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Paper - 1 Evaluation of double and triple integrals Practical -1

Objective Questions

1. An expression for f01 f:/fz f(x,y)dydx in which the order of integration is reversed is

1 2
@ [2, 2. f(x,y)dxdy. ) 2, [ f O y)dxdy.
(c) a sum of two integrals. (d) None of these.
1,1 .
2. 1=, flj;xy dydx. Then I is
(a) Undefined (b) fol ny xy dxdy. (©)0 (d) None of these.
3. I= fol f;z xf(y) dydx where f is continuous function defined on [0, 1]. Then [ is
(@) §f01(y —-y%) f(y)dy (b) independent of f(y).
© 5 J, @2 =) fOdy A f(x)
4. The value of the double integral f_ll fol e** siny dxdy is equal to
(@) 2cos1 [} e* dx. (b) —2cos1 [ e*" dx ©) 0 (d) does not exist.

5. The double integral fol fgc x dydx reduces to
1,1 1 1,01 1,01
@ 5[, (1 =»)dy o) f, [ x dxdy © [y [, x dxdy (@) [y xdx

6. If f(x,y) = k, k constant and R = [a,b] X [c,d] then [ [ k dA equals

(@ k(b —a)(d —c¢) (b) k(c —a)(d — b) ©k(b—c)d—a) (d) data insufficient
7. LetD = {(x,y):x* +y*> <r} and f(x,y) = x* +y.Then [ [ fdA lies in between

(a) —16mand 4n (b) —2 and 2 (¢) —8m and 24nm (d) —4m and 8n
8. The iterated integral foz fxzzx (x2 + y?) dydx represents

(a) The area of the region in the xy-plane bounded by the line y = 2x and the parabola y = x?
(b) Volume of the solid that lies under the paraboloid z = x2 + y? and above the region in the xy-plane
bounded by the line x = y/2 and x = \/;
(c) Volume of the solid the lies under the paraboloid z = x? + y? and above the region in the xy-plane
bounded by y? = x and x = [y
(d) None of the above.
9. The volume of the region boundedby z=x+y,z=6,x =0,y =0,z=01s

(a) 36 cubic units (b) 30 cubic units (c) 2/6 cubic units (d) None of these.
10. The volume of the solid given by x + y? < 1 and tan_li—/ <z<2mis
(a) m (b) m? ©1 (d) None of these.

11. Let V be the volume of the solid that lies under the paraboloid z = x% + y? and above the region in the xy-
plane bounded by the line y = 2x and the parabola y = x?2,

2 (2 4 [y x%+y?
Let A= [, fxzx(x2 +y?) dydx, B =, fy;; f;c " dzdxdy. Then
(@) V=AbutV£B (b)V=A=B8 (C)V #AbutV = B @V #AV +B

12. [f, ysin(xy)dxdy where R = [1,2] X [0, ] equals

(a) (b) 2m (©0 (d1
13.1f £:[0,1] - R is continuous then [f. f(y)e*dxdy, S =[0,1] x [0,1] equals
@ (-1 fifdy  ®efifMdy  ©(S—e)fyfGdy  (d) None of these.
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14. f[, e*¥dxdy whereS = {(x,y) € R*:1<y <2,y <x < y*} equals

e? e et e? e?-1

(a) 55 (b) Py (©) > (d) None of these.
15. f[; es*c°sYdxdy where S = {(x,y) € R*:x? +y® < 4} lies between

(a) 4me?and 4me? (b) e™ and e?™ (c) %ﬂ and 4me (d) None of these.
16. f is continuous on [0,1] and fol f(x)dx = 0, then fol fox fF)f(y)dydx

(@) Depends on f(y) (b) % ©0 (d) cannot be evaluated.
17. ff; (x = 3y*)dxdy where S = [0,2] X [1,2] equals

(a) 12 (b) -12 (c)6 @0
18. Let A(x) = fozf(x, y)dy and B(y) = folf(x, y)dx where f(x,y) = x%y3, then

(a) A(x) =3x%B(y) =y*/4 (b) A(x) = x*B(y) = y*

(c) A(x) = 4x%,B(y) = y3/3 (d) None of the above.

19. The value of the integral ffR Vx2+y% dx dy where R={(x,y) € R%:x < x% + y? < 2x}is
(@0 (b)7/9 (c) 14/9 (d) 28/9

20.1f R = [0,1] x [0,1], then [f, e **~¥* dxdy lies between

(a) —1and O (b) 0 and eiz (c)1/eand 1 (d) None of these.
21. f is continuous on [0, 1] and fol f(x)dx = 0, then fol fox f)f(y)dydx is
(a) depends on f(y) (b) % (©0 (d) cannot be evaluated
(2 1<x<3 0<y<?2
22'f(x’y)_{3 3<x<4 0<y<z ‘em

(a) f is not integrable on [1,4] X [0, 2]

2 (4
® J, J, f=5

2 (4
© [y fy f=14
(d) None of these.

. (1 1
23. Let f(x,y) = sin (m),g(x,y) = mand D ={(x,y):x*> +y%2 <1}

Then which of the following statement is true.
(a) f and g are Riemann integrable over D.
(b) f is Riemann integrable over D, but g is not Riemann integrable over D.

(c) g is Riemann integrable over D, but f is not Riemann integrable over D.
(d) Both f and g are not Riemann integrable over D.

