

(c) there is no maximal ideal in %[�]          (d) (�) is not a prime ideal  

31. Let ÿ(�) = �10 + �9 + �8 + ⋯ + � + 1 

       Ā(�) = �11 + �10 + ⋯ + � + 1    Then  

(a) ÿ(�), Ā(�) are both irreducible over %[�]. 
(b) ÿ(�), Ā(�) are not irreducible over %[�] 
(c) ÿ(�) is irreducible over %[�], Ā[�] is not  

(d) Ā(�) is irreducible over %[�], ÿ(�) is not 

32. Let þ be a commutative ring. Then  

(a) =[�] is an integral domain if þ is an integral domain  

(b)  =[�] is a field if þ is a field  

(c) =[�] may not be commutative  

(d) None of the above 

33. The polynomial ÿ(�) = � is  

(a) irreducible over any ring þ 

(b) irreducible but not prime over any ring þ. 
(c) can be factored in some polynomial ring.  

(d) has no roots   



34. 
�[�] (2 + �)⁄  is  

(a) a field having 3 elements      (b) a field having 5 elements  

(c) not an integral domain           (d) ab infinite integral domain  

35. In =[�], Let ý = {ÿ(�) ∈ =[�]; ÿ(2) = ÿ′(2) = ÿ′′(2) = 0}  

    þ = {ÿ(�) ∈ =[�]: ÿ(2) = 0, ÿ′(3) = 0}  

(a) ý, þ are ideals in =[�]                     (b) ý is an ideal, þ is not  

(c) Neither ý nor þ is an ideal               (d) ý is a prime ideal in =[�] 
 

 

DESCRIPTIVE QUESTIONS  

 

1. (a)Show that the rings ℚ[√2 ] = {ÿ + Ā√2 ∶ ÿ, Ā ∈ ý} and ý[�] = {ÿ + Ā � ∶ ÿ Ā ∈ ý} are fields.  

(b) Show that the rings %[√2], %[�] are integral domains but not fields, final their quotient fields.  

2. Check if the fields ý[√2 ] and ý[√5 ] are isomorphic.  

 

3. Show that %[�]/(3) is a field.  

4. Prove that the ring %2[�]/(�3 + � + 1) is a field, but %3[�]/(�3 + � +) is not a field.  

5. Find all roots of the polynomial; �2 + 3� + 2 over %[�]. 
6. List all polynomials of degree 2 over  

(a) %2[�]         (b) %3[�]           
7.  Show that (�) is not a maximal ideal in %[�]. Find all maximal ideals in %[�]. 
8. Determine which of the given polynomials are irreducible over ℚ. 

(i) �5 + 9�4 + 12�2 + 6          (ii) �4 + 3�2 + 3             (iii) �4 + � + 1 

(iv) �5 + 5�2 + 1                     (v) �3 2 5� + 10              (vi) �4 2 3�2 + 9 

(vii) 2�5 2 5�4 + 5                  (viii) �4 + 8 

9. Find all monic polynomials of degree 2 over %5. 

10. Show that the polynomial �4 + 1 is irreducible over %�[�]. where ā is prime ā > 2. 
 

11. Show that �3 + þ�2 + ÿ� + 1 ∈ %[�] is reducible over % iff either þ = ÿ or þ + ÿ = 22. 

12. Let ý = {ÿ(�) ∈ =[�]: ÿ(2) = ÿ′(2) = ÿ"(2) = 0} Show that ý is a principal ideal in =[�] and find 

its generator.  

13. Let ÿ(�) = �11 + �10 + ⋯ + �2 + � + 1 

       Ā(�) = �10 + �9 + ⋯ + �2 + � + 1  

Determine whether ÿ(�), Ā(�) are irreducible over ℚ. 
14. Show that �� 2 ā is irreducible over ℚ for each prime ā. 
15. Find all irreducible polynomials over = and ℂ. 
16. Determine all ideals in 

%[�](2,�3+1) where (2, �3 + 1) = (2) + (�3 + 1) 

17. Let = {þ0 + þ1� + ⋯ + þ��� ∶  þ0 ∈ %, þ� ∈ ℚ ÿĀÿ � g 1} . Show that þ is an integral domain. Find 

units and primes in þ. Is � a prime in þ. 
 



18. For any ring þ,  show that 
�[�]+�,  ≃ þ. 

 

 

19. Show that 
ℚ[�](�322) is a field  

 

20. Let ā be a prime. ā > 2 Show that the number of irreducible quadratic polynomials of the form �2 +þ� + ÿ is 
�(�21)2 . 

 

21. Let ā be a prime. Show that the number of irreducible polynomials in %�[�] is 
�(�+1)2 . 

 

22. Show that 
=[�](�2+1) is isomorphic to ℂ. 

23. Let � be a field and let þ be a non-zero element of �. 
(a) If þ ÿ(�) is irreducible in �[�], prove that ÿ(�) is irreducible in �[�] 
(b) If ÿ(þ�) is irreducible in �[�], prove that ÿ(�) is irreducible in �[�] 
(c) If ÿ(� + þ) is irreducible in �[�], prove that ÿ(�) is irreducible in �[�]. 
(d) use part (c) to prove that 8�3 2 6� + 1 is irreducible over ℚ 

24. If ā is a prime, prove that ��21 2 ��22 + ��23 & 2 � + 1 is irreducible over ý. 
25. Let � be a field having 32 elements. Then show that the only sub field of � is {0, 1} and � itself. 

26. Show that �2 + 1 and �2 + � + 4 are irreducible polynomials in %11[�]. Show that 
%11[�](�2+1) and %11[�](�2+�+4) are fields having 121 elements. 

 

27. Construct a field of order     (i) 25     (ii) 27 

28. Show that a finite field containing ā� elements where ā is a prime integer has characteristic ā. 
29. Suppose that ÿ(�) = �� + þ�21��21 + ⋯ + þ0  ∈  %[�]. If ÿ is rational such that � 2 ÿ divides ÿ(�). 

Show that ÿ is an integer.  

30. Show that for every prime ā there exists a field of order ā2. 
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Practical no 7. Unit-wise Theoretical Questions

Unit I

1. Let H be a subgroup of group G. Prove that the following statements are equivalent.

(a) aHa−1 ⊆ H for each a ∈ G.

(b) aHa−1 = H for each a ∈ G.

(c) Every left coset of H in G is also a right coset of H in G i.e. aH = Ha for each
a ∈ G.

(d) HaHb = Hab for each a, b ∈ G.

2. Let G be a group. Show that centre of a G is a normal subgroup of G.

3. If H is a normal subgroup of G and K is a subgroup of G, Show that HK = KH.

4. Let G be a group and a ∈ G, Show that N(a) = {x ∈ G : ax = xa} is a subgroup of G
and < a > is a normal subgroup of N(a).

5. Let G be finite group with a normal subgroup H such that (◦(H), ◦(G/H)) = 1 then show
that H is a unique subgroup of G of order H.

6. Let G be a group and H is a unique subgroup of a given order, then show that H is a
normal subgroup of G.

7. Let H and K be subgroup of a group G such that H ∩ K = {e} then show that hk =
kh, h ∈ H, k ∈ K.

8. Let G be a group such that (ab)n = anbn for some position integer n.

(a) Show that G(n) = {xn/x ∈ G} is a normal subgroup of G.

(b) Show that G(n− 1) = {xn−1) / x ∈ G} is a normal subgroup of G.

9. Let H be a normal subgroup of G and let
G

H
= {Ha : a ∈ G}. Show that HaHb = Hab is

a well defined binary operation in
G

H
and

G

H
is a group under this binary operation.

10. Let G be a group and H be a subgroup of G. If x2 ∈ H for each x ∈ G, then show that H
is a subgroup of G and G/H is Abelian.

11. If G/Z(G) is cyclic then prove that G is Abelian.

12. If a cyclic subgroup H of a group G is normal in G. Show that every subgroup of H is
normal in G .

13. Let G be a group and H be a normal subgroup of G. Then prove that

(a) (Ha)n = Han for all n ∈ Z.

(b) ◦(Ha) divides ◦(a).

14. Let G,G′ be groups and f : G → G′ be an onto homomorphism. Prove that



(a) kernel f is a normal subgroup of G and Imf is a subgroup of G′.

(b) If H ′ is a subgroup of G′ then f−1(H ′) = {h ∈ H : f(h) ∈ H ′} is a subgroup of
G containing ker f . If H ′ is normal in G′ then f−1(H ′) is normal in G.

(c) If H is a subgroup G then f(H) = {f(h) : h ∈ H} is a subgroup of G′ and
f(Ha) = f(H)f(a) for each a ∈ G. Further, if H is normal in G then f(H) is
normal in G′.

15. Let G be a group and H be a normal subgroup of G. Show that η : G → G/H defined by
η(a) = Ha is a group homomorphism and Ker η = H.

16. State and prove ”First isomorphism theorem / Fundamental theorem of homomorphism of
groups”.

17. State and prove ” Second isomorphism theorem of groups”.

18. State and prove ”Third isomorphism theorem of groups”.

19. State and prove Cayley’s theorem for finite group.

20. Show that An is a normal subgroup of Sn.

21. Show that

(i) finite cyclic group of order n is isomorphic to the group Zn of residue classes modulo
n.

(ii) Every infinite cyclic group is isomorphic to the group Z of integers under addition.

OR

(i) Show that any two cyclic groups of same order are isomorphic.

(ii) Show that any two infinite cyclic groups are isomorphic.

22. Classify groups of order ≤ 7 up to isomorphism.

(i) Show the there are two non-isomorphic groups of order 4.

(ii) Show that there are only two non-isomorphic groups of order 6.

23. If (G1, ·), (G2, ∗) are groups and G1 × G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2} with binary
operation ◦ defined by (g1, g2) ◦ (g′1, g′2) = (g1 · g′1, g2 ∗ g′2) then

(a) (G1 ×G2, ◦) is a group.

(b) if G1, G2 are abelian then G1 ×G2 is also abelian.

(c) If a ∈ G1, b ∈ G2 such that ◦(a) = m, ◦(b) = n, then (a, b)k = (ak, bk) and
◦(a, b) = lcm(m,n).

(d) If G1, G2 are cyclic then G1 × G2 is cyclic if and only if ◦(G1) and ◦(G2) are
relatively prime.
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(e) If H1, H2 are normal subgroups of G1, G2 respectively then H1 ×H2 is a normal

subgroup of G1 × G2 and
G1 ×G2

H1 ×H2

is isomorphic to the external direct product

G1

H1

× G2

H2

.

Unit II

1. R is a ring with multiplicative identity, then

(a) Show that the set of units in R form a group under multiplication.

(b) The set Z(R) = {a ∈ R : ax = xa; ∀ x ∈ R}, called the center of the ring is a
subring of R.

2. (a) Show that every element of a finite commutative ring is either a unit or a zero
divisor.

(b) Show that every element of Zn is either a unit or a zero divisor.

(c) Show that an integral domain has no non-zero nilpotent element.

3. Show that subring of an integral domain is an integral domain.

4. (a) Show that, characteristic of a ring R is n if and only if the order of the multi-
plicative identity of R is n in the group (R,+).

(b) Show that characteristic of an integral domain is either 0 or a prime.

5. (a) Let R be a ring with unity 1R and I be an ideal in R such that 1R ∈ I then prove
that I = R.

(b) Let R be a commutative ring and a ∈ R. Prove that Ra = (a) = {ra/r ∈ R} is
an ideal of R.

(c) Show that any ideal of the ring Z is of the form mZ for some m ∈ Z.

6. (a) If I is an ideal of a ring R, then show that R/I = {x+ I : x ∈ R} is a ring with
the operations (x+ I) + (y + I) = (x+ y) + I and (x+ I)(y + I) = xy + I.

(b) Let R be a commutative ring. If I, J are ideals in R, Show that I ∩ J , I + J and
IJ are ideals of R, where

I + J = {x+ y : x ∈ I, y ∈ J} and IJ =

{

n
∑

i=1

xiyi : xi ∈ I, yi ∈ J, n ∈ N

}

.

(c) Let R be a ring and I, J,K be ideals of R. Prove (a) I(J + K) = IJ + IK,
(I + J)K = IJ + JK. (b) If J ⊆ I, then I ∩ (J +K) = J + (I ∩K).

(d) For a ring R, show that any ideal of the ring of n× n matrices over R, Mn(R) is
of the form Mn(I) = {[aij] : aij ∈ I} for some ideal I of R.

7. Show that a commutative ring is a field if and only if it has no proper ideal.

8. Let I be an ideal in a ring R and η : R → R/I is defined by η(a) = a+ I for a ∈ R. Show
that η is a homomorphism and ker η = I.
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9. Let R be a commutative ring. Show that I = {a : a ∈ R, an = 0 for some n ∈ N} is an
ideal (called the nil radical) of R and R/I has no nilpotent element.

10. Let R,R′ be commutative rings and f : R → R′ be a ring homomorphism. Show that-

(a) If f is surjective, I is an ideal of R, then f(I) is an ideal of R′.

(b) If I ′ is an ideal of R′ , then f−1(I ′) is an ideal of R.

11. State and prove the First Isomorphism Theorem(Fundamental theorem of homomorphism)
of rings.

12. (Second Isomorphism Theorem of rings) Let A be a subring and B be an ideal of a ring R.
Then A ∩ B is an ideal of A and A/(A ∩ B) ' (A+B)/B.

13. (Third Isomorphism Theorem of rings) Let A,B be ideals of a ring R with A ⊆ B. Then
A/B is an ideal of R/B and (R/B)/(A/B) ' R/A.

14. Show that, J̄ is an ideal of the quotient ring R/I if and only if there is an ideal J ⊆ I of
the ring R such that J̄ = {x+ I : x ∈ J}.

15. There is exactly one non-zero ring homomorphism from Z into any ring R.

16. Let f : R → S be an onto ring homomorphism and K = ker f . Prove that there is one-one
onto correspondence between ideals of R containing K and ideals of S.

Unit III

Fields

1. Show that a field is an integral domain. Is the converse true? Justify your answer.

2. Show that a finite integral domain is a field. Give an example of an infinite integral domain
which is not a field.

3. Show that characteristic of a field is either zero or a prime number.

4. Show that the ring Zn of residue classes modulo n is field if and only if n is a prime number.

5. Show that a field has no ideals except 0 and itself.

6. Show that an ideal P in a commutative ring R is a prime ideal if and only if R/P is an
integral domain.

7. Show that an ideal M in a commutative ring R is a maximal ideal if and only if R/M is a
field.

8. (a) If R is a finite commutative ring prove that every prime ideal is maximal.

(b) If R is a commutative ring such that for a ∈ R there exists a n ∈ N (depending
on a) such that an = a then show that every prime ideal is maximal.

9. (a) Show that an ideal I in the ring Z of integers is a prime ideal if and only if I = (0)
or I = pZ where p is a prime number.

Sem VI Algebra Page 4 of 6



(b) Show that every non-zero prime ideal in Z is a maximal ideal.

(c) Show that an ideal I in the ring Z of integers is a maximal ideal if and only if
I = pZ where p is a prime number.

10. Show that a field contains a subfield isomorphic to Zp or Q.

11. Explain construction of quotient field of Z.

12. Show that the rings, Z[i],Z[
√
2],Z[

√
−5] are integral domain which are not fields. Show

that their quotient fields are Q[i],Q[
√
2],Q[

√
−5] respective.

Polynomial Rings

1. Let R be a ring. Let R[x] = {anxx + an−1x
n−1 + · · · a1x + a0 : ai ∈ R, n ∈ Z+}. Show

that R[x] is a ring with respect to usual addition and multiplication of polynomial. Further
show that if R is an integral domain, then R[x] is also an integral domain.

2. Let F be a field.

(a) Show that F[x] is an integral domain. Is it a field? Justify your answer.

(b) Show that only units in F[x] are the non-zero elements of F.

(c) Division Algorithm: For any pair of non-constant polynomials f(x), g(x) ∈ F[x], there
exist q(x), r(x) ∈ F[x] such that f(x) = g(x)q(x) + r(x) where r(x) = 0 or deg r(x) <
deg g(x).

3. Let F be a field. Show that every ideal of F [x] is principal ideal.

4. Let F be a field a ∈ F , and f(x) ∈ F [x]. Then a is a zero of f(x) if and only x − a is a
factor of f(x).

5. Define irreducible polynomials. Let F be a field, f(x) ∈ F [x] and deg f(x) = 2 or 3. Show
that f(x) is reducible over F if and only if f(x) has a zero in F .

6. Show that

(a) if F is a field, f(x) and g(x) in F [x] are associate if and only if f(x) = cg(x)
where c 6= 0 in R.

OR

if R is an integral domain f(x) and g(x) in R[x] are associate iff f(x) = cg(x)
where c is a unit in R.

(b) Let F be a field and let f(x), g(x), h(x) ∈ F [x]. If f(x) is irreducible over F and
f(x)|g(x)h(x),then f(x)|g(x) or f(x)|h(x).
(In R[x] or Q[x],C[x]) if f(x) is irreducible and f(x)|g(x)h(x),then f(x)|g(x) or
f(x)|h(x).

7. Let F be a field. Show that (p(x)) is a maximal ideal in f [x] if and only if p(x) is an
irreducible polynomial in F [x].

OR
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Let F be a field. Show that F [x]/ < p(x) > is a field if and only if p(x) is an irreducible
polynomial in F [x].

8. Show that any a non-zero ideal of F[x] is prime if and only if it is maximal.

9. Show that the only irreducible polynomials in R[x] are a linear polynomial x−a or quadratic
polynomial x2 + bx+ c such that b2 − 4c < 0, where a, b, c ∈ R.

OR

Show that the only maximal (or prime )ideals in R[x] are principal ideals < x − a > or
< x2 + bx+ c > such that b2 − ac < 0, a, b, c ∈ R.

10. Show that the only irreducible polynomials in C[x] are a linear polynomial x−α for α ∈ C.

OR

Show that the only maximal (or prime )ideals in C[x] are principal ideals < x−α > where
α ∈ C.

11. Eisenstein’s Criteria for Irreducibility Let f(x) = xn++an−1x
n−1+· · · a1x+a0 ∈ Z[x].

Let p ∈ Z be a prime such that p | ai, for all i = 1, 2, · · ·n − 1 and p2 - a0. Then f(x) is
irreducible in Q[x].

12. Using Eisenstein’s criteria show that the pth− Cyclotomic polynomial Φp(x) = xp−1+xp−2+
· · ·+ x+ 1 where p is prime, is irreducible over Q.

13. Let f(x) = anx
n + · · · + a0 ∈ Z[x] and an 6= 0 if r/s ∈ Q,(r, s) = 1, f(r/s) = 0 then show

that r/an, s/a0.

14. Show that p1/n is irrational where n > 1 and p is a prime.

Divisibility

1. Let R be a commutative ring and a, b, u 6= 0. Then show that

(a) If u is an unit in R then u|a.
(b) b ∈ (a) ⇔ a|b ↔ (b) ⊆ (a).

(c) a and b are associates ↔ (a) = (b)

(d) If a|1R ↔ a is a unit and R = (a).

2. Let R be an Integral Domain , Let p ∈ R. Then ,

(a) p is prime iff (p) is a non zero prime ideal of R.

(b) If p is prime then p is irreducible. Show that the converse is not true.

3. Prove that in Z (ring of integers) a non zero non unit element p is irreducible iff p is prime.

4. Let R be an Integral Domain and a ∈ R , a 6= 0R. If (a) is maximal then a is irreducible.
Give an example to show that converse is not true.
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5. Let R be a commutative ring and I, J be prime ideals of R. Show that, I ∩J is prime only
if I ⊆ J or J ⊆ I.

6. Let R be commutative and I, J be ideal of R and P is a prime ideal of R that contains
I ∩ J . Prove that either I ⊆ P or J ⊆ P .

7. Let p be a non-zero element in an integral domain R. Then, if p is irreducible then R/(p)
is a field and (p) is a maximal ideal.
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Topology of Metric Spaces and Real Analysis: Practical 3.1

Continuous Functions on Metric Spaces.

Objective Questions 3.1

. (Revised Syllabus 2018-19)

(1) Let d be the usual distance in R. For any A ⊆ R, dA : R −→ R is defined by dA(x) =
inf{d(x, a) : a ∈ A}. Then
(a) dR, dR\Q are not continuous on R and dQ(x) > 0 ∀x ∈ R \Q.
(b) dQ ≡ 0 and dR\Q ≡ 0 on R and dQ, dR\Q are continuous on R.
(c) dR, dR\Q are continuous on R and dR\Q(x) > 0 ∀x ∈ Q.
(d) None of the above.

(2) Let d denote the usual distance in R and for A ⊆ R, let

χA(x) =

{

1 if x ∈ A
0 if x /∈ A

.

Then
(a) χA is continuous on R if and only if A is an open subset of R.
(b) χA is continuous on R if and only if A is a closed subset of R.
(c) χA is continuous on R if and only if A = ∅ or A = R.
(d) None of the above.

(3) Consider the metrics d and d1 on N, where d is the induced distance from R with usual

distance and d1(m,n) =
∣

∣

∣

1
m
− 1

n

∣

∣

∣
for m,n ∈ N. Let i : N −→ N denote the identity map on

N. Then
(a) i : (N, d) −→ (N, d1) is continuous but i : (N, d1) −→ (N, d) is not continuous.
(b) i : (N, d) −→ (N, d1) is not continuous.
(c) i : (N, d1) −→ (N, d) is not continuous.
(d) None of the above.

(4) Let d1 and d2 be equivalent metrics on X and (Y, d) be any metric space. If f : (X, d1) −→
(Y, d) and g : (Y, d) −→ (X, d1) are continuous maps on X and Y respectively, then
(a) f : (X, d2) −→ (Y, d) is continuous, but g : (Y, d) −→ (X, d2) may not be continuous
(b) f : (X, d2) −→ (Y, d) may not be continuous, but g : (Y, d) −→ (X, d2) is continuous
(c) f : (X, d2) −→ (Y, d) and g : (Y, d) −→ (X, d2) are continuous on X and Y respectively.
(d) None of the above.

(5) Let A = {x ∈ R : sin x = 1
2
}, the distance in R being usual. Then

(a) A is an infinite closed set. (b) A is a finite closed set.
(c) A is an open set. (d) None of the above.

(6) Let (X, d) and (Y, d′) be metric spaces and f, g : X −→ Y be continuous maps. If A ⊆ X
such that f(x) = g(x) ∀ x ∈ A, then the statement which is not true is

1
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(a) f(x) = g(x) ∀x ∈ A◦

(b) f(x) = g(x) ∀ x ∈ A
(c) f(x) = g(x) ∀ x ∈ δA where δA is the boundary of A
(d) All the above statements are false

(7) Let (X, d) and (Y, d′) be metric spaces and f, g : X −→ Y be continuous maps. Let
A = {x ∈ X : f(x) = g(x)}. Then
(a) A is a dense subset of X. (b) A is a closed subset of X.
(c) A is an open subset of X. (d) None of the above.

(8) Let d denote the usual distance in R and d1 denote the discrete metric on R. Let i :
(R, d1) −→ (R, d) be the identity map. Then
(a) i(Q) ⊆ i(Q). (b) i−1(Q) ⊆ i−1(Q).
(c) i−1(Q) ⊆ i−1(Q). (d) None of the above.

(9) Let (X, d) and (Y, d′) be metric spaces and f : X −→ Y. Let {An}n∈N be a family of closed
subsets of X. Then the statement which is not true is
(a) If f is continuous on A1 and A2, then f is continuous on A1 ∪ A2.

(b) If f is continuous on each An, then f is continuous on
∞
⋃

n=1

An.

(c) If f is continuous on each An, then f is continuous on A =
⋂

n∈N
An, provided A 6= ∅

(d) None of the above.

(10) Let f : R2 −→ R (the distance in R and R2 are Euclidean) be defined by f(x, y) = |x|.
Then
(a) f is not continuous at (x, 0) for each x ∈ Z.
(b) f is not continuous at (0, 0).
(c) f is continuous on R2

(d) None of the above.

(11) f, g : R −→ R are any maps, such that f ◦ g and g ◦ f are continuous (distance being
usual). Then
(a) f : R −→ R and g : R −→ R are continuous
(b) f ◦ g = g ◦ f
(c) At least one of f and g is coninuous.
(d) Neither f nor g may be continuous.

(12) Let (X, d) be a metric space where X is a finite set and (Y, d′) be any metric space. Let
f : X −→ Y. Then the statement which is not true is
(a) f is continuous on X
(b) f(X) is bounded.
(c) If A is open in X, f(A) is open in Y
(d) If B is closed in Y, f−1(B) is closed in X.
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(13) Let (X, d) be a compact metric space and f : X −→ (0,∞). (distance usual) be a
continuous function. If inf{f(x) : x ∈ X} = m, then
(a) m may be 0 (b) m = 0 (c) m > 0 (d) m may be negative

(14) Let (X, d) be a finite metric space, |X| > 2. If f : X −→ R (usual distance) is a continuous
function, then
(a) |f(X)| ≥ 2 (b) f(X) = [m,M ] for some m,M ∈ R

(c) f is a constant function. (d) None of the above.

(15) Let (X, d) be a metric space. If f, g ∈ C (X ,R), then
(a) f + g ∈ C (X ,R), but f–g may not be in C (X ,R).
(b) f + g, f − g and 2f ∈ C (X ,R).
(c) f + g, f − g ∈ C (X ,R), but 2f may not be in C (X ,R)
(d) f + g, f − g ∈ C (X ,R), but fg may not be in C (X ,R)

(16) Let X1 = [0, 1];Y1 = [0,∞);X2 = (0, 1) ∪ (2, 3), Y2 = (0, 1);X3 = (0, 1), Y3 = {0, 1}. Then
there exists a continuous onto function from Xi −→ Yi when
(a) i = 1, 2, 3 (b) i = 1, 2 (c) i = 2 (d) i = 3

(17) Consider the map L : C [0 , 1 ] −→ R (usual distance) defined by L(f) =

∫ 1

0

f(t) dt. Then,

(a) L : (C [0 , 1 ], ‖ ‖1 ) −→ R is continuous but L : (C [0 , 1 ], ‖ ‖∞) −→ R is not continuous.
(b) L : (C [0 , 1 ], ‖ ‖∞) −→ R is not continuous.
(c) L : (C [0 , 1 ], ‖ ‖1 ) −→ R and L : (C [0 , 1 ], ‖ ‖∞) −→ R are both not continuous.
(d) None of the above.

(18) Consider the map φ : C [0 , 1 ] −→ R defined by φ(f) = f(0). Then
(a) φ : (C [0 , 1 ], ‖ ‖∞) −→ R is not continuous.
(b) φ : (C [0 , 1 ], ‖ ‖∞) −→ R is continuous.
(c) φ : (C [0 , 1 ], ‖ ‖∞) −→ R and φ : (C [0 , 1 ], ‖ ‖1 ) −→ R are not continuous.
(d) None of the above.

(19) Let (X, d) be a metric space and f ∈ C (X ,R) be a bounded function. Then f

(a) attains both bounds.
(b) attains at least one bound.

(c) may not attain either bound.
(d) None of the above.

(20) Let f : R −→ R be continuous function (distance usual) and A ⊆ R. Consider the
following statements:
(i) If A is closed and bounded, f(A) is closed and bounded.
(ii) If A is closed, f(A) is closed. (iii) If A is bounded, f(A) is bounded.
(a) (i), (ii), (iii) are true statements.
(b) (i) and (iii) are true, (ii) is not true.
(c) Only (i) is true.
(d) (i) and (ii) are true, (iii) is not true.
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(21) Let (X, d) be a compact metric space and f : X −→ R is continuous. Let (xn) be a
sequence in X. Which statement is false?
(a) If (xn) is convergent (f(xn)) is convergent.
(b) If (xn) is Cauchy, (f(xn)) is Cauchy.
(c) (f(xn)) has convergent subsequence.
(d) None of (a), (b), (c) are false.

Topology of Metric Spaces and Real Analysis: Practical 3.1

Continuous Functions on Metric Spaces

Descriptive Questions 3.1

(1) Let f, g : R −→ R be continuous function (with respect to usual distance). Let h : R2 −→
R2 be defined by h(x, y) = (f(x), g(y)). Show that h : (R2, d) −→ (R2, d) is Continuous
where d is Euclidean distance.

(2) Let f : R2 −→ R be continuous map. Show that g : R2 −→ R defined by g(x, y) =
f(x+ y, x− y) is continuous.

(3) Show that i : (R, d) −→ (R, d1) where d is usual distance in R and d1 is discrete metric on
R is not continuous where i is the identity map on R.

(4) Let (X, d) be a metric space and let A ⊆ X, If dA : X −→ R is defined by dA(x) = d(x,A).
Show that dA is continuous.

(5) X = M2(R) and ‖A‖ =

(

∑

1≤i,j≤2

a2(ij)

)
1
2

. Show that f : X −→ R (distance usual) defined

by f(A) = detA is continuous. Hence show that
(i) (GL)2(R) is an open subset of X.
ii) (SL)2(R) is a closed subset of X.

(6) Prove or disprove:
a) If (X, d) and (Y, d′) are metric spaces and f : X −→ Y is a continuous bijective map,
then for any open ball B in (X, d), f(B) is an open ball (Y, d′).
b) Let (X, d) and (Y, d′) be metric spaces. If (X, d) is complete and f : X −→ Y is
continuous and onto, then (Y, d′) is complete.

(7) Let (X, d) and (Y, d′) be metric spaces. Prove that f : X −→ Y is continuous on X if and
only if f is continuous on each compact subset of X.

(8) Let A,B be two compact subsets of a metric space (X, d) such that A∩B 6= ∅. Show that
d(A,B) > 0 and ∃ a ∈ A, b ∈ B such that d(A,B) = d(a, b).

(9) Let K ⊆ Rn be such that any continuous function fromK to R be bounded. Show that K
is compact.
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(10) Show that S1 = {(x, y) ∈ R2 : x2 + y2 = 1} is a compact subset of R2, distance being
Euclidean.

(11) Let f : X −→ (0,∞) be a continuous function, where (X, d) is a compact metric space.
Show that ∃ ε > 0 such that f(x) ≥ ε, ∀x ∈ X.

(12) ψ : (C[0, 1], ‖ ‖∞) −→ R (usual distance) defined by ψ(f) = f(0) is continuous.

(13) L : (C[0, 1], ‖ ‖∞) −→ R (usual distance) defined by L(f) =

∫ 1

0

f(t) dt is continuous.
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Topology of Metric Spaces and Real Analysis: Practical 3.2

Uniform Continuity and Fixed Point Theorem

Objective Questions 3.2

. (Revised Syllabus 2018-19)

(1) f : R \ {0} −→ R defined by, f(x) =
1

x
for x 6= 0 is uniformly continuous on

(a) (0, 1) (b) (0,∞) (c) [1,∞) (d) None of these.

(2) f(x) =
1

1 + x2
for x ∈ R is uniformly continuous on

(a) [0, 1] but not on [0,∞)
(b) [1,∞) but not on [0,∞)

(c) R

(d) None of these.

(3) Let A ⊆ R. If f, g : A −→ R are uniformly continuous on A, then
(a) f + g is uniformly continuous on A but f · g may not be uniformly continuous on A.
(b) f + g and f · g are uniformly continuous on A.
(c) Neither f + g nor f · g may be uniformly continuous on A.
(d) None of the above.

(4) Consider the following functions (distance in R is usual):

(i) f : [0, 2π] −→ R, f(x) = x sin x

(ii) f : (0, 1) −→ R, f(x) = 1
x

(iii) f : [0, 1]× [0, 1] −→ R, f(x, y) = x+ y ( distance in R2 Euclidean)

(a) (i), (ii), (iii) are uniformly continuous.
(b) (i) and (iii) are uniformly continuous, (ii) is not.
(c) Only (i) is uniformly continuous.
(d) Only (iii) is uniformly continuous.

(5) Suppose A and B are closed subsets of R and f : A ∪ B −→ R is uniformly continuous on
A as well as B. Then,
(a) f is uniformly continuous on A ∪ B.
(b) f is uniformly continuous on A ∪B if A ∩ B = ∅.
(c) f may not be uniformly continuous on A ∪ B.
(d) None of the above.

(6) f : [0,∞) −→ R defined by f(x) =
√
x is

(a) continuous on [0,∞) but not uniformly continuous on [0,∞).
(b) uniformly continuous on [0, 1] but not on [0,∞).
(c) uniformly continuous on [0,∞).
(d) None of the above.
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(7) If f, g : R −→ R are uniformly continuous on R, then
(a) The product f · g uniformly continuous on R.
(b) The composites f ◦ g and g ◦ f uniformly continuous on R.
(c) f 2 and g2 are uniformly continuous on R.
(d) None of the above.

(8) Let (X, d) be a metric space and A be a non-empty subset of X. Then dA : X −→ R

defined by dA(x) = d(x,A) = inf{d(x, a) : a ∈ A} is

(a) continuous on A but not on X.
(b) uniformly continuous on X.

(c) not uniformly continuous on X.
(d) None of these.

(9) Let (X, d) and (Y, d′) be a metric spaces and f : X −→ Y . Suppose (xn) is a Cauchy
sequence in X, then {f(xn)} is a Cauchy sequence in Y if

(a) f is continuous on X.
(b) f is uniformly continuous on X.

(c) X and Y are complete.
(d) None of these.

(10) Let A ⊆ R, A is bounded but not closed. Then
(a) Any continuous function from A to R is bounded.
(b) Any continuous function from A to R is uniformly continuous.
(c) Any continuous, bounded function from A to R attains bounds.
(d) None of the above.

(11) Let (X, d) and (Y, d′) be metric spaces and f : X −→ Y a uniformly continuous function.
Then the statement which is not true is
(a) Given a bounded subset A of X, f(A) need not be a bounded subset of Y .
(b) If {xn} is a Cauchy sequence in X, then {f(xn)} is a Cauchy sequence in Y .
(c) If {f(xn)} is a Cauchy sequence in Y , {xn} is a Cauchy sequence in X.
(d) If {xn} is convergent, then {f(xn)} is convergent.

(12) Consider the following maps:

(i) f : R −→ R such that f is differentiable and |f ′(x)| ≤M ∀ x ∈ R.

(ii) A linear transformation T : Rn −→ Rm.

(iii) A map f : R −→ R satisfying Lipchitz condition namely ∃ M ≥ 0 such that |f(x) −
f(y)| ≤M |x− y| ∀ x, y ∈ R.

Then
(a) (i) and (iii) are uniformly continuous.
(b) (i), (ii) and (iii) are uniformly continuous.
(c) only (iii) is uniformly continuous.
(d) None of above.

(13) Which of the following real valued functions are uniformly continuous on the give sets.
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(i) f(x) =
1

x
on (0, 1). (ii) f(x) = x

1
3 on [0, 1].

(a) Only (i) (b) only (ii) (c) both (i) and (ii) (d) Neither (i) nor (ii).

Topology of Metric Spaces and Real Analysis: Practical 3.2

Uniform Continuity and Fixed Point Theorem

Descriptive Questions 3.2

(1) Show that the function f(x) =
1

1 + x2
for x ∈ R is uniformly continuous on R.

(2) Prove or disprove:
If f, g : R −→ R are uniformly continuous on a nonempty set A ⊆ R then the product
function f · g is uniformly continuous on A.

(3) If f : R −→ R is such that f ′(x) exists ∀ x ∈ R and ∃ a constant M such that |f ′(x)| ≤
M ∀ x ∈ R, then show that f is uniformly continuous on R.

(4) If (X, d), (Y, d′) are metric spaces, then prove that any Lipschitz function f : (X, d) −→
(Y, d) is uniformly continuous. Hence, deduce that sin x, cos x are uniformly continuous on
R.

(5) Let A = (0, 1] ⊂ R. Define dA : Å → R as dA(x) = d(x,A). Draw graph of dA. Further,
prove that if (X, d) is a metric space and A ⊆ X then dA : X −→ R defined by dA(x) =
d(x,A) for x ∈ X is uniformly continuous on X.

(6) Let f : [a, b] −→ [a, b] be differentiable and |f ′(x)| ≤ c with 0 < c < 1. Then show that f
is a contraction of [a, b].

(7) Let X and Y be metric spaces. Assume that Y is a discrete metric space and that f :
X −→ Y is a contraction. What can you conclude about f?

(8) Define a sequence of positive real numbers by letting x0 to be any positive real number and
xn+1 = (1+ xn)

−1. Show that this sequence converges and find its limit. (Hint: Prove that

f is a contraction mapping where f : [x0,∞) → R defined as f(x) =
1

1 + x
).

8
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Topology of Metric Spaces and Real Analysis: Practical 3.3

Connected Sets , Connected Metric Spaces

Objective Questions 3.3

. (Revised Syllabus 2018-19)

(1) Let (X, d) be a discrete metric space
(a) X is connected.
(b) X is connected only if X is infinite.
(c) X is connected if and only if X is a singleton set.
(d) None of above.

(2) Let d be usual distance in R and d1 be the discrete metric in R. Then
(a) [0, 1] is a connected subset (R, d) as well as (R, d1).
(b) [0, 1] is connected subset of (R, d) but not connected subset of (R, d1).
(c) [0, 1] is not a connected subset of (R, d) but a connected subset of (R, d1)
(d) [0, 1] is not a connected subset of (R, d) as well as (R, d1)

(3) If A is a connected subset of (R, d) ( d being usual distance) then
(a) A◦ and A are connected.
(b) A◦ may not be connected but A is connected.
(c) Both A◦ and A may not be connected.
(d) A◦ is connected, but A may not be connected.

(4) Let A,B be connected subsets of (R, d) where d is the usual distance in R. If A ∩ B 6= ∅,
then the following set may not be connected.
(a) A ∪ B (b) A ∩ B (c) A \B (d) A× B in R2 ( Euclidean distance).

(5) Let A ⊆ Q. If A is a connected subset of (R, d) where d is usual distance then
(a) A = Q (b) A is an infinite bounded set.
(c) A is a singleton set. (d) None of the above.

(6) Consider the following subsets of (R2, d) where d Euclidean .
(i){(x, y) ∈ R2 : xy = 1} (ii){(x, y) ∈ R2 : x = 0}
(iii){(x, y) ∈ R2 : xy = 0} Then,
(a) (i), (ii)(iii) are all connected. (b) (ii), (iii) are connected.
(c) Only (iii) is connected. (d) Only (i) is connected.

(7) Let A,B be non-empty closed subsets of a metric space (X, d). If A ∪ B and A ∩ B are
connected subsets of X, Then6 (a) A and B are both connected.
(b) A and B are both not connected.
(c) A and B are connected if and only if A = B
(d) None of these.

(8) Let (X, d) be a finite metric space. If A ⊆ X is connected then
(a) A = X (b) A 6= X (c) A is a singleton set. (d) A has more than one element.

9
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(9) If A,B are connected subsets of (R2, d) where d is usual distance and A ∩ B 6= ∅, then
(a) A ∪ B is connected but A ∩ B may not be connected.
(b) A ∪ B may not be connected but A ∩ B is connected.
(c) A ∪ B and A ∩ B are connected.
(d) None of the above.

(10) Consider (R2, d) where d is Euclidean metric and A be an open ball in R2 and L be a line
in R2. Then
(a) A ∪ L is connected if L does not intersect A.
(b) A ∪ L is connected if L intersects A.
(c) A ∪ L is disconnected if L intersects A but is not a tangent to A.
(d) Cannot say.

(11) In (R2, d) where d is Euclidean distance, the following set is not connected.
(a) R2 \Q×Q.
(b) R2 \ {(0, 0)}
(c) R2 \ {(x, y) : y = 0}
(d) None of the above.

(12) If A,B are connected subsets of (R, d) where d is usual and A ∩ B 6= ∅, then
(a) A ∪ B is connected but A ∩ B may not be connected.
(b) A ∪ B may not be connected but A ∩ B is connected.
(c) A ∪B and A ∩ B are connected.
(d) None of the above.

(13) Let A and B be connected subsets in a metric space (X, d) and A ⊆ C ⊆ B Then,
(a) C is connected .
(b) C◦ is connected.
(c) C is connected.
(d) C ∩ A is connected.

Topology of Metric Spaces and Real Analysis: Practical 3.3

Connected Sets , Connected Metric Spaces

Descriptive Questions 3.3

(1) Let (X, d) be a metric space and A,B ⊆ X be closed. Prove that A ∩ Bc and B ∩ Ac

separated.

(2) Let (X, d) be a metric space and A,B,C ⊆ X. If A and B are separated, B and C are
separated, then prove that A ∪ C and B are separated.

(3) Find the components of the followings:
(i) [0, 1] ∪ [2, 3] with usual distance.
(ii) (0, 1) ∪ {2, 3} with usual distance .
(iii) Q

10
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(iv) R \Q
(v) [0, 1] with distance metric.
(vi) {1, 2, 3} with any metric.
(vii)N with usual distance .
(viii) {(x, y) ∈ R2 : x ∈ Q or y ∈ Q} with Euclidean distance in R2.

(4) Find the connected subsets of the following metric spaces:
(i) (X, d) where d is discrete metric.
(ii) (X, d) where X is a finite set.
(iii)(N, d) where d is usual distance in R.
(iv) (Q, d) where d is usual distance in R

(5) Show that the following subsets of (R2, d) (d being Euclidean distance) are not connected.
(i) {(x, y) ∈ R2 : x2 − y2 = 1}
(ii) {(x, y) ∈ R2 : y 6= 0}
(iii) R2 \ {(x, y) ∈ R2 : y = 6}

(6) Prove or disprove:

(i) If A,C are connected subsets of a metric space and A ⊆ B ⊆ C, then B is connected.

(ii) If A◦ and ∂A are connected then A is connected.

(iii) If A,B are connected then A ∪B,A ∩ B are connected.

(iii) An open ball in a metric space is connected.

(iv) If A is a connected subset of a metric space (X, d), then A◦ and ∂A ( boundary of A)
are connected.

11
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Topology of Metric Spaces and Real Analysis: Practical 3.4

Path Connectedness, Convex sets, Continuity and Connectedness

Objective Questions 3.4

. (Revised Syllabus 2018-19)

(1) Let (X, d) be a connected metric space. If f : X −→ R (d usual) is a non-constant
continuous function .Then, f(X) is
(a) finite set (b) countable set. (c) singleton set (d) uncountable set.

(2) The unit circle S1 = {x ∈ R2 : ‖x‖ = 1} is (distance Euclidean)

(a) Compact and Connected
(b) Compact but not Connected

(c) Connected but not Compact
(d) neither Compact nor Connected

(3) Let (X, d) be a finite metric space ,|X| ≥ 2. If f : X −→ R (usual distance) is a continuous
function, then
(a) |f(X)| ≥ 2
(b) f(X) is connected.
(c) If f(X) is connected then f is a constant function.
(d) None of these.

(4) Let A be a non-empty connected subset of R2 (distance Euclidean). Let S = {‖a‖ : a ∈ A}.
If every element in S is a rational number then
(a) A is a singleton set.
(b) Each point in A lies on a circle Cr where Cr = {(x, y) ∈ R2 : x2 + y2 = r2} for some
r ∈ Q

(c) Each point in A lies on a parabola x2 = ry for some r > 0.
(d) None of the above.

(5) Let (X, d) be a connected metric space and A ⊆ X consider χA : X −→ R defined by

χA(x) =

{

1 if x ∈ A
0 if x /∈ A

(a) If χA is continuous on X, then A is a finite set.
(b) If χA is continuous on X, then A = ∅ or A = X.
(c) If χA is continuous on X then A is a non-empty proper subset of X.
(d) None of the above.

(6) If f : [a, b] −→ R is a continuous function, then f([a, b]) is
(a) (0,M ] for some M > 0 (b) (m,M) for some m,M ∈ R

(c) [m,M ] for m,M ∈ R (d) None of these.

12
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(7) Which of the following statements is false in Rn ?
(a) Continuous image of a compact set is compact.
(b) Continuous image of a connected set is connected.
(c) Continuous image of a path connected set is path connected.
(d) None of the above.

(8) Let (X, d) be a connected metric space which is not bounded. Let x0 ∈ X and
Ar = {x ∈ X : d(x, x0) = r}(r > 0). Then
(a) Ar = ∅ except for finitely many positive real number r.
(b) Ar 6= ∅ ∀ r > 0
(c) Ar = ∅ ∀ r > 0
(d) None of these.

(9) Let (X, d) be a connected metric space and f : X −→ Z be a continuous map. Then
(a) f is onto . (b) f is one-one.
(c) f is bijective. (d) f is constant

(10) Rn \ {0Rn} is not path connected if
(a) n = 3, (b) n = 4 (c) n = 1 (d) None of these.

(11) In (R2, d) (d Euclidean distance), the following set is not path connected.

(a) R2 \Q×Q

(b) R2 \ {(0, 0)}
(c) R2 − {(x, y) : y = 0}
(d) B((0, 0), r) \ {(0, 0)}

(12) In (R2, d) (d Euclidean distance), the following set is path connected.
(a) B((0, 0), 1) ∪ {(x, y) ∈ R2 : y = 1}
(b) B((0, 0), 1) ∪ {(x, y) ∈ R2 : y = 2}
(c) B((0, 0), 1) ∪ {(x, y) ∈ R2 : x = 2}
(d) None of the above.

(13) Which of the following statements is false:
(a) A path connected subset of Rn (distance being Euclidean) is connected.
(b) A connected subset of Rn (distance being Euclidean) is path connected.
(c) Union of two path connected subsets A,B in Rn distance being Euclidean such that
A ∩ B 6= ∅ is again path connected.
(d) If A,B are two path connected subsets of Rn (distance being Euclidean) such that
A ∩ B 6= ∅ then A ∩ B is path connected.

(14) Let (X, d) and (Y, d′) be metric spaces. If f : (X, d) −→ (Y, d′) is a continuous function,
then
(a) Number of components of (X, d) ≤ Number of components of (Y, d′).
(b) Number of components of (X, d) ≥ Number of components of (Y, d′).
(c) Number of components of (X, d) = Number of components of (Y, d′).
(d) Cannot say.

13



US/AMT603 Sem VI,Paper3:Topology of Metric Spaces and Real Analysis, Rev. Syl. 2018

(15) Let (X, d) and (Y, d′) be metric spaces and f : (X, d) −→ (Y, d′) be a bijective continuous
function, then
(a) Number of components of (X, d) ≤ Number of components of (Y, d′).
(b) Number of components of (X, d) ≥ Number of components of (Y, d′).
(c) Number of components of (X, d) = Number of components of (Y, d′).
(d) Cannot say.

Topology of Metric Spaces and real Analysis: Practical 3.4

Path Connectedness, Convex sets, Continuity and Connectedness

Descriptive Questions 3.4

(1) Prove that the following subsets of Rn (distance being Euclidean) are convex and hence
path connected. (i) an open ball (ii) a closed ball (iii) a line

(2) Let (X, d) be a metric space and A be a proper non-empty subset of X. If the characteristic
function χA is continuous on X, show that X is not connected.

(3) Show that Br((0, 0)) \ {(0, 0)} is path connected in R2 with Euclidean distance.

(4) Show that R2 \ S × S where S is any countable subset of R is path connected. (Hint: For
any x, y ∈ R2 \ S × S there are uncountable lines passing through x and y).

(5) Prove or disprove :

(a) If A is a path connected subset of Rn (distance being Euclidean) thenA◦ is path
connected.

(b) If {An}n∈N is a sequence of path connected subsets of R2 (distance being Euclidean)
such that An+1 ⊆ An ∀n ∈ N and ∩n∈NAn 6= ∅ then ∩n∈NAn is connected.

(6) (a) If (X, d) is a connected metric space and f : X −→ Z a continuous function, prove
that f is constant.

(b) If (X, d) is a connected metric space and (Y, d′) is any metric space, Y being a finite
set, then show that any continuous function f : X −→ Y is constant.

(c) Let (X, d) be a connected metric space and (Y, d1) be a discrete metric space. Show
that any continuous function f : X −→ Y is constant.

(7) Let (X, d) be a connected metric space which is not bounded. Prove that for each x0 ∈ X
and each r > 0, the set {x ∈ X : d(x, x0) = r} is non-empty.

(8) Give an example of a subset of Rn (distance being Euclidean) which is connected but not
path connected.

(9) Show that if (X, d) is a connected metric space then either X is countable or X is singleton.

(10) Show that the following sets are path connected subsets of R2.

14
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(i) E = {(x, y) ∈ R2, x > 0, x2 − y2 = 1}
(ii) Er = {(x, y) ∈ R2 : x2 + y2 = r2}
(iii) E = {(x, y) ∈ R2 : xy = 0}
(iv) E = {(x, y) ∈ R2 : y2 = x} ∪ {(x, y) ∈ R2 : y2 = −x}
(v) E = {(x, y) ∈ R2 : y = 0}
(vi) E = {(x, y) ∈ R2 : 1 < 2x+ y < 3}
(vii) S1 = {(x, y) ∈ R2 : x2 + y2 = 1}
(viii) E = {(x, y) ∈ R2 : 0 < x < 2, 1 < y < 5}

15
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Topology of Metric Spaces and Real Analysis: Practical 3.5

Pointwise and Uniform Convergence of Sequences of Functions and Properties

Objective questions 3.5

. (Revised Syllabus 2018-19)

(1) χn : R −→ R χn(x) =

{

1 if x ∈ [−n, n]
0 if x /∈ [−n, n]

(a) {χn} converges pointwise to 0 on R.
(b) {χn} does not converge uniformly on R.
(c) {χn} converges uniformly to 1 on R.
(d) None of the above.

(2) Let fn(x) = sinnx for x ∈ R. and gn(x) =
fn(x)

n
∀x ∈ R. Then

(a) {fn} and {n} are uniformly convergent on R.
(b) {fn} and {n} are not pointwise convergent on R.
(c) {gn} is uniformly convergent on R but {fn} is not.
(d) {fn} is uniformly convergent on R but {gn} is not.

(3) Let fn : [0, 1] −→ [0, 1] be defined by fn(x) = x ∗ χn(x) where χn(x) =















0 if x /∈
[

0,
1

n

]

1 if x ∈
[

0,
1

n

]

(a) {fn} converges uniformly to 0 on [0, 1].
(b) {fn} converges pointwise to 1 on [0, 1] but does not converge uniformly.
(c) {fn} converges uniformly to 1 on [0, 1].
(d) None of the above.

(4) The least integer value of k for which

{

e−nx

nk

}

is uniformly convergent on [0,∞) is

(a) 0 (b) 1 (c) −1 (d) 2

(5) If {fn} and {gn} are sequences of functions on S, S ⊆ R converging uniformly to f and g
respectively on S then the following sequence of functions may not converge uniformly of
S to the given function.
(a) {fn + gn} to f + g. (b) {fn − gn} to f − g. (c) {λfn} to λf. (d) {fn ∗ gn} to
f ∗ g.

(6) Let fn(x) =
xn

1 + xn
, 0 ≤ x ≤ 1.

(a) {fn} converges uniformly on [0, 1]

(b) {fn} converges uniformly on

[

1

2
, 1

]

16
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(c) {fn} converges uniformly on

[

0,
1

2

]

(d) {fn} converges uniformly on (0, 1]

(7) Let fn(x) =
xn

n
∀ x ∈ [0, 1]. Then

(a) {fn} converges uniformly to 0 but f ′
n does not converge uniformly on [0, 1].

(b) {fn} converges uniformly to 0 and f ′
n converges uniformly to 1 on [0, 1].

(c) {fn} does not converges uniformly on [0, 1] but f ′
n converges uniformly on [0, 1].

(d) None of the above.

(8) Let fn(x) =
x

x+ n
for x ∈ [0,∞). Show that {fn} does not converge uniformly on [0,∞)

but converges uniformly on [0, a] where a > 0. Also show that {fn} does not converge
uniformly on [a,∞], a > 0
(a) {fn} converges uniformly on [0,∞)
(b) {fn} converges uniformly on [a,∞), a > 0
(c) {fn} converges uniformly on [0, a], a > 0
(d) None of the above.

(9) gn(x) = xn−1(1− x), 0 ≤ x ≤ 1.
(a) {gn} is uniformly convergent on [0, 1].
(b) {gn} is not uniformly convergent on [0, 1].
(c) {gn} is not pointwise convergent on [0, 1].
(d) None of the above.

(10) {fn} and {gn}, gn 6= 0 are real valued functions on a non-empty subset S, S ⊆ R which
are uniformly convergent to the functions f and g respectively on S.
(a) {fn ∗ gn} need not be uniformly convergent on S.
(b) {fn/gn} is uniformly convergent on S.
(c) {fn ∗ gn} is uniformly convergent to f ∗ g on S if each fn is bounded on S.
(d) {fn ∗ gn} converges uniformly to f ∗ g on S if and only if either f ≡ 0 or g ≡ 0 on S.

(11) Let {fn} be a sequence of real valued functions on a set S converging uniformly to a
function f . Then the following statement is not true.
(a) Each fn is bounded on S =⇒ f is bounded on S.
(b) Each fn is differential on S =⇒ f is differentiable on S
(c) Each fn is continuous on S =⇒ f is continuous on S.
(d) Each fn is integrable on S =⇒ f is integrable on S.

(12) Let {fn} be a sequence of real valued R−integrable functions on [a, b] and f be the
pointwise limit of {fn}
(a) If lim

n−→∞

∫ b

a

fn 6=
∫ b

a

f then {fn} doesn’t converge uniformly to f .

(b) If {fn} doesn’t converge uniformly to f , then lim
n−→∞

∫ b

a

fn 6=
∫ b

a

f.
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(c) If lim
n−→∞

∫ b

a

fn 6=
∫ b

a

f then the convergence is uniform.

(d) None of the above.

(13) Let {fn} be a sequence of differentiable functions on (a, b). Let lim
n−→∞

fn(x) = f(x), lim
n−→∞

f ′
n(x) =

g(x) (pointwise limits)
(a) If f is differntable on (a, b), then f ′ = g on (a, b)
(b) If {f ′

n} converges uniformly to g, then f is differentable on (a, b) and f ′ = g.
(c) If f ′ = g on (a, b) then {fn} converges uniformly to f on (a, b).
(d) If {fn} converges uniformly to f, then f is differentiable and f ′ = g on (a, b)

(14) Let fn(x) =

{

x if x ≤ n

n if x ≥ n

(a) {fn} converges uniformly on R to a bounded function.
(b) {fn} converges uniformly on R to an unbounded functions.
(c) {fn} is not pointwise convergent on R.
(d) {fn} converges pointwise on R.

(15) Let fn(x) =
x

1 + nx2
(a) {fn} converges uniformly on R but {f ′

n} does not converge uniformly on R.
(b) {fn} converges uniformly on R and {f ′

n} also converges uniformly on R.
(c) {fn} does not converge uniformly on R but {f ′

n} converges uniformly on R.
(d) Neither {fn} nor {f ′

n} converge uniformly on R.

(16) Let fn(x) =
xn

1 + xn
on [0, 2] and f(x) = lim

n−→∞
fn(x)

(a) {fn} converges uniformly to f on [0, 2] and f is continuous at x = 1.
(b) {fn} does not converge uniformly to f on [0, 2] and f is not continuous on [0, 1].
(c) {fn} does not converge uniformly to f on [0, 2] but f is continuous on [0, 2].
(d) None of the above.

(17) fn(x) = xn for x ∈ [0, 1]
(a) The pointwise limit of {fn} is not continuous on [0, 1]
(b) {fn} converges pointwise on [0, 1] to a continuous function.
(c) {fn} converges uniformly on [0, 1] to a continuous function.
(d) None of the above.

(18) fn(x) =
xn

n
for x ∈ [0, 1]. Let lim

n−→∞
fn(x) = f(x), lim

n−→∞
f ′
n(x) = g(x)

(a) {fn} and {f ′
n} converge uniformly on [0, 1].

(b) {f ′
n} converges uniformly to g on [0, 1]

(c) {f ′
n} does not converge uniformly to g on [0, 1].

(d) None of the above
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Topology of Metric Spaces and Real Analysis: Practical 3.5

Pointwise and Uniform Convergence of Sequences of Functions and Properties

DESCRIPTIVE QUESTIONS 3.5

(1) Show that each of the following sequences of functions converges pointwise on (0, 1). Identify
the subintervals on which the convergence is uniform.

(i)
n

nx+ 1
(ii)

x

nx+ 1 (iii)
1

nx+ 1

(2) Examine the following sequences of functions for pointwise and uniform convergence on
[0, 1]

(i) nxe−nx2
(ii) n

1
2x(1− x2)n (iii) nx(1− x2)n

2

(3) Examine the following sequences of functions for pointwise and the uniform convergence
on [0,∞). In case of the convergence not being uniform, examine whether the convergence
is uniform on [0, a] or [a,∞) where a > 0.

(i) e−nx
(ii)

sinnx

1 + nx
(iii) x2e−nx

(iv)
xe

−x

n

n

(v) n2x2e−nx

(4) fn : (0,∞) −→ R, fn(x) =
n

1 + nx
. Then

(i) Show that {fn} is bounded on (0,∞) for each n ∈ N.

(ii) Find the pointwise limit f of {fn} and show that f is not bounded on (0,∞).

(iii) Is {fn} uniformly convergent on (0,∞)? State clearly the theorem you used.

(iv) Show that there does not exist α ∈ R+ such that |fn(x)| ≤ α for all n ∈ N and for all
x ∈ (0,∞).

(5) Show that the following sequences of functions do not converge uniformly on the given
domain.

(i) fn : [0,∞) −→ R, fn(x) =

{

x if x ≤ n

n if x > n

(ii) fn : [0,∞), fn(x) =
nx

1 + nx2
.

(iii) fn : (0, 1] −→ R, fn(x) =







0 if 0 < x ≤ 1
n

1

x
if 1

n
< x ≤ 1
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(6) fn : [0, 1] −→ R, fn(x) = nxe−nx. Show that each fn continuous on [0, 1], the pointwise
limit of {fn} continuous on [0, 1] but {fn} does not converge uniformly convergent on [0, 1].

(7) Show that the following sequence of functions do not converge uniformly on the given
domain.

fn : [0, 1] −→ R, fn(x) =

{

nx if 0 ≤ x ≤ 1
n

1 otherwise
.

(8) Let fn : [0, 1] −→ R, fn(x) =
1

nx+ 1
.

Show that {fn} converges pointwise to f on [a, b] and each fn and f are R−integrable on

[0, 1] with lim
n−→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x)dx but {fn} does converges uniformly on [0, 1].

(9) Let fn : [0, 1] −→ R, fn(x) =

{

n2 if 0 < x < 1
n

0 otherwise
. Show that {fn} does not converge

uniformly on [0, 1]. (Hint: show that if each fn is R-integrable on [0, 1] and fn −→ f

pointwise on [0, 1] but lim
n−→∞

∫ b

a

fn(x) is not convergent.)

(10) Let fn : [0, 1] −→ R is defined for n ≥ 2, fn(x) =



















n2x if 0 ≤ x ≤ 1
n

−n2

(

x− 2

n

)

if 1
n
≤ x ≤ 2

n

0 if 2
n
≤ x ≤ 1

. Show

that {fn} does not converge uniformly on [0, 1].
(Hint: Show that each fn is R-integrable on [0, 1] and fn −→ f pointwise on [0, 1] , but

lim
n−→∞

∫ 1

0

fn(x) 6=
∫ 1

0

f(x)dx.)

(11) Let fn : [−1, 1] −→ R, fn(x) =
√

x2 + 1
n2 . Given that fn −→ f uniformly on [−1, 1] where

f(x) = |x| for x ∈ [−1, 1]. Find lim
n−→∞

∫ 1

−1

fn(x) dx.

(12) Let fn : [0, 1] −→ R, fn(x) = x + n. Does {fn} converge pointwise at any x ∈ [−1.1].
Does sequence {fn} converge uniformly on [−1, 1]? Show that {f ′

n} converges uniformly on
[−1, 1].

(13) fn : R −→ R, fn(x) =
e−n2x2

n
. Find the pointwise limit function f of {fn} and g of {f ′

n}.
Does f ′

n −→ g uniformly on R?. Is f ′(0) = g(0)?
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Topology of Metric Spaces and Real Analysis: Practical 3.6

Objective Questions 3.6

. (Revised Syllabus 2018-19)

(1) The series
∞
∑

n=1

nx2

n3 + x3
is

(a) uniformly convergent on [0, A] where A > 0 but not on [0,∞).
(b) not uniformly convergent on [0, A] where A > 0.
(c) uniformly convergent on [0,∞).
(d) none of the above.

(2) The series
∞
∑

n=1

xn

n+ 1
is

(a) uniformly convergent on R.
(b) not uniformly convergent on [−a, a] where 0 < a < 1
(c) uniformly convergent on [−a, a] where 0 < a < 1.
(d) none of the above.

(3) The series
∞
∑

n=1

xn

xn + 1
is

(a) pointwise convergent on [1,∞).
(b) uniformly convergent on [0, a], a < 1.

(c) uniformly convergent on [0,∞).
(d) none of the above.

(4) The series
∞
∑

n=1

x

[(n− 1)x+ 1)][nx+ 1]
is

(a) uniformly convergent on [0,∞).
(b) uniformly convergent on [0, 1].

(c) uniformly convergent on [a, b], a > 0.
(d) none of the above.

(5) The series
∞
∑

n=1

(−x)n(1− x) is

(a) uniformly convergent on R.
(b) uniformly on [0, 1].
(c) uniformly convergent on [0, a] where 0 ≤ a < 1 but not on [0, 1].
(d) none of the above.

(6) The least value of integer k for which
∞
∑

n=1

sinnx

nk
converges uniformly on R is

(a) 1. (b) 2. (c) −1. (d) none of the above.
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(7)
∞
∑

n=1

|an| is convergent then
∞
∑

n=1

anx
n is

(a) uniformly convergent on R.
(b) uniformly convergent on any bounded interval.
(c) uniformly convergent on [−a, a], where 0 ≤ a < 1.
(d) none of the above.

(8) The series
∞
∑

n=1

xn(1− x)

(a) converges uniformly to x on [0, a], where 0 ≤ a < 1.
(b) converges uniformly on [0, 1).
(c) is not pointwise convergent at x = 1.
(d) none of the above.

(9) The series
∞
∑

n=1

x2

(1 + x2)n
(a) converges uniformly on (0,∞).

(b) converges uniformly on [a,∞), a > 0.
(c) does not converge uniformly on [a,∞), a > 0.
(d) none of the above.

(10) The series
∞
∑

n=1

1

(nx)2

(a) converges uniformly on R \ {0}.
(b) does not converge uniformly on [a,∞), a > 0.
(c) converges uniformly on [a,∞), a > 0.
(d) none of the above.

(11) Consider the series
∞
∑

n=1

xn(1− 2xn). Then

(a)

∫ 1

0

∞
∑

n=1

xn(1− 2xn)dx 6=
∞
∑

n=1

∫ 1

0

xn(1− 2xn)dx.

(b)

∫ 1

0

∞
∑

n=1

xn(1− 2xn)dx =
∞
∑

n=1

∫ 1

0

xn(1− 2xn)dx.

(c) it converges uniformly on [0, 1] and can be integrated term by term.
(d) none of the above.

(12) Let f(x) =
∞
∑

n=1

cosnx

n2
. Then

(a) None of the below statements are true.

(b)
∞
∑

n=1

cosnx

n2
is not uniformly convergent on [0, 1] and cannot be integrated term by term.
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(c)
∞
∑

n=1

cosnx

n2
is uniformly convergent on [0, 1] and can be integrated term by term.

(d)
∞
∑

n=1

cosnx

n2
is not uniformly convergent on [0, δ], where 0 ≤ δ < 1 and

lim
δ−→1

lim
n−→∞

∫ δ

0

n
∑

k=1

cos kx

k2
dx 6= lim

δ−→1

∫ δ

0

∞
∑

n=1

cosnx

n2
dx

(13) The power series expansion for

∫ x

0

e−t2dt is

(a)
∞
∑

n=0

x2n+1

(2n+ 1)!
(b)

∞
∑

n=0

(−1)nx2n+1

n!(n+ 1)
(c)

∞
∑

n=0

(−1)nx2n+1

(n+ 1)!
(d)

∞
∑

n=0

(−1)nx2n+1

(2n)!(n+ 1)

(14) If R is the radius of convergence of power series
∞
∑

n=0

cnx
n, then radius of convergence of

the power series
∞
∑

n=0

cknx
nk is (a) Rk (b) R (c) R

1
k (d)

1

Rk

(15) If R is the radius of convergence of power series
∞
∑

n=0

cnx
n, then radius of convergence of

the power series
∞
∑

n=0

cnx
nk is (a) Rk (b) R (c) R

1
k (d)

1

Rk

(16) If R is the radius of convergence of power series
∞
∑

n=0

cnx
n then the radius of convergence

of
∞
∑

n=0

(−1)n

n2
cnx

n is (a) R2 (b) R (c) 0 (d) ∞

(17)
∞
∑

n=0

anx
n has radius of convergence R1 and

∞
∑

n=0

bnx
n, has radius of convergence R2.

Let Cn =

{

an if n is even

bn if n is odd
. Then the radius of convergence of the power series

∞
∑

n=0

cnx
n

is
(a) R1 +R2 (b) min{R1, R2} (c) max{R1, R2} (d) None of the above.

(18) Let R be the radius of convergence of power series
∞
∑

n=0

cnx
n, then the following powe series

does not have radius of convergence R.

(a)
∞
∑

n=0

(−1)ncnx
n (b)

∞
∑

n=0

cn
n
xn (c)

∞
∑

n=0

(−1)nc2nx
n (d)

∞
∑

n=0

(−1)nncnx
n
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(19) Let
∞
∑

n=0

cnx
n be a power series with integer coefficients such that cn 6= 0 for infinitely many

n. If R is the radius of convergence of
∞
∑

n=0

xn, then

(a) R = 0 (b) R = ∞ (c) R ≤ 1 (d) R ≥ 1

(20) Let f(x) =
∞
∑

n=0

cnx
n for |x| < R. If f(x) is an even function for |x| < R, then

(a) cn = 0 ∀ n ∈ N.
(b) cn = 0 when n is even.

(c) cn = 0 when n is odd.
(d) None of the above.

(21) If
∞
∑

n=0

cnx
n has radius of convergence 1, then

(a) the power series converges at x = 1 and x = −1.
(b) the power series diverges at x = 1 and x = −1.
(c) the power series converges at x = 1 and diverges at x = −1.
(d) none of the above.

(22) Consider the power series
∞
∑

n=0

cnx
n, for which cn =







1

2k
if n = 2k

3k+1 if n = 2k + 1
.

Then the radius of convergence of
∞
∑

n=0

cnx
n is

(a) 2 (b)
√
2 (c)

1√
3

(d)
√
3

(23) If α is a non-zero real number then the radius of convergence of αnxn is

(a) |α| (b)
1

|α| (c) 0 (d) ∞

(24) If α and β are real numbers such that 0 < |β| < |α| then radius of convergence of
∞
∑

n=0

(αn + βn)xn is (a) |α| (b)
1

|α| (c) |β| (d)
1

|β|

(25) The series expansion log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · is valid if

(a) |x| ≤ 1 (b) |x| ≤ A for A > 0 (c) |x| < 1 (d) x > 0

(26) The series expansion 1 + 2x+ 3x2 + · · ·+ nxn−1 + · · · = 1

(1− x)2
is valid in

(a) R (b) (−1, 1) (c) [−1, 1) (d) [a, b] for any a, b ∈ R, a < b
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(27) Let E(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · · for x ∈ R. Then lim

x−→∞
xnE(−x) =

(a) 1 (b) 0 (c) ∞ (d) −1

(28) Let E(x) =
∞
∑

n=0

xn

n!
, C(x) =

∞
∑

n=0

(−1)n
x2n

(2n)!
, S(x) =

∞
∑

n=0

(−1)nx2n+1

(2n+ 1)!
, x ∈ R. Then

(a) E(x), C(x), S(x) are one-one
(b) Only E(x) is one-one

(c) C(x), S(x) are one-one
(d) None of the above.

(29) Let L : (0,∞) −→ R be defined as L(E(x)) = x and E(L(y)) = y, x ∈ R.

(a) L(1− y) = −
∞
∑

n=1

yn

n

(b) L(y) =
∞
∑

n=1

∞
∑

n=0

nyn

(c) L(y) =
∞
∑

n=1

yn

n+ 1

(d) None of the above.

(30) Let L : (0,∞) −→ R be defined as L(E(x)) = x and E(L(y)) = y, x ∈ R. Then
(a) L is represented by power series on (0, 1). (b) L is represented by power series on
(0,∞). (c) L is not represented by power series. (d) None of the above.

(31) Let cosh x =
E(x) + E(−x)

2
and sinh x

E(x)− E(−x)
2

, x ∈ R. Then the following identity

is not true.
(a) sinh(−x) = − sinh x, cosh(−x) = − cosh x (b) sinh(x + y) = sinh x cosh(y) +

cosh x sinh y (c)
d

dx
sinh x = cosh x (d) coshx +sinh2 x = 1

Topology of Metric Spaces and Real Analysis: Practical 3.6

Descriptive Questions 3.6

(1) Show that
∞
∑

n=1

xn(1−x) converges uniformly to x on [0, a], where 0 ≤ a < 1, but
∞
∑

n=1

xn(1−x)

is not uniformly convergent on [0, 1).

(2) Show that the series
∞
∑

n=1

(−x)n(1− x) converges uniformly on [0, 1].

(3) (i) Show that
∞
∑

n=1

1

(nx)2
does not converge uniformly on R \ {0} but converges uniformly

on [a,∞), a > 0.
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(ii) Show that
∞
∑

n=1

1

x2 + n2
is uniformly convergent on R.

(iii) Show that
∞
∑

n=1

1

xn + 1
is uniformly convergent on [a,∞), a > 1.

(iv) Show that
∞
∑

n=1

xn

xn + 1
is uniformly convergent on [0, a], a < 1 but not pointwise con-

vergent on [1,∞).

(v) Show that
∞
∑

n=1

x2

(1 + x2)n
does not converge uniformly on (0,∞) but converges uniformly

on [a,∞), a > 0.

(4) Show that each of the following series of functions converges uniformly on the indicated
interval.

(i)
∞
∑

n=1

e−nxxn, [0, A], A > 0.

(ii)
∞
∑

n=1

e−nx

n
, x ∈ [a,∞), a > 0.

(iii)
∞
∑

n=1

e−nx on [a,∞), a > 0.

(5) If
∞
∑

n=1

|an| <∞, then the series
∞
∑

n=1

an cosnx and
∞
∑

n=1

an sinnx converge on R.

(6) Show that the series
∞
∑

n=1

(−1)n(x2 + n)

n2
converges uniformly every bounded subset of R.

(7) Show that
∞
∑

n=1

sinnx

np
, p ≤ 1 is uniformly convergent on S = [−π,−a] ∪ [a, π] , a > 0.

(8) (i)
∞
∑

n=1

2x





e
−x

2

n2

n2
− e

−x
2

(n+1)2

(n+ 1)2



 in [a, b]. Show that the series converges uniformly to 2xe−x2

on [a, b]. Hence show that
∞
∑

n=1

∫ b

a

2x





e
−x

2

n2

n2
− e

−x
2

(n+1)2

(n+ 1)2



 dx = e−a − e−b.
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(ii)
∞
∑

n=1

xn(1−2xn). Show that the series does not converge pointwise at x = 1 but converges

pointwise to
x

1 + x
on [0, 1). Show that

∫ 1

0

x

1 + x
dx 6=

∞
∑

n=1

∫ 1

0

xn(1 − 2xn)dx. Hence

show that the series does not converge uniformly on [0, 1). State the result you used .
(Let D be a bounded subset of R and let f : D −→ R be a function. We say that f is
integrable over D if f is a bounded function and if there are a, b ∈ R with D ⊆ [a, b]
such that the function f ∗ : [a, b] −→ R defined by

f ∗(x) =

{

f(x) if x ∈ D

0 otherwise

is integrable on [a, b]. In this case, the Riemann integral of f over D is defined by
∫

D

f(x)dx =

∫ b

a

f ∗(x)dx.

Reference: A Course in Calculus an Real Ananlysis, Sudhir R. Ghorpade, Balmohan
V. Limaye,Second Edition, Springer, pg. no. 216 )

(iii)
∞
∑

n=1

[

nx

1 + n2x2
− (n− 1)x

1 + (n− 1)2x2

]

in [0, 1].

Show that

∫ 1

0

[ ∞
∑

n=1

[

nx

1 + n2x2
− (n− 1)x

1 + (n− 1)2x2

]

]

dx =
∞
∑

n=1

∫ 1

0

[

nx

1 + n2x2
− (n− 1)x

1 + (n− 1)2x2

]

dx.

but
∞
∑

n=1

[

nx

1 + n2x2
− (n− 1)x

1 + (n− 1)2x2

]

does not converge uniformly on [0, 1].

(9) Show that
∞
∑

n=1

1

n3 + n+ x2
is uniformly convergent on R and check that it can be differen-

tiated term by term.

(10) Find the radius of convergence of each of the following power series.

(i)
∞
∑

n=0

n3xn

(ii)
∞
∑

n=0

2n

n!
xn

(iii)
∞
∑

n=0

n3

3n
xn

(iv)
∞
∑

n=0

(n3−5n2+7n−2)xn

(v)
∞
∑

n=0

en

n+ 1
xn

(vi)
∞
∑

n=0

xn

(n+ 1)
√
n

(11) Find the interval of convergence of the following power series.

(i)
∞
∑

n=0

(x− 1)n−1

3nn2
(ii)

∞
∑

n=0

n!(x− 2)n

nn
(iii)

∞
∑

n=0

(x2 − 1)n

2n
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(iv)
∞
∑

n=0

(3x+ 6)n

n!
(v)

∞
∑

n=0

(x+ 3)n−1

n

(12) Find the radius of convergence of the power series
∞
∑

n=0

cnx
n, where cn =

h(h− 1) · · · (h− n+ 1)

n!
.

(13) Consider the power series
∞
∑

n=0

cnx
n with integer coefficients. If cn 6= 0 for infinitely many

n, then show that its radius of convergence is at most 1.

(14) Give an example of a power series with radius of convergence = 5 and interval of conver-
gence = (3, 13).

(15) If
∞
∑

n=0

cnx
n is a power series such that 0 < α < |cn| < β ∀ n ∈ N where α, β ∈ R, find its

radius of convergence.

(16) Let
∞
∑

n=0

anx
n and

∞
∑

n=0

bnx
n be power series such that

an =

{

1 if n is square of an integer

0 otherwise
bn =

{

1 if n = k! for some k ∈ N

0 otherwise
.

Find the radius of convergence of
∞
∑

n=0

anx
n and

∞
∑

n=1

bnx
n.

(17) If 0 < |α| < |β| then find the radius of convergence of
∞
∑

n=0

(αn + βn)xn and
∞
∑

n=0

(αn + βn)xn.

(18) Show that
1

1− x
=

∞
∑

n=0

xn for |x| < 1.

(19) By differentiating a suitable power series term by term, obtain the formula,

1 + 2x+ 3x2 + · · ·+ nxn−1 + · · · = 1

(1− x)2

for −a ≤ x ≤ a. What should be the value of ′a′ so that term by term differentiation is
valid?
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(20) If sin x = x − x3

3!
+
x5

5!
+ · · · for x ∈ R and

d

dx
(sin x) = cosx, ∀x ∈ R, then show that

cos x = 1− x2

2!
+
x4

4!
+ · · ·

(21) Show by integrating the series for
1

1 + x
, that log(1 + x) =

∞
∑

n=0

(−1)n+1x
n

n
.

(22) By integrating a suitable powe series over an interal [0, t], where 0 ≤ t ≤ 1, show that

1

2
=

∞
∑

n=1

1

n!(n+ 2)
.

(23) For |x| < 1, show that sin−1 x =
∞
∑

n=0

1.3.5. · · · .(2n− 1)x2n+1

2.4. · · · .(2n)(2n+ 1)
.

(24) For |x| < 1, show that tan−1 x =
∞
∑

n=0

(−1)nx2n+1

(2n+ 1)
.

(25) Find a series expansion for

∫ x

0

e−t2dt for x ∈ R.

(26) If
∞
∑

n=0

|an| <∞, prove that

∫ 1

0

( ∞
∑

n=0

anx
n

)

dx =
∞
∑

n=0

an
n+ 1

.
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Topology of Metric Spaces and Real Analysis: Practical 3.7

Miscellaneous.

. Revised Syllabus 2018-19

UNIT I : Continuous functions on Metric Spaces

(1) Let (X, d) and (Y, d′) be metric spaces. Show that f : X → Y is continuous at p ∈ X if
and only if for each sequence (xn) in X converging to p, the sequence (f(xn)) converges to
f(p) in Y .

(2) Let (X, d) and (Y, d′) be metric spaces and f : X −→ Y . Show that the following statements
are equivalent.

(i) f is continuous on X.

(ii) For each open subset G of Y, f−1(G) is an open subset of X.

(iii) For each closed subset F of Y, f−1(F ) is a closed subset of X.

(3) Let (X, d) and (Y, d′) be metric spaces. Show that f : X −→ Y is continuous at p ∈ X if
and only if for each sequence (xn) in X converging to p, the sequence (f(xn)) converges to
f(p) in Y .

(4) Let (X, d) and (Y, d′) be metric spaces. Show that f is continuous at x ∈ X if and only if
for each open subset U of Y containing f(x), ∃ an open subset V of X containing x such
that f(V ) ⊆ U .

(5) Let (X, d) and (Y, d′), (Z, d′′) be metric spaces. If f : X −→ Y is continuous and g : Y −→ Z
is continuous, then show using ε− δ definition or sequential criterion that g ◦ f : X −→ Z
is continuous. Give an example to show that converse of the above statement is not true.

(6) Let (X, d) and (Y, d′) be metric spaces. Show that f : X −→ Y is continuous on X if and
only if for each subset A of X, f(A) ⊆ (f(A)).

(7) Let (X, d) and (Y, d′) be metric spaces. Show that f : XßY is continuous on X if and only
if for each subset B of Y, (f−1(B)) ⊆ f−1(B).

(8) Let (X, d) and (Y, d′) be metric space and f : X −→ R (usual distance) be a continuous
function. If f(x0) > 0 for some x0 ∈ X, show that f(x) > 0, ∀x ∈ B(x0, δ).

(9) Let (X, d) and (Y, d′) be metric spaces. When is f : X −→ Y said to be uniformly contin-
uous? Give an example to show that a continuous map need not be uniformly continuous.

(10) Let (X, d) and (Y, d′) be metric spaces. If f, g : X −→ Y are continuous functions, then
show that F = {x ∈ X : f(x) = g(x)} is a closed subset of X. Hence, deduce that if
f(x) = g(x), ∀x ∈ D, where D is a dense subset of X, then f = g.
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(11) Let (X, d) and (Y, d′) be metric spaces. Show that f : (X, d) −→ (Y, d′) is a continuous
function if and only if f−1(B◦) ⊆ (f−1(B))◦ for each subset B of Y .

(12) Let (X, d) be a metric space and A ⊆ X. Using ε− δ definition show that fA(x) = d(x,A)
is a continuous map from (X, d) to (R, d) where d is the usual distance on R.

(13) Let f : R −→ R be a continuous function (distance is Euclidean ) and F be a closed
subset of R. Show that A = {x ∈ F : f(x) = 0} is a closed set in R. Is the result true if F
is not closed?

(14) Let (X, d) be a metric space. Show that f : (X, d) −→ (R, d) (where d is usual distance) is
continuous if and only if f−1(−∞, a) and f−1(a,∞) are both open in (X, d) for each a ∈ R.

(15) Show that the metrics d and d1 on a setX are equivalent if and only if i : (X, d) −→ (X, d1)
and i : (X, d1) −→ (X, d) are continuous functions, where i denotes the identity map on X.

(16) Let f : R −→ R (with respect to usual distance) and A = {(x, y) : y < f(x)}, B = {(x, y) :
y > f(x)}. Show that f is continuous on R if and only if A,B are open subsets of (R2, d)
where d is the Euclidean distance.

(17) Let X be a finite set and d be any metric on X. Show that any function f : X −→ Y is
continuous, where (Y, d′) is a metric space.

(18) Let (X, d) be a discrete metric space and (Y, d′) be any metric space. Show that any
function f : X −→ Y is continuous.

(19) Show that any function f : (N, d) −→ (X, d′) is continuous, where d is usual distance on
N and (X, d′) is any metric space.

(20) Show that any function f : (Z, d) −→ (X, d′) is continuous, where d is usual distance on
Z and (X, d′) is any metric space.

(21) (X, d) and (Y, d′) are metric space and f : X −→ Y is continuous. Give examples to show
that

(i) G is an open subset of X does not imply f(G) is an open subset of Y .

(ii) F is a closed subset of X does not imply f(F ) is a closed subset of Y .

(iii) (xn) is a Cauchy sequence in X does not imply the sequence (f(xn)) is a Cauchy in
Y .

(22) Let (X, d) be a metric space and (Y, d′) be any metric spaces. If f : (X, d) −→ (Y, d′) is a
continuous function, then show that f(X) is a compact set.

(23) Let (X, d) and (Y, d′) be metric spaces and f : X −→ Y be continuous. If (X, d) is a
compact metric space, then show that f : X −→ Y is uniformly continuous.
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(24) Let (X, d) be a complete metric space. T : X −→ X be a contraction map. Then show
that T has a fixed point.

(25) Let (X, d) be a complete metric space and T : X −→ X be a mapping such that Tm =
T ◦ T ◦ T ◦ . . . ◦ T (mtimes) is a contraction for some fixed m then show T has an unique
fixed point.

(26) Let (X, d) be a compact metric space and T : X −→ X be such that d(T (x), T (y)) <
d(x, y) then show that T has unique fixed point in X.

UNIT II : Connected sets

(1) Let (X, d) be a metric space. Prove that the following statements are equivalent:

(i) X can be expressed as a union of two non-empty separated sets.

(ii) X can be expressed as a union of two non-empty disjoint closed sets.

(iii) X can be expressed as a union of two non-empty disjoint open sets.

(iv) There is a non-empty proper subset of X which is both open and closed.

(2) Show that A is a connected subset of R with respect to the usual distance if and only if it
is an interval.

(3) Let (X, d) be a connected metric space and (Y, d′) be any metric space. If f : (X, d) −→
(Y, d′) is a continuous function, then show f(X) is a connected set.

(4) Show that a metric space (X, d) is connected if and only if every continuous function
f : X −→ {1,−1} is constant.

(5) If a metric space (X, d) is connected and A is a non-empty proper subset of X, then show
that δA, boundary of A is non-empty.

(6) Show that a metric space (X, d) is connected if and only if for each a, b ∈ X, there is a
connected subset E of X such that a, b ∈ E.

(7) Let (X, d) be a metric space. If A is a connected subset of X, and A ⊆ B ⊆ A then show
that B is connected. Hence, show that A is connected. Give an example to show that if
A,C are connected subset of X and A ⊆ B ⊆ C then B need not be connected.

(8) If A and B are connected subset of a metric space (X, d), and A ∩ B 6= ∅, then show that
A ∪B is connected. Give an example to show that A ∩ B need not be connected.

(9) Let (X, d) be a metric space. If {Aα : α ∈ Λ} is a family of connected subsets of X such
that ∩α∈ΛAα 6= ∅, then show that ∪α∈ΛAα is connected.

(10) Let (X, d) be a metric space. If {An : n ∈ N} is a family of connected subsets of X such
that An ∩ An+1 6= ∅ for each n ∈ N, then show that ∪n∈NAn is connected.
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(11) Prove that an open ball in Rn is a convex set. (The distance being Euclidean). Hence,
deduce that it is path connected.

(12) Show that a path connected subset of Rn is connected.

(13) Let A and B be path connected subsets of a metric space (X, d) such that A ∩ B 6= ∅.
Show that A ∪ B is path connected.

(14) Let (X, d) and (Y, d′) be metric spaces. If (X, d) is path connected and f : X −→ Y is
continuous, show that f(X) is path connected.

(15) Let (X, d) be a metric space and A be a non-empty subset of X.
Prove or disprove: IfA is connected, then A◦, and ∂A are connected. Give an example to
show that A◦ and ∂A may be connected, but A may not be connected.

(16) Let (X, d) be a metric space. If A is connected subset of X, then show that A is connected.
Give an example to show that A◦ may not be connected.

UNIT III : Sequences and series of functions

(1) Mn Test: A sequence {fn} of real valued functions on S (S ⊆ R) converges uniformly to
a function f : S −→ R on S if and only if, lim

n−→∞
Mn = 0 where

Mn = sup{|fn(x) − f(x)| : x ∈ S}. Hence show that if there is a sequence (tn) in R such
that |fn(x)−f(x)| ≤ tn for all n ≥ n0 for some n0 ∈ N and for all x ∈ S such that tn −→ 0,
then fn −→ f uniformly on S.

(2) State and prove Cauchy Criterion for uniform convergence of sequences of functions.

(3) Let {fn} be a sequence of real valued functions defined on a set S ⊆ R such that fn −→ f
uniformly on S. If each fn is bounded on S, then prove the following.

(i) f is bounded on S.

(ii) there exists α ∈ R+ such that |fn(x)| ≤ α for all n ∈ N and for all x ∈ S.

(iii) sup{fn(x) : x ∈ S} −→ sup{f(x) : x ∈ S}.
(iv) inf{fn(x) : x ∈ S} −→ inf{f(x) : x ∈ S}.

(4) Let {fn} be a sequence of real valued continuous functions defined on a subset S of R such
that fn −→ f uniformly on S. Then prove the following.

(i) f is continuous on S.

(ii) For any p ∈ S, lim
n−→∞

lim
x−→p

fn(x) = lim
x−→p

lim
n−→∞

fn(x).
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(5) Let {fn} be a sequence of real valued R−integrable functions defined on [a, b] such that

fn −→ f uniformly on [a, b] . Then prove that f isR− integrable on [a, b] and lim
n−→∞

∫ b

a

fn(t) dt =
∫ b

a

lim
n−→∞

fn(t) dt.

(6) {fn} is a sequence of real valued R−integrable functions on [a, b] converging uniformly to

f on [a, b]. If Fn(x) =

∫ x

a

fn(t) dt then prove that {Fn} converges uniformly to F on [a, b]

where F (x) =

∫ x

a

f(t)dt.

(7) Let {fn} and {gn} be sequences of real valued bounded functions on S subset of R. If {fn}
and {gn} converge uniformly to f and g respectively on S, then prove that {fn ∗ gn} is
uniformly convergent on S.

(8) Let {fn} be a sequence of real valued continuously differentiable functions on [a, b], a < b
such that {fn(x0)} is convergent for some x0 ∈ [a, b] and {f ′

n} converges uniformly on [a, b].
Then

(i) there is a continuously differentiable function f on [a, b] such that fn −→ f uniformly
on [a, b] and

(ii) f ′
n −→ f ′ uniformly on [a, b].

(9) Let {fn} be a sequence of differentiable real valued functions on a bounded interval I. If
{fn(x0)} is convergent for some x0 ∈ I and {f ′

n} converges uniformly to g on I then {fn}
converges uniformly on I and if {fn} converges uniformly to f on I then f is differentiable
on I and f ′ = g on I.

(10) State and prove Cauchy Criterion for Uniform Convergence of a Series
∞
∑

n=0

fn of real valued

functions on a subset S of R.

(11) State and prove Weierstrass M-Test for the convergence of a series
∞
∑

n=1

fn of real valued

functions defined on subset S of R.

(12) Let {fn} be a sequence of real-valued bounded functions on a set S ⊆ R. If the series
∞
∑

n=1

fn converges uniformly to the sum function f on S then prove that f is also bounded

on S.
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(13) If {fn} is a sequence if real valued continuous functions on S, S ⊆ R such that
∞
∑

n=1

fn con-

verges uniformly to f on S, then prove that f is continuous on S, and for p ∈ S,
∞
∑

n=1

lim
x−→p

fn(x) =

lim
x−→p

∞
∑

n=1

fn(x).

(14) Let
∞
∑

n=1

fn be a series of R−integrable functions on [a, b] , converging uniformly to f on

[a, b], then prove that f is R−integrable on [a, b] and

∫ b

a

f(x) dx =
∞
∑

n=1

∫ b

a

fn(x) dx.

(15) If {fn} is a sequence of differentiable functions on [a, b] such that each f ′
n is continuous

on [a, b] and if
∞
∑

n=1

fn converges to f pointwise on [a, b] and
∞
∑

n=1

f ′
n converges uniformly on

[a, b] then prove that f ′(x) =
∞
∑

n=1

f ′
n(x) for a ≤ x ≤ b.

NOTE: For Q. No. (12) to (15), the corresponding result about uniform convergence of
sequence of functions can be used directly.

(16) If the power series
∞
∑

n=0

cnx
n converges at x1 ∈ R, x1 6= 0 and diverges at x2 ∈ R then the

power series
∞
∑

n=0

|cnx
n| converges for all x ∈ R with |x| < |x1| and diverges for all x ∈ R

with |x| > |x2|.

(17) A power series
∞
∑

n=1

cnx
n is either absolutely convergent for all x ∈ R, or there is a unique

real number r ≥ 0 such that the series is absolutely convergent for each x ∈ R with |x| < r
and is divergent for each x ∈ R with |x| > r.

(18) Let
∞
∑

n=0

cnx
n be a power series with coefficients in R. Let α = lim sup

n−→∞

∣

∣

∣
cn

∣

∣

∣

1
n

. Then the

radius of convergence r of
∞
∑

n=0

cnx
n is

1

α
(if α = 0, r = ∞ and if α = ∞, r = 0) (Statement

Only).
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Definition: limit superior of a sequence

(

lim sup
n−→∞

an

)

: Let (an) be a sequence in R.

i. If (an) is not bounded above then lim sup
n−→∞

an = ∞

ii. If (an) is bounded above then for each n ∈ N, define, Mn = sup{ak : k ≥ n}. Then
sequence (Mn) is monotonic decreasing. If sequence (Mn) is bounded below then it is
convergent. In such case, lim sup

n−→∞
an = lim

n−→∞
Mn.

iii. If sequence (Mn) is not bounded below then lim sup
n−→∞

an = −∞.

It can be proved that if sequence (an) is convergent then lim sup
n−→∞

an = lim
n−→∞

an

(19) Let
∞
∑

n=0

cnx
n be a power series with coefficients in R and there exist n0 ∈ N such that

cn 6= 0, ∀n ≥ n0. Let α = lim
n−→∞

∣

∣

∣

cn+1

cn

∣

∣

∣
. Then the radius of convergence r of

∞
∑

n=0

cnx
n is

1

α

(if α = 0, r = ∞ and if α = ∞, r = 0) (Statement Only).

(20) Let r be the radius of convergence of a power series
∞
∑

n=1

cnx
n. If s ∈ R is such that

0 < s < r, then prove that the power series converges uniformly on [−s, s]. Further, let

f : (−r, r) −→ R be the sum function of the power series
∞
∑

n=0

cnx
n then prove that

(i) f is continuous on (−r, r).

(ii) For every x ∈ (−r, r),

∫ x

0

f(t)dt =
∞
∑

n=0

cn
xn+1

n+ 1

(iii) f is differentiable on (−r, r) and f ′(x) =
∞
∑

n=1

ncnx
n−1 for x ∈ (−r, r).

(iv) f is infinitely differentiable on (−r, r), and cn =
f (n)(0)

n!
for n ∈ N, c0 = f(0).
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Numerical Analysis 5

Trapezoidal rule, Simpson’s
1

3
and

3

8
rule

Numerical Analysis Objective Questions 5

(1) If λ1, λ2, · · ·λn are the Cote’s numbers, then the value of λ1 + λ2 + · · ·+ λn is

(a) (n− 1)/h (b) nh (c) nh− 1 (d) None of these.

(2) The approximate value of

∫

1

0

dx

1 + x
using Trapezoidal rule (based on interpolation) is

(a) 0.75 (b) 0.55 (c) 0.65 (d) None of these.

(3) The Trapezoidal rule for

∫ b

a

f(x)dx is given by:

(a)
b− a

2
[f(a) + f(b)]

(b)
b+ a

2
[f(a) + f(b)]

(c)
b+ a

2
[f(a)− f(b)]

(d)
b+ a

2
[f(b)− f(a)]

(4) The Simpson’s
1

3
rule for

∫ b

a

f(x)dx is given by:

(a)
b− a

6
[f(a) + 4f(

a+ b

2
) + f(b)]

(b)
b+ a

6
[f(a) + 4f(

a+ b

2
) + f(b)]

(c)
b− a

6
[f(a)− 4f(

a+ b

2
) + f(b)]

(d)
b− a

6
[f(a)− 4f(

a+ b

2
)− f(b)]

(5) The Simpson’s
3

8
rule for

∫ b

a

ydx is given by:

(a)
b− a

8
[y

−1 + 3y0 + 3y1 + y2]

(b)
b+ a

8
[y

−1 − 3y0 + 3y1 + y2]

(c)
b− a

8
[y

−1 + 3y0 − 3y1 + y2]

(d)
b− a

8
[y

−1 + 3y0 + 3y1 − y2]

(6) The approximate value of

∫

1

0

dx

1 + x2
using Simpson’s

1

3
rule (based on interpolation) is

1



(a) 0.7533 (b) 0.6533 (c) 0.7833 (d) None of these.

(7) The highest order of polynomial integrand for which Simpsons
1

3
rule of integration is exact is

(a) First (b) Second (c) Third (d) Fourth.

(8) Simpson’s
3

8
for integration is mainly based on the idea of

(a) Approximating f(x) in I =

∫ b

a

f(x)dx by a cubic polynomial.

(b) Approximating f(x) in I =

∫ b

a

f(x)dx by a quadratic polynomial.

(c) Converting the limit of integral limits [a, b] into [−1, 1].

(d) Using similar concepts as Gauss quadrature formula.

(9) Which of the following statement is true:

(a) Simpson’s one-third rule can be applied when the range [a, b] is divided into even number of
subintervals.

(b) Simpson’s three-eight rule can be applied when the range [a, b] is divided into number of
subintervals, which must be a multiple of3.

(c) Trapezoidal rule can be applied for any number of subintervals.

(d) All of the above.

Numerical Analysis Descriptive Questions 5

(1) Evaluate

∫

1

0

exdx using Trapezoidal, Simpson’s 1

3
abd 3

8
rule.

(2) Calculate

∫

1/2

0

x

sin x
dx using trapezoidal rule.

(3) Evaluate

∫

1

0

(

1 +
sin x

x

)

dx,

(i) using trapezoidal rule.

(ii) using Simpson’s 1

3
and 3

8
rule.

(4) Evaluate

∫

3

0

dx

1 + x
by Simpson’s rule 1

3
and 3

8
and hence calculate log 2.

(5) Evaluate

∫

1

0

xexdx by Simpson’s 1

3
and 3

8
rule.

(6) Evaluate

∫

1

0

exdx by Trapezoidal rule. Hence find the numerical value of the integral.

(7) Evaluate

∫

5.2

4

loge(x)dx by Simpson’s 3

8
rule.

(8) Evaluate

∫

5.4

4

loge(x)dx for the following data using Simpson’s 3

8
rule.

2



x 4 4.2 4.4 4.6 4.8 5 5.2
loge(x) 1.3863 1.4351 1.4816 1.5261 1.5686 1.6094 1.6487

3



Numerical Analysis 6

Composite Trapezoidal and Simpson’s rule

Numerical Analysis Objective Questions 6

(1) Using four intervals of equal length, the approximate value of

∫

4

1

dx

2x+ 1
by Composite Simpson’s

rule is

(a) 0.75 (b) 0.55 (c) 0.65 (d) None of these.

(2) The approximate value of

∫

1

0

√
x2 + x+ 8dx using four intervals of equal length by Composite

Trapezoidal rule is

(a) 2.752 (b) 3.952 (c) 2.972 (d) None of these.

(3) The approximate value of

∫ π

2

0

√
sin xdx using Composite Simpson’s with h = 1

2
is

(a) 1.1073 (b) 1.1873 (c) 1.0673 (d) 1.0093

(4) The approximate value of

∫ π

0

x sin xdx using Composite Trapezoidal with five ordinates is

(a) π
2

(b) π
3

(c) π (d) 0

(5) The error term of the Trapezoidal rule is given by

(a) −
(b− a)3

12
f ′′′(η), η ∈ (0, 1)

(b) −
(b− a)2

12
f ′′(η), η ∈ (0, 1)

(c) −
(b− a)3

12
f ′′(η), η ∈ (0, 1)

(d) None of the above.

(6) The error of

∫

1

0

dx

1 + x
using Trapezoidal rule is

(a) 0.5685 (b) 0.6931 (c) 0.75 (d) None of these.

(7) The error of approximation in the Simpson’s rule is given by

(a) −
(b− a)5

2880
f iv(η), η ∈ (0, 2)

(b) −
(b− a)4

2880
f iv(η), η ∈ (0, 2)

(c) −
(b− a)5

2880
f v(η), η ∈ (0, 2)

(d) None of the above.

Numerical Analysis Descriptive Questions 6

1



(1) Obtain the approximate value of the following integrals by using Composite Simpson’s rule and
Composite Trapezoidal rule(take 7 equi-spaced ordinates):

(i)

∫

4

1

dx

2x+ 1
(ii)

∫

1

0

√
x2 + x+ 8dx

(ii) Calculate

∫

1/2

0

x

sin x
dx using Composite Trapezoidal rule with h = 1/4 and h = 1/8.

(2) The length of the curve represented by a function y = f(x) on an interval [a, b] is given by the

integral

∫ b

a

√

1 + [f ′(x)]2dx. Use the Composite Trapezoidal rule and Composite Simpson’s rule

with n = 4 to compute the length of the following curves:

(i) f(x) = sin(πx), 0 ≤ x ≤ 1

(ii) f(x) = ex, 0 ≤ x ≤ 1

(ii) f(x) = ex
2

, 0 ≤ x ≤ 1

(3) By computing the integral

∫

1

0

dx

1 + x2
by Composite Simpson’s rule and hence compute the value

of π correct to six decimal places.

(4) Evaluate

∫

6

0

dx

1 + x2
by Composite Simpson’s rule.

(5) Evaluate

∫

1

0

dx

1 + x2
by Composite Simpson’s rule with h = 1

6

(6) Using six intervals of equal length, obtain the approximate value of

∫

1

0

dx

1 + x
by using Composite

Trapezoidal rule and Composite Simpson’s rule. Hence obtain the approximate value of loge 2.

2



Numerical Analysis Practical- Semester VI

Miscellaneous Theoretical Questions

Unit 1

(1) (a) Show that the Langrange’s quadratic interpolating polynomial P (x) for the function f(x) with
interpolating conditions f(xi) = P (xi), 0 ≤ i ≤ 2 is given by

P (x) = `0(x)f(x0) + `1(x)f(x1) + `2(x)f(x2)

where `i(x), 0 ≤ i ≤ 2 are the Langrange fundamental polynomial.

(b) If P (x) =

n
∑

i=0

`i(x)f(xi) is the Langrange’s interpolating polynomial of degree n, then show that

(i) P (x) =

n
∑

i=0

π(x)

(x− xi)π′(x)
f(xi).

(ii)

n
∑

i=0

`i(x) = 1

(c) With usual notation, show that the Newton’s Divided Difference Interpolating polynomial Pn(x) for
the function f(x) with nodal points x0, x1, . . . , xn is given by

Pn(x) = f [x0] + (x− x0)f [x0, x1] + · · ·+ (x− x0) · · · (x− xn−1)f [x0, x1, · · ·xn]

(2) (a) State Rolle’s theorem

(b) If f is a function s.t.

(i) f is (n+ 1) times continuously differentiable on [a, b].

(ii) x0, x1, · · · , xn are (n+ 1) distinct points in [a, b]

(iii) Pn(x) is an interpolating polynomial of degree at most n that interpolates f(x) in [a, b].

Then show that for every x ∈ [a, b] there is ξ = ξ(x) in (a, b) where x 6= xi, for i = 0, · · · , n s.t.

En(f ;x) = f(x)− Pn(x) =
fn+1(ξ(x))

(n+ 1)!

n
∏

i=0

(x− xi)

(c) Determine the maximum truncation error for linear interpolation.

(d) Derive the error formula when tabulated values are equally spaced.

(e) Determine the step size h that can be used in the tabulation of a function f(x), a ≤ x ≤ b, at equally
spaced nodal points so that the truncation error of the quadratic interpolation is less than ε.

(f) Determine the step size h that can be used in the tabulation of a function f(x), a ≤ x ≤ b, at equally
spaced nodal points so that the truncation error of the cubic interpolation is less than ε.

(3) (a) Explain the two operators ∆ and E used in numerical analysis and obtain the relation between the
two.

(b) Prove the following relations.

(i) ∆−∇ = ∆∇.

(ii) ∆ +∇ = ∆/∇−∇/∆.

(iii)
n−1
∑

k=0

∆2f(xk) = ∆f(xn)−∆f(x0).

(iv) ∆(f(xi)g(xi)) = f(xi)∆(g(xi)) + g(xi+1)∆f(xi).

1



(v) ∆(f(xi)/g(xi)) =
g(xi)∆(f(xi))− f(xi)∆g(xi)

g(xi)g(xi+1)
.

(vi) ∆(1/f(xi)) = −
∆f(xi)

f(xi)f(xi+1)

(c) If f(x) = eax, then show that

(i) ∆nf(x) = (eah − 1)neax

(ii) ∇nf(x) = (1− e−ah)neax

(d) Prove the following relations.

(i) µ2 = 1 + 1
4δ

2

(ii) δµ = 1
2(∆ +∇).

(iii) ∆ =
1

2
δ2 + δ

√

1 +
1

4δ2
.

(iv) ∆((f(x− 1)∆g(x− 1)) = ∆(f(x)∇g(x)).

(v) ∆∇f(x) = ∇∆f(x) = δ2f(x).

(vi) δ = ∆E−
1

2 = ∇E
1

2 .

(4) (a) Show that E = 1 +∆ and deduce the Gregory-Newton forward difference interpolating polynomial
with usual notation

Pn(x) =

n
∑

i=0

uCi∆
if(x0)

(b) Show that E = 1−∇ and deduce the Gregory-Newton backward difference interpolating polynomial
with usual notation

Pn(x) =

n
∑

i=0

(−1)i −uCi∇
if(x0)

(c) Derive Stirling’s central difference formula for interpolation and discuss its important uses.

2



Unit 2

(1) (a) Derive Piecewise linear interpolation formula.

(b) Derive Piecewise quadratic interpolation formula.

(c) Derive Piecewise cubic. interpolation formula.

(2) Derive Lagrange’s bivariate interpolating polynomial for a function f(x, y) defined at (m+1)(n+1)
distinct points (xi, yj), i = 0, 1, · · · ,m, j = 0, 1, · · ·n

(3) Show that E = 1 + ∆ and deduce the Newton’s bivariate interpolating polynomial P (x, y) for
equispaced points for the function with usual notation is given by

P (x, y) = f(x0, y0) +

[

1

h
(x− x0)∆x +

1

k
(y − y0)∆y

]

f(x0, y0) + · · ·

(4) (a) Using Langrange’s interpolating polynomial Pn(x) =

n
∑

k=0

`k(x)f(xk) where `k(x) is the Lan-

grange’s fundamental polynomial, show that P ′

1(x) =
f(x1)− f(x0)

x1 − x0
using linear interpolation.

(b) Using Langrange’s interpolating polynomial Pn(x) =
n
∑

k=0

`k(x)f(xk) where `k(x) is the Lan-

grange’s fundamental polynomial, show that

P ′

2(x0) =
2x0 − x1 − x2

(x0 − x1)(x0 − x2)
f(x0) +

x0 − x2
(x1 − x0)(x1 − x2)

f(x1) +
x0 − x1

(x2 − x0)(x2 − x1)
f(x2)

using quadratic interpolation.

(c) Using Langrange’s interpolating polynomial

Pn(x) =
n
∑

k=0

`k(x)f(xk)

where `k(x) is the Langrange’s fundamental polynomial, show that

P ′′

2 (x) = 2

[

f(x0
(x0 − x1)(x0 − x2)

+
f(x1

(x1 − x0)(x1 − x2)
+

f(x2)

(x2 − x0)(x2 − x1)

]

using quadratic interpolation and hence find error approximation at x0.

(5) Given (x0, y0), · · · (xn, yn), derive first and second derivative of a function f(x), using

(i) Newton’s forward Interpolation formula.

(ii) Newton’s backward interpolation formula.

(iii) Stirling’s Interpolation formula.

(6) Given z = f(x, y), if the value of f(x, y) is known at (xi, yi)i=0,··· ,n then

(i) Define

(

∂f

∂x

)

(xi,yi)

and

(

∂f

∂y

)

(xi,yi)

using first order and second order formula.

(ii) Define

(

∂2f

∂x∂y

)

(xi,yi)

and

(

∂2f

∂y∂x

)

(xi,yi)

using first order and second order formula.

3



Unit 3

(1) (a) Derive the Newton-Cotes Quadrature formula

∫ b

a

f(x)dx =

n
∑

k=0

λkf(xk), where

λk =
(−1)n−k

k!(n− k)!
h

∫ n

0
s(s− 1) · · · (s− k + 1)(s− k − 1) · · · (s− n)ds.

(b) Derive the Newton-Cotes Quadrature formula

∫ b

a

f(x)dx =

n
∑

k=0

λkf(xk) and deduce the trapezoidal

rule

∫ b

a

f(x)dx =
b− a

2
[f(a)+f(b)] using method of interpolation and hence find error approximation

at x0 and x1.

(c) Derive the Newton-Cotes Quadrature formula

∫ b

a

f(x)dx =

n
∑

k=0

λkf(xk) and deduce the Simpson’s

1

3
rule,

∫ b

a

f(x)dx =
b− a

6
[f(a) + 4f(

a+ b

2
) + f(b)]

using method of interpolation.

(d) Derive the Newton-Cotes Quadrature formula

∫ b

a

f(x)dx =

n
∑

k=0

λkf(xk) and deduce the Simpson’s

3

8
rule,

∫ b

a

f(x)dx =
3h

8
[f(x0) + 3f(x1) + 3f(x2) + f(x3)]

using method of interpolation where xi = x0 + ih, i = 1, 2, 3 and x0 = a, x3 = b.

(2) (a) Derive error in Trapezoidal rule.

(b) Derive error in Simpson’s
1

3
rule.

(c) Derive error in Simpson’s
3

8
rule.

(3*) (Necessary and sufficient condition)

Let In(f) =
n
∑

j=0

wj,nf(xj,n) n ≥ 1, be a sequence of numerical integration formulas that approximate

I(f) =

∫ b

a

f(x)dx

. Let F be a family dense in C[a, b]. Then In(f) → I(f) all f ∈ F and

B = Sup







n
∑

j−0

|wj,n| : n ≥ 1







< ∞

(4) (a) Derive the trapezoidal rule from Newton-Cotes Quadrature formula

∫ b

a

f(x)dx =

n
∑

k=0

λkf(xk) and

deduce the composite trapezoidal rule

∫ b

a

f(x)dx =
h

2
[f(x0 + 2(f(x1) + f(x2) + · · ·+ f(xn−1)) + f(xn)]

4



(b) Derive the Simpson’s rule from Newton-Cotes Quadrature formula

∫ b

a

f(x)dx =

n
∑

k=0

λkf(xk) and

deduce the composite Simpson’s rule

∫ b

a

f(x)dx =
h

3
[f(x0+4(f(x1)+f(x3)+· · ·+f(x2n−1))+2(f(x2)+f(x4)+· · ·+f(x2n−2))+f(x2n))+f(x2n)]

5



Number Theory 1 

Quadratic  Reciprocity 

Objective Questions 

Assume p and q are odd primes and ( ) denotes Legendre Symbol. 

(1) The value of (
227 ) is 

(a) �  (b) 1  (c)-1  (d) 0 

 

(2) If (
2 ý)=1, then 

(a) p≡ 1 āÿ 7(ÿā� 8)  (b) p≡ 3 āÿ 5(ÿā� 8)   

(c) p≡ 1 āÿ 7(ÿā�12)  (d)p≡ 3 āÿ 5(ÿā� 12)  

   (3) If (
3 ý)=1, then 

(a)p≡ 1 āÿ 3(ÿā� 12)  (b) p≡ 1 āÿ 7(ÿā� 12)  

(c) p≡ 1 āÿ 5(ÿā�12)  (d)p≡ 1 āÿ 11(ÿā� 12)  

  (4)  If (
23 ý )= 1, then 

            (a) p=6k+1  (b)p=6k+5  (c) p=8k+5  (d) cannot say 

 (5) If p=97 ,then 

 (a)(21ý ) = 1 �Ā� ( 2ý ) = 1              (b)(21ý ) = 21 �Ā� ( 2ý ) = 21 

 

            (c) (21ý ) = 21 �Ā� ( 2ý ) = 1   (d) (21ý ) = 1 �Ā� ( 2ý ) = 21 

(6)Which  of  the  following  is  correct: 

(a)(1083) = 1 �Ā� (1053) = 1  (b)(1083) = 21 �Ā� (1053) = 21 

 

 (c) (1083) = 1 �Ā� (1053) = 21  (d)(1083) = 21 �Ā� (1053) = 1 

 



(7) Which  of  the  following  is  correct: 

             (a)(1597) = 1 �Ā� (1561) = 1                 (b)(1597) = 21 �Ā� (1561) = 21 

 

             (c) (1597) = 1 �Ā� (1597) = 21  (d)(1597) = 21 �Ā� (1561) = 1 

(8)if 1<a<p ,then the value of (ÿ�21ý ) ÿĀ 

              (a) 1  (b) a  (c) p-1  (d) p 

(9)  The value of (24041 ) ÿĀ 

              (a) 4 1  (b) 40  (c) 2  (d) 1 

(10)  The value of (2541) ÿĀ 

              (a) 5  (b) 2  (c) 1  (d) -1 

(11)  The value of ((ý21)!ý ) ÿĀ 

     (a) (21)�212   (b) (21)�+12   (c)( p-1 )!  (d) None of these 

(12) The value of  ∑ (Āýý21Ā=1 ) is 

               (a) 1   (b) -1   (c) 0   (d)p-1 

(13) In which of the following case, both congruence equations have solutions: 

               (a) ą2 ≡ 3 ÿā� 5, ą2 ≡ 5 ÿā�  3                 (b) ą2 ≡ 3 ÿā� 7, ą2 ≡ 7 ÿā�3 

               (c) ą2 ≡ 5 ÿā� 11, ą2 ≡ 11 ÿā�  5   (d) ą2 ≡ 5 ÿā� 13 , ą2 ≡ 13 ÿā�  5 

(14)  If g is primitive root of odd prime  p then which of the following is true: 

                (a) g is quadratic  residue of p  (b)g is quadratic  non  residue of p 

                 (c)Āý21is quadratic non residue of p   (d) Āý22 is quadratic  residue of p  

(15) The prime p for which (
10ý )=1 is 

  (a) p≡ 19(mod40) (b) p≡ 7(mod40) (c) p≡ 1(mod40) (d) p≡ 33 (mod40)  

  



Number Theory Descriptive Questions 1 

 

(1) Find  all quadratic residues and quadratic  non-residues for primes p=11,13,17,19.  

 

(2) Given p=11 ,q=7. 

(i)Consider residues of q,2q,&,(ý212 )q mod p. How many residues are greater than (p-1)/2? 

(ii) Compute ∑ [þÿý ]((�21)2ÿ=1  

(iii) Compute (
711) in two ways using (i) and (ii). 

 

(3) Evaluate:(22383 ) , (272131) , (1843),(
5171),(

23597 ). 

 

(4) Determine whether following quadratic  congruences  are solvable: 

(i)  ą2 ≡ 150(mod1009) 

(ii) ą2 ≡ 137(mod401) 

(iii)ą2 ≡ 73(mod173) 

(iv)  ą2 ≡  219(mod419) 

(v)   ą2 ≡ 243(mod79) 

(5) If gis primitive root of p then prove that (
�ý)=-1 .Also prove that the quadratic residues modulo p    

are congruent to  Ā2,Ā4,Ā6&..,Āý21 and quadratic non-residues are congruent to g ,Ā3 ,Ā5 &   

                &..,Āý22. 

 

(6) If g is primitive root of p , prove that product of quadratic residues of p is congruent modulop to Ā (ý221)/4and the product of quadratic non-residue modulo p to Ā(ý21)2/4 . 

 

(7) If p is an odd prime then prove that ∑ (ÿýý21ÿ=1 )=0. 

 

(8) Find  all primes p such that  

(i) (5ý) = 1                        (ÿÿ) (5ý) = 21                (ÿÿÿ) (10ý ) = 1    
 

(9) Find a prime number which is simultaneously expressible in the form ą2 + Ć 2  , Ă2 + 2ă2  , ÿ2 + 3Ā2. 

 

(10)  Let q=2p+1 .Show that (
ýþ) = (21ý ). 



(11)  Let q be  the least positive integer such that q<p and that (þý) = 21, prove that q is prime. 

 

(12)  Let p≡ 3(ÿā�4) and q=2p+1. Then prove that q divides �ý =2ý 21. 

 

 

(13)  Let p=q+4a .Show that (ýþ) = (ÿþ) = (ÿý). 
 

(14)  Show that (i) (6ý) = 1 if and only if p≡1,5,19 or 23(mod24). 

                     (ii)(7ý) = 1 if and only if p≡ 1,3,9,19,25 āÿ 27(ÿā� 28). 
 

(15) Prove that  if p>3 is an odd prime ,then (23ý ) =  1 ÿÿ Ă ≡ 1(ÿā� 6) 

                                                                                  = 21 if  Ă ≡ 5(ÿā� 6) 

Hence show that the prime divisors p different from 3 of Ā2 2n+1 are of the form 6k+1.   

 

(16)   Show that there infinitely many primes of the form 6n+1. 

 

(17)  Solve  the quadratic congruence ą2 ≡ 11(ÿā� 35). 
 

 

(18)  Prove that the odd prime divisors p of the integers 9� + 1are of the form p≡ 1(ÿā� 4). 

 

(19) For  a prime  p≡7(mod 8) , show that p|2(ý21)/2 21. Hence  show that 2� 2 1  are composite 

for n=11,23,83. 

 

 

(20)  Show that for any prime p≡ ±3(ÿā�8) ,the equation ą2 2 2Ć2=p has no solution. 

 

 

 

 

 

 

 

 

 



Number Theory 

Practical 2 

Jacobi Symbol and Quadratic congruences  with composite modulii 

Objective Questions 

(1) If p=7 and q= 13, then 

(a) (21ýþ) = 1 �Ā� ( 2ýþ) = 21  (b)(21ýþ) = 21 �Ā� ( 2ýþ) = 1   

               (c)   (21ýþ) = 1 �Ā� ( 2ýþ) = 1                                     (d)  (21ýþ) = 21 �Ā� ( 2ýþ) = 21 

       (2) Let a, b be positive integers which are relatively prime and b>1 be odd,then 

                (a) a is quadratic residue of b if and only if (ÿĀ)=1. 

                (b) If  a is quadratic residue of b then  (ÿĀ)=1 . 

                 (c)  If(ÿĀ)=1 ,thena is quadratic residue of b  . 

                (d) None of these 

        (3) The congruence ą2 ≡ �(ÿā�32) (Ąÿā/ 1 f � f 31)is solvable for 

          (a) a = 1,9,17,25 only                   (b) a = 1,5,9,25 only   

                 (c) a=1,5,9,21,25 only                  (d) a = 1,21,25 only 

        (4) Let p be an odd prime . The congruence    ą2 + (ý+14 ) ≡ 0 ÿā� Ă 

             (a) Is solvable if p is of the type 4k+3              (b) Is not solvable if p is of the type 4k+3 

              (c) Is solvable if p is of the type 8k+7               (d) None of these 

     (5) Let p be a prime. There exist integers x ,y with (x,p)=1 ,(y ,p)=1 and ą2 + Ć2 ≡ 0 ÿā� Ă 

               (a) For all prime p                           (b) For all primes  of the type 4k+3 

( c)  Only for p = 2                           (d) For p=2 and primes   of the type 4k+3 

(6)The number of solutions of the congruence ą2 ≡ 3 ÿā� 112232 is 

                    (a) 0  (b) 2  (c) 4  (d) 1 

 



           (7) The congruence  ą2 ≡ 231 ÿā� 1105 has 

                    (a) 2 solutions (b) 1 solution  (c) 4 solutions  (d) no solutions 

            (8) The congruence  ą2 ≡ 25 ÿā� 1013 has 

                     (a) 2 solutions (b) 1 solution  (c) 4 solutions  (d) no solutions 

            (9) Which of the following is correct ? 

                     (a) The  quadratic  congruence  ą2 ≡ 12 ÿā� 5  has a solution. 

                     (b)  The  quadratic  congruence  ą2 ≡ 12 ÿā� 7  has a solution.    

                     (c) The  quadratic  congruence  ą2 ≡ 12 ÿā� 35  has a solution.   

                     (d) None of these. 

 

(10) Which of the following  is false? 

                     (a) ą2 ≡ � ÿā� 2always has a solution. 

                     (b)   ą2 ≡ � ÿā� 4 has solution if and only if  � ≡ 1 ÿā� 4 

                     (c)ą2 ≡ � ÿā� 2�,for n>2 has a  solution if and only if  � ≡ 1 ÿā� 8 

                     (d)  None  of (a),(b),(c)  is  true . 

              (11)  Ifą2 ≡ � ÿā� 2�,for n>2   has a solution then it has 

                      (a) exactly 2  incongruent solutions      (b) exactly 4  incongruent solutions  

                       (c)exactly 1 solution                                 (d) none of these  

              (12)  The congruence ą2 ≡ 19 ÿā� 73 has  

          (a) only  one solution      (b) two solutions     (c) no solution      (d) none of these 

 

 

 

 

 



Number Theory 

Descriptive Questions 2 

(1) Evaluate  ( 21221)  , (215253) , ( 6311099). 
(2) Which of the following congruences are solvable ? 

(i) ą2 ≡ 10 ÿā� 127 

(ii) ą2 ≡ 11 ÿā� 61 

(iii) ą2 ≡ 42 ÿā� 97 

(iv) ą2 ≡ 31 ÿā� 103 

 

(3)  Determine whether  ą2 ≡ 25 ÿā� 1013 is solvable. 

(4) Determine whether  ą2 ≡ 231 ÿā� 1105 is solvable. 

       (5)Show that 7 and 18 are the only incongruent solutions of ą2 ≡ 21 ÿā� 52 

       (6) Solve  

               (i)ą2 ≡ 14 (ÿā� 53) 

               (ii)ą2 ≡ 7 (ÿā� 33) 

               (iii)ą2 ≡ 31 (ÿā� 114) 

       (7)Determine number of solutions of the congruence ą2 ≡ 3 (ÿā� 112232) without actually finding   

them. 

       (8) Determine number of solutions of the congruence ą2 ≡ 9 (ÿā� 23523) without actually finding   

them. 

 

       (9) Prove that if ą2 ≡ � (ÿā� 2�) , where a is odd and ng 3 has a solution, then it has exactly four  

incongruent solutions. 

 (10)Determine the values of a for which ą2 ≡ � (ÿā� 24) is solvable and find solutions. 

 

 



Number Theory 3 

Simple Finite Continued Fractions (SCF) 

Objective Questions 

Notation: For SCF [ a0 , a1 , ………..,an] ; Ck =  [ a0 , a1 , ………..,ak] = Pk /qk ; 0fkfn 

(1) The initial  integer in the symbol  [ a0 , a1 , ………..,an] will be zero when the value of the 

fraction is    

(a) ÿĀĀÿāÿ�� & �ÿ��ā�ÿ ā/�ÿ Āÿ�                 (b) �Āý�þ��� & ý�ĀĀ ā/�ÿ Āÿ�  (�)��ý�ÿāÿ��                                                      (d) Can not say 

(2) The simple continued fraction (SCF) for 
13579   is given by 

(a) [ 0,1,1,2,2,3,3]    (b) [ 2,1,2,1,3,3]    (c) [1,1,2,2,3,3] (d) None of these  

   (3) The SCF for  2 73116  is given by 

(a) [−1,2,1,2,3,4]   (b) [−2,1,1,2,3,4]  (c) [−1,1,2,1,2,3] (d) None of these  

  (4) The SCF [ 0,1,2,3,4,3]  represents   

            (a) 
97135  (b) 

�ąÿā�  (c) 
34139  (d) None of these 

 (5) The SCF [ −2,1,2,3,4,3]  represents   

            (a) 2 181139  (b) 2 �ąÿā� (c)  2 34 139 (d) None of these 

 (6) The SCF [ 2,1,2,1,2,1,2] equals 

(a) [ 1,1,1,2,1,2,1,2]         (b) [ 2,1,2,1,2,1,2,1]          (c) [ 2,1,2,1,2,1,1,1]   (d) None of these 

(7) The SCF [ 2,1,2,1,2,2,1] equals 

     (a) [ 2,1,2,1,2,1,1,1]         (b) [ 2,1,2,1,2,3]      (c) [ 1,1,2,1,2,2,1]   (d) None of these 

(8) If r = [ 2,3,3,2] then 
1ÿ  is given by  

              (a) [ 2,3,3,2]   (b) [½ , 1/3, 1/3, ½]    (c) [0, 2,3,3,2]    (d) None of these 

(9)  The value of the 4th convergent of [ 2,3,1,4,2,3] is  

              (a) 
�ăĂĀ  (b) 

4319  (c) 2  (d) None of these 



(10)  If u6/u5 represents quotient of two successive numbers in the Fibonacci Sequence then u6/u5  

= 

              (a) [2,2,2,2,2]  (b) [1,1,1,1,1]  (c) [−1,1,1,1,1]  (d) 

None of these 

(11)  Which of the following statement is correct :  

     (a)p0 =a0;q0=1 (b) p0=1; q0=1  (c) p0=1; q0= a0  (d) p0= a1; q0= a0 

(12) Which of the following statement is correct : 

    (a)p1 =a1;q1=1 (b) p1=1; q1= a1 (c) p1= a1a0 +1; q1= a1 (d) p1=1; q1= a0           

(13) For k g 1 which of the following statement is correct : 

     (a) pkqk-1 –qk pk-1 =(-1)k              (b) pkqk-1 –qk pk-1 =(-1)k-1 

   (c) pkqk-1 –qk pk-1 =(-1)k ak           (d) pkqk-1 –qk pk-1 =(-1)k-1 ak 

(14)  For k g 2 which of the following statement is correct : 

     (a) pkqk-2 –qk pk-2 =(-1)k-2              (b) pkqk-2 –qk pk-2 =(-1)k 

   (c) pkqk-2 –qk pk-2 =(-1)k-2 ak           (d) pkqk-2 –qk pk-2 =(-1)k ak            

(15) Which of the following statement is correct : 

  (a) C0 > C2 > C4 >C6…….  (b) C1 < C3 < C5 < C7…… (c) C0<C2<C4<C6….. (d) C1f C3f 
C5fC7…..  

(16) For a positive integer 8c9 ; if  SCF  [ a0 , a1 , ………..,an]  > [ a0 , a1 , ………..,an +c] then 

   (a) n is odd        (b) n is even     (c) Both (a) & (b)         (d) None of (a) & (b)  

 

 

 

 

 

 

  



Number Theory Descriptive Questions 3 

 

(1) Find SCF  of  303/118  and  Verify  a) pnqn-1 –qn pn-1 =(-1)n-1   b) pnqn-2 –qn pn-2 =(-1)n an  

 

(2) Find SCF for the following :  
57187   ; 2 1951  ;  

7155 ; 
5!7  ;

345   ; 
ýý+2 where p & p+2 are twin 

primes. 

(3) Find rational numbers  represented by following SCF:  

a) [1,1,1,1,1,1,1]    b) [2,2,1,1,2,1]    c) [-2,1,3,5,7,9]  d) [0,2,3,1,2,3]  e) [ 1,1,1,2,2,2] 

f) [ -1,2,3,4,1]  g) [2,2,2,2,2]  h) [ 0,1,1,2,1,2,1,2] 

(4) Find two representations of SCF for  
61741729 and hence or otherwise for 

17296174 . 

(5) For the following SCF , find Ck9s  & verify C0<C2<C4<C6….. and C1 > C3 > C5 > C7…… 

                    a) [−3,2,4,1,1,3,2]   b) [0,4,,3,5,8,2,1,7] 

(6) Let fn be the nth Fibonacci number. Find SCF  for fn+1 /fn.  Prove that  

fn
2 – fn+1.fn−1 = (-1)n-1  for all n g 2 

 

(7) Let  Pell number Pn be defined as follows :  P0 = 0 , P1 = 1 &  Pn  = 2Pn-1 + Pn-2  ∀ ng 2. 
If t ∈ Ā is such that it9s  SCF consists of n, 29s then prove that ā =  ý�+1ý�   

 

(8) If Ck = 
ý�þ� is the kth  convergent of the simple continued fraction [ a0 , a1 , ………..,an] 

then prove that  qk  g 2(k−1)/2   for  2f k f n 

(9) Find the SCF representation of 3∙1416 ; 3∙14159 

(10) If Ck = 
ý�þ� is the kth  convergent of the simple continued fraction [ a0 , a1 , ………..,an]                                      

and     a0 >0 then show that   
ý�ý�21 =  [ ak , ak-1 , ………..,a1, a0] 

(11)  Using SCF of suitable rational solve the following :  

a) 118x + 303y =1 

b) 18x +5y = 18 

c) 158x – 57y =1 

 

 

 



 

Number Theory 

Practical 4 

Simple Infinite Continued Fractions (SICF) 

Objective Questions 

(1) The SICF of  √15  is given by  

(a) [3,1,3���� ]    (b) [3,ÿ, Ą����� ]  (c)   [3,1,2,3,4,8,5]      (d)  None of these 

 

(2)  The SICF of  √2 – 1  is given by  

                (a) [ 0, 1,2���� ]    (b) [ 1,3���� ]  .   (c)  [ 0, Ā� ]    (d) None of these 

        (3) If  � = [2,1���� ] then � equals  

          (a)  1 + √ā          (b) 2½    (c)  1 2√ā               (d) None of these 

       (4) The SICF of  
(� 21)(� +1 ) is given by  

            (a) [ e,1,e, − 1]   (b) [ 0,2,6,10,14,18,……..]    (c) [2,1,2,1,4,1,8,…..]      (d) None of these 

     (5) The SICF of  
(�2 21)(�2  +1 ) is given by 

         (a) [ 0,1,3,5,7,9,……]                        (b) [ 0,2,6,10,14,18,……..]       

         ( c) [ 1,1,4,5,7,8……..]               (d) None of these 

      (6) The SICF [1,1,1,1,……] represents 

                    (a) 1  (b) 1.1111  (c) 
ÿ+ √ăĀ  (d) None of these   

       (7) For n Є IN , √ÿ2 +  1  = 

                    (a) [ n, ÿ ,2ÿ������� ]  (b)  [ n, Āÿ���� ]  (c) [ n, 1 ,2ÿ������� ]  (d) None of these 

      (8) Let  x = [1,3,1,5,1,7,1,9,……]. If  Cn = 
ý�þ�  is the nth  convergent of  x then we know that    | � 3 Cn| < 

1þ�  þ�+1 , using this inequality the rational approximation to x correct upto 3 decimal 

places is      



                     (a) 
3427       (b) 

301239    (c) 
267212  (d) None of these 

            (9) If  x = 
1+ √132     then x = 

                     (a) [2,3� ]            (b)   [2,1,3���� ]          (c) [2,1, 3� ].                     (d) None of these. 

 

(10)  If  � = [ a0 , a1 , a2………..,]  and  Cn  = [ a0 , a1 , a2……….., an] is the nth  convergent  then            � = 

                     (a) lim�→∞ ��     (b) lim�→∞ ��21     (c) Both (a) and (b)    (d) None of these. 

              (11)  If Ck = 
ý�þ� is the kth  convergent of SICF [ a0 , a1 , a2 ………..,] then  

                      (a) ( C10 ,C11 )  ⊆ (C2 ,C3 )      (b) ( C10 ,C11 )  ⊆ (C12 ,C3 )   

                       (c) ( C10 ,C11 )  ⊆ (C8 ,C3 )      (d) none of these  

               

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Number Theory 

Descriptive Questions 4 

(1) Obtain SICF for the following : 

a) √2    b)  √3  − 1   c) √2  + 1     d)  2 − √3       e)  √11      f)  √22     g) √41    h) 
1√2    

            ÿ) 1+ √72     J)  
5 + √374  

2) Obtain SICF for the following : 

a) √227      b) √32          C) √53    d) √85 

3)  Find value of the following SICF : 

(a) [ 0,1,1,1,1,1,……]     (b) [ 2,1,2,1,,……..]   ( c) [ 1,2,1,2,……..]   e) [ 1,1,2���� ]  

 f) [ 1,1,2������ ]   g) [1,2,2,3���� ] 

 

4) Assume e = 2.718281828 and find first four terms of SICF for   
(� 21)(� +1 )   and   

(�2  21)(�2  +1 ) 
5) SICF  for 8e9 is given by [2,1,2,1,1,4,1,1,4,…..] ; find e correct upto 4 decimal places. 
6) Prove  √ÿ2 +  1  = [ n, 2ÿ���� ] for all n ЄIN hence find SICF for  √17 

7) Let x= [1,2,3,…..]. Find least n such that nth convergent  
ý�þ�  approximates x correct upto 

5 decimal places. 

8) Prove that √(4þ2 + 4)  = [2m,þ, 4þ�������� ] 

 

9) Assume that � = [ 3,7,15,1,212,…..]  
 

a) Find first 5 convergents. 

b) Show 
355113 approximates � correct upto 6 decimal places 

c) Obtain rational 
ÿĀ such that | � 2 ÿĀ | <  1√5 Ā2  
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Number Theory :  PRACTICAL 5 

NUMBER-THEORETIC FUNCTIONS 

Objective Questions 

(1) Which of the following is the solution of �(Ā) = 4? 

(a)2  (b) 4  (c) 8  (d)  16 

 

(2) Which of the following is the solution of �(Ā) = 4? 

 

(a) 1                       (b) 2                      (c) 3                     (d) 4  

 (3)�(Ā) = 2�, ý ∈ ℕ   has no solution for  

(a)  k=1                   (2)   k=2                (c)  k=3                 (d)  k=5 

 (4)    If the prime  Ă ≡ 21(ÿāþ 4)�Āþ ÿĀ 2|ý,  then �(Ă�)  is congruent 4 to 

            (a) 0(mod 4)  (b)  1(mod 4)  (c) 2(mod 4)  (d) cannot say 

 (5) Which of the following is not perfect? 

(a)22(23 2 1)  (b)24(25 2 1)            (c)26(27 2 1)  (d)210(211 2 1) 

(6)Let p and q be distinct primes and Ā = Ăă.  Then �(Ā)  ÿą 

(a)Ăă (b)(Ă + 1)(ă + 1) (c) n+1 (d) þāĀÿ 

(7) Let p and q be distinct primes and Ā = Ăă.  Then �(Ā)  ÿą 

             (a)1(b)2(c) 4 (d)Ă + ă 

(8)  If 2Ā 2 1     �Āþ           2Ā + 1 are both primes for Ā ∈ ℕ,then                  

            (a)  n must be odd            (b)  there are infinitely many such n 

             (c) n=2  (d)  None of the above                                                                                                                                                                     

(9)  Let �Ā = 22� + 1, Ć/ÿĀ for Ā b ÿ, gcd(�Ā , �ÿ)  ÿą 

(a) n                         (b) 2ÿ  ( c)    1                                        (d) None 

(10)  Let p and q be distinct primes  and ýĀ = 2Ā 2 1.  �/ÿĀ gcd (ýý , ýþ)  is  

(a) 1     (b) p                    (c) q                     (d) n 

. 
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NUMBER THEORY DESCRIPTIVE QUESTIONS-5 

1. Prove that   / þ�|Ā =Ā�(�)2  

2. Prove that if n is a natural number such that �(Ā) = ă, ý/ÿĄÿ ă ÿą ĂĄÿÿÿ, then 

n=ăý−1for some prime p. 

3. Find the least integer n such that �(Ā) = 25. 
4. If �(Ā ) denotes the number of distinct prime factors of n, prove that �(Ā) ≥ 2�(Ā). 
5. Prove that �(Ā) is odd if and only if n is a square. 

6. If �(Ā) = 4, what can be said about the canonical factorization of n? 

7. Prove that if �(Ā) is prime , then Ā = Ă� , where p is prime and ý ≥ 1. 

8. Prove that if �(Ă�) = Ā, where p is prime, then p|(Ā 2 1). 
9. Prove that if n is odd, then �(Ā) ≡ �(Ā)(ÿāþ 2). 
10. Prove that if p is prime and Ā ≥ 2,  then �(ĂĀ2−1) is composite. 

11. Prove that if Ā ≡7(mod 8), then �(Ā) ≡0(mod 8) 

12. Prove that if Ā ≡23(mod 24), then �(Ā) ≡0(mod 24) 

13. Prove that if p and q are distinct primes such that �(Ă2) = �(ă4), then p=5 and q=2. 

14. Prove that there are no primes p and q such that �(Ă2) = �(ă6). 

15. Prove that 3 |�(þ)| = 2�(Ā)�|Ā  

16. Prove that if p is prime and Ă ≡ 1(ÿāþ 3), then the equation �(þ) = 2Ă has no 

solution. 

17. Prove that     �(Ā)|Ā  ÿ Ā �Āþ āĀþÿ ÿĀ  Ā = 1, 2ÿ , āĄ 2ÿ3Ā  where ÿ, Ā are natural 

numbers. 

18. Prove that if Ā ≇ 2(ÿāþ 4), Ć/ÿĀ �)(Ā3 2 Ā) = 0. 

19. Let Ā = Ă1ÿ1Ă2ÿ2 & & . Ăÿÿ� be the prime factorization of the integer n>1. If f is a 

multiplicative function that is not identically zero, prove that    ∑ �(þ)Ā(þ)�|Ā = (1 2 Ā(Ă1))(1 2 Ā(Ă2)) & . . (1 2 Ā(Ăÿ) ) 

        20,  If n is a perfect number prove that  If the integer n>1 has the prime factorization   Ā =                  Ă1ÿ1Ă2ÿ2 & & . Ăÿÿ�, establish the following: 

(a) 3 �(þ)�(þ)�|Ā = (21)ÿ 

(b) 3 �(þ)�(þ)�|Ā =  (21)ÿĂ1Ă2 & & . Ăÿ 

(c) 3 �(�)�  = (1 2 1ý1) (1 2 1ý2) & . . (1 2 1ý�)�|Ā  

(d) 3 þ�(þ)�|Ā = (1 2 Ă1)(1 2 Ă2) & & . (1 2 Ăÿ) 

        21. Verify each of the statements below: 

                (a)  No power of a prime can be a perfect number. 
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                (b) A perfect  square cannot be a perfect number. 

                (c)  The product of two odd primes is never a perfect number. 

         22.   If n is a perfect number , prove that 3 1��|Ā = 2 

         23.  If the three numbers Ă = 3. 2Ā−1 2 1, ă = 3. 2Ā 2 1 �Āþ Ą = 9. 22Ā−1 2 1  are all 

prime and                       Ā ≥ 2, Ć/ÿĀ ą/āý Ć/�Ć 2ĀĂă �Āþ 2ĀĄ  are amicable numbers. 

          24.  Prove that the Mersenne number ý`13 is a prime, hence the integer                                            Ā = 212(213 2 1)ÿą ĂÿĄĀÿýĆ. 
25.  For Ā ≥ 2,  show that the last digit of the Fermat number �Ā = 22� + 1  is 7. 

26.  Show that the Fermat number  �Ā = 22� + 1  is never a perfect square. 

27.  For n>0, number �Ā = 22� + 1 ÿą   never a triangular number.  

28. Show that every Fermat number, �Ā  is a prime or a pseudoprime. 

 

 

 

 

………………………………………………………………………………………………………………… 
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Number Theory(practical no.6) 

 Objective Questions 

 

(1)  The fundamental solution of          is 

(a)        (b) (7,4 ) (c)  (1 ,0)  (d)None 

 

(2)  Pell’s equation               has 

(a) Only one solution                              (b) no solution   

(c) infinitely many solutions  (d) None   

   (3)   Let                                                ].   Then   (                           )  equals 

(a)  29  (b)  -1                  (c)   3  (d)  None  

  (4)  Pell’s equation        =  -1 has  

            (a) only one solution (b) no solution        (c)infinitely many solutions  (d) None 

 (5)    If          ,                                             are given as  

            (a)               ,        
                                 (b)                 ,             

         

            (c)               ,      
                  (d)      None 

 (6)                                                                          

               (a)                               (b)                         (c)  2                         (d)  None                                                                           

   (7)    If         is a fundamental solution of              , then every positive solution of the 

equation is given by         which satisfy  

             (a)                                      (b)                        

             (c)                                  (d)      

(8)      if                 (n=0,1,2,&..)  is the      convergent  and k is the length of the period                                            

             Of  the  infinite    SCF  of    , then               is a solution of              

              (a)  k=2, n=5    (b)  k=3, n=4  (c)  Both (a) and (b)           (d)None 

 



(9)      Every Carmichael number,   an   absolute   pseudoprime   

            (a)   is odd                       (b) has atleast 3 distinct prime factors                  (c) composite        

            (d)   (a), (b),and (c) 

(10)      If d is divisible by a prime                then the equation             has  

             (a)  no solution     (b)   infinitely many solutions        (c)   one solution       (d)  None 
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DESCRIPTIVE QUESTIONS 

       

1)  Establish that if                                           , then  

                                       satisfies            . 

 

 

2)  Find the fundamental solutions of  

i)             

ii)              

iii)             

iv)              

3)    Prove solutions (     )  of               are given by                     [
  ] 

4)   Prove   that   if          )   is   fundamental solution of             , then all solutions are given       

             by                         [
  ] 

5)    Does                   have any solution?        Explain using  

              (i)  continued fractions  (ii)  quadratic residues 

6)   Prove   that   if          )   is   fundamental   solution  to the associated Pell’s equation   

                  ,      then    all   solutions    are   given    by   

                                         
[
  ] 

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

    



Number Theory Practical 7 

Miscellaneous Theory Questions 

Unit 1 

(1) Define the terms Quadratic residue and Quadratic non-residue of an odd prime p. If p is an odd 

prime and  gcd (a,p)=1 then prove that a is quadratic residue of p if and only if ÿ�−12 ≡ 1(þĀýp) 

and a is  quadratic  non-residue of p  if and only if ÿ�−12 ≡ 21(þĀýp). 

(2) Define Legendre symbol (ÿý) . If p is an odd prime and  a and b are relatively prime to p then 

prove that  

(i)(ÿý) ≡ ÿ�−12  þĀý ā.         
(ii) (ÿý) (Āý) = (ÿĀý ) 

(iii) a≡ Ā þĀý ā implies (ÿý) = (Āý).  

(iv) If (a,p)=1 then  (ÿ2ý ) = 1 and (ÿ2Āý ) = (Āý). 

(v) (1ý) =1 and (21ý ) = (21)�−12 . 

         (3) Show that (21ý ) = 1 if p≡ 1 þĀý 4 and (21ý ) = -1 if  p≡ 3 þĀý 4. 

              Hence  Show that there are infinitely many primes of the form 4k+1. 

          (4)  State and prove Gauss’ Lemma.  

          (5) If p is an odd prime and (a,2p) = 1 , then show that   (ÿý) = (21)� , where  t = ∑ [ÿÿý ](ý21)/2ÿ=1   

      and  (2ý) = (21)�2−18 . 

          (6) If p is an odd  prime ,then  prove that (i) (2/p)=  1 if  p≡ 1 Āă 7 þĀý 8  and 

                                                                                     (ii) (2/p) = -1 if p≡ 3 Āă 5 þĀý 8 

          (7) State and prove Quadratic Reciprocity Law. 

          (8)  If p is an odd  prime ,then  prove that (i) (3/p)=  1 if  p≡ 1 Āă 11 þĀý 12  and 

                                                                                     (ii) (3/p) = -1 if p≡ 5 Āă 7 þĀý 12 



            (9) ) If p is an odd  prime ,then  prove that(i) (-2/p)=  1 if  p≡ 1 Āă 3 þĀý 8  and 

                                                                                       (ii) (-2/p) = -1 if p≡ 5 Āă 7 þĀý 8 

            (10) Define Jacobi Symbol (ÿĀ) for Q positive and odd.  If Q and Q’ are odd  and positive then show   

                     that 

                       (i)   (ÿĀ) ( ÿĀ′) =( ÿĀĀ′)   

                       (ii) (ÿĀ) (ÿ′Ā )   = (ÿÿ′Ā ) 

                       (iii) ( P ,Q) = 1 then (ÿ2Ā )  =  ( ÿĀ2)   = 1 

                        (iv) If (PP’ ,QQ’)  = 1 ,then  (ÿ2ÿ′Ā2Ā′) = (ÿĀ)  

                         (v) P’≡ ÿ þĀý  Ā implies  (ÿ′Ā ) = (ÿĀ) 

                   (11) If Q is odd  and  Q>0 , then show that (21Ā )  =  (21)�−12    ÿÿý (2Ā) =  (21)(Ā221)/8 . 

                   (12) State and prove Generalized Quadratic Reciprocity Law. 

                   (13)  If p is an odd prime  and (a , p) = 1, then  show that the congruence                                    ý2 ≡ ÿ (þĀý ā�)  ÿ g 1     has a solution if and only if (ÿý) = 1.    
                    (14) If a is an odd integer . Then show that  

                             (a)  ý2 ≡ ÿ (þĀý 2)  always  has a solution. 

                             (b)   ý2 ≡ ÿ (þĀý 4)   has a solution if and only if a≡ 1 (þĀý 4)    
                             (c)    ý2 ≡ ÿ (þĀý 2�)    for ÿ g 3 , /ÿĄ ÿ ĄĀýĆąÿĀÿ ÿÿ ÿÿý Āÿýþ ÿÿ ÿ ≡ 1(þĀý 8)  

                     (15) If n = 2Ā0ā1Ā1 & & . . āÿĀ�  is the prime factorization  of n>1 and (a,n)=1 , then show that                                ý2 ≡ ÿ (þĀý ÿ) is solvable if and only if 

                              (a) ( ÿý�) = 1 ÿĀă ÿ = 1,2, & ă 

                              (b) a ≡ 1 (þĀý 4)   if 4|n ,but 8 does not divide n 

                              (c) a≡ 1 (þĀý 8)   if 8|n. 

                    



                                      

                  Unit II 

Continued  Fraction 

Notation: For SCF [ a0 , a1 , ………..,an] ; Ck =  [ a0 , a1 , ………..,ak] = Pk /qk ; 0fkfn 

1) Show that any rational number can be written as a finite simple continued fraction and 

every finite SCF represents a rational number. 

2) For 0fkfn, define Pk and  qk  as p0 =a0;q0=1 ; p1= a1a0 +1; q1= a1 and rn =  [ a0 , a1 , 

………..,an] = Pn /qn  then prove that 

a)For k g2 

      
ý�þ� =  ÿ�ý�−1+ý�−2ÿ�þ�−1 +þ�−2 

b)  Pk qk-1 –Pk-1 qk = (-1)k-1   For k g 1 

c)  Pk qk-2 –Pk-2 qk = (-1)k ak   For k g 2 

d) 
ý�þ� 2 ý�−1þ�−1  =  (21)�−1þ�þ�−1  

e) If n is odd then rn < rn-2 and if n is even then rn-2 < rn 

3) Prove the following: 

a) The convergents with even subscripts form a strictly increasing sequence.  

b) The convergents with odd subscripts form a strictly decreasing sequence. 

c) Every convergent with an odd subscript is greater than every convergent with an even 

subscript . 

4) If gcd(a,b) =1 and a/b =  [ a0 , a1 , ………..,an] where n is odd. Then prove that x= cqn-1 &  

y= -cpn-1 gives a solution of ax+by = c 

5) Prove that every Simple Infinite Continued fraction (SICF) represents an irrational 

number and conversely. 

6) Prove that two distinct Simple Infinite Continued fractions converge to different 

numbers. 

7) If 1 f Ā f qn  then prove that the rational number a/b  satisfies |ý 2 ý�þ� | f | ý 2 ÿĀ | 

8) State and prove Dirichlet’s Theorem about quadratic approximation. 

 

Unit III 

(�ýÿĄ �þăĄþÿÿþ ÿĆþĀþă, ��ÿĄ �þăþÿą ÿĆþĀþă) 

1. Define the  �ĀĀ�ĆĄ ̈ �-function. Show that it is a multiplicative function. 



 

2. State and prove the  �ĀĀÿĆĄ  inversion formula. 

 

3. If 2Ā-1 is prime  ( k >1), then show that ÿ = 2Ā21(2Ā 2 1)  is perfect and 

every even perfect number is of this form. 

 

4. If p and q=2p+1 are primes, then prove that either q|�ý  or q|�ý + 2,  but 

not both. 

 

5. If q=2n+1 is prime then establish the following, 

(a) q|��  provided that Ă ≡ 1(þĀý 8) Āă Ă ≡ 7(þĀý 8) 

(b) q|�� + 2  provided  that Ă ≡ 3(þĀý 8) Āă Ă ≡ 5(þĀý 8) 

 

6. If p is an odd prime then show that any odd divisor of �ý is of the form 

2kp+1. 

7. If p is an odd prime then show that any odd divisor  q  of �ý is of the form Ă ≡ ±1(þĀý 8). 
 

8.  State and  prove   Korselt’s criterion for Carmichael numbers. 
 

9.  Prove that every Carmichael number is the product of three or more 

distinct odd factors. Furthermore , prove that, if n is a Carmichael number 

and if p is an odd prime , then  p divides n if and only if p-1|n-1. 

 

10. Show that any absolute pseudoprime is square free. 

 

11.   Let ý1, þ1 be the fundamental solution of   ý2 2 ýþ2 = 1. Then show that 

every pair of integers ý� , þ�defined by the condition  

           ý� + þ�√ý = (ý1 + þ1√ý)�           n=1,2,3&&&              is also a 
positive solution. 

 



12.    If  ý1, þ1 is  the fundamental solution of   ý2 2 ýþ2 = 1, then prove that 

every positive solution of the equation is  given  by  ý�, þ� where  ý�  ÿÿý  þ�are the integers determined  from                                                                              ý� + þ�√ý = (ý1 + þ1√ý)�           n=1,2,3&&&    
       

13.   Let   d be a positive nonsquare integer. Let (ý0, þ0)= (1,0)   be the trivial 

solution to the equation  ý2 2 ýþ2 = 1.Then show that all solutions to the 

equation in non-negative integers may be expressed by each of the 

following forms, where the integer ÿ g 1. 

 

          a)      [ 
ý�þ�]=[ý1 ýþ1þ1 ý1 ]      [ 

ý�−1þ�−1] 

 

         b)         [ 
ý�þ�]=[ý1 ýþ1þ1 ý1 ]� [ 10 ] 

 

14)    Assuming that   equation  ý2 2 ýþ2 = 21 is solvable,   let ý1, þ1  be  

       the     smallest positive solution. Prove that all solutions of equation              ý2 2 ýþ2 = 21 are  given by  ý�, þ�  where                                               ý� + þ�√ý = (ý1 + þ1√ý)�       with  n=1,3,5,7&..  

                   and  that all solutions of    ý2 2 ýþ2 = 1  are   given by  ý�, þ�   

                with n=2,4,6,8&&. 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 