_(0ifx,y €EQNR _
24. f(x,y) = { 3 if otherwise where R = [0, 1] x [0, 1]. Then
(a) f is continuous at (0, 0) (b) lim  f(x,y) does not exist
(x,y)—(0,0)
(c) f is integrable over R (d) f is not integrable over R
2 .
25.1f f(a) = f; 22 dx then f'(a) is
a® acosax d b a? d
(a) fa . b (b) fa cos ax dx

sin a?

2
(©) f; cosax dx + 2sina® — (d) None of the above
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sin xy

26.1f g(x) = | 01 dy on any interval [a, b] not containing zero then g’ (x) equals

cosx sinx cosy

(a) — (b) = (c) ” (d) None of the above.
_ sinx x#0
27 f(x.y) = { 8 otherwise
@ f[, f=1

(b) ffR f=cosl-1

(c) ffR f=1-cos 1
(d) None of these.

28. The triple integral [ [ [, dV where V is he region bounded by the paraboloid y = x? + z* and the plane
y = 4 can be expressed as an iterated integral in the order dydzdx as

2 VA—xZ 4 2 A—xZ 4
@ 2 [y ) [y, dydzdx 0) [, I sz fyo g dydzdx
(c) 2 foz fo 4ot f:z 4,2 dzdydx (d) None of these.

29. The triple integral fol fox ny xy?z3dxdydz

1 1 1 1
@ 55 1 b = © = d %
30. The value of [/ (x + t)* dx s
(a) by t2+t—1/3 © t2—2t—1/3  (d)None of these.
31. The value of fol log(xt)dx is
(a) log(1+1t) (b) 2logt (c) logt (d) None of these
32.1f g(x) = fol log(x? + y?)dy x # 0.then g'(x) equals
(@) 0 (b) 1 (c) 2tan™? i (d) does not exist.

Descriptive Questions

(I)  Use Fubinis theorem to evaluate . ¢ [ - Sketch the region S of integration. Write both the iterated

integrals.
1. f(x,y) = x?y and S is bounded by the lines x = 2,x = 4,x = 2y and x = y2.
2. f(x,y) = x + y and S is defined by the parabolay = x? and y = 1 — x2.
3. f(x,y) = x + y and S is bounded by the lines x + y = 1,x 4+ y = 3 and co-ordinate axes.
4. f(x,y) =x+yand Sisdefinedby S = {(x,y): |x] <1,0<y <1+ |x]}.
5. f(x,y) = (1 + x)siny and S is the trapezoid with vertices (0,0), (1,0), (1,2) and (0, 1).
6. flx,y) = 1+xzzx v and S is the region in the first quadrant defined by x? = 2y and x = 2.
7. f(x,y) = xsinyand S is givenby S = {(x,y):0 < x < cosy,0 <y < m}.
8. f(x,y) = x3y? and S is the disk x? + y? < a?.
9. f(x,y) = xy? and S is the region above the lines y = 1 — x and inside the circle x% + y? = 1.

—
e

f(x,y) = x? — xy and S is the region enclosed by y = x and y = 3x — x2.
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11.  f(x,y) =x—y andS is the region above X-axis bounded by y? = 3x and y% = 4 — x.

12.  f(x,y)= \/ﬁ is the region in the first quadrant bounded by x? = 4 — 2y.

(II) Evaluate the following integrals by reversing the order of integration. Sketch the region of integration.
1 [2 [ sinmx3dxdy
O]
2
2. Js f% e~ dxdy
2 (5 -
3. Js f1+y2 ye®=D* dxdy

4—x2
216 + 4y dydx
VaZ=x2
Iy © 7 (@ = y®)¥2 dydx
fol f\/li V1 +y3dydx
V2 2 1
A " e*INY dydx
flfj—eJ’dedx

A S A A

f fx (x2+y2)3/2 dydx

0. [

11. fo f1V (x +y)dx dy
12. f:fjm e’ dydx

3 e(x —2x)

dxdy

(IIT) Using double integration, find the area of the region S in R?, in the following examples:
1. S is bounded by the parabola y = x? and line y = 2x + 3.

S is bounded by the parabolay = 9 — x% and y = x? + 1.

S is bounded by the circle x? + y? = 16 and the parabola y* = 6x.

S is the interior of the quadrilateral with the vertices (1,0), (4,1), (3,3) and (2, 2).

S is bounded by the parabolas y = x2 and y = 4x — x2.

A

S isbounded by y =sinxand y = cosx for0 < x < %-
IV. Evaluate the following Triple integrals
1 [F 7 [ 6xzdydxdz
' 0o Jo Jo y
2
3y 2-y?
f f f 2asyr  Azdxdy

f f f —dxdydz

6. f f_mfyﬂ dzdydx

4|Page Integral Calculus Practical 1

A



(IV) Evaluate the following triple integrals.

1.

N

10.

JIf; zx sinxydV where S is the parallelepiped between the graphs of z =0 and z =2 on the
rectangular region R in the XY -plane bounded by the lines x = %, x=1y=0andy =m.
xyzdV where S is the bounded by the three co-ordinate planes and the plane x +y + z = 1.
s
(x + 1)dV where S is the solid region between the graphs of the surface z = —y? and z = x?
I g grap y
on the region R in the XY-plane boundedby y = 0andy = x for 0 < x < 1.
xy sin yxdV where S is the rectangular box defined by the inequalities 0 < x <m,0<y <
S
,0<z<Z,
6
xyzdV where S is the solid in the first octant bounded by the parabolic cylinder z = 2 — x?
S
and the planes z =0,y =0,y = x.
zydV where S is the solid bounded above by the plane z =1 and below by the cone z =
s ZY y p y
VX2 +y2.
zdV where S is the solid region bounded above by the sphere x? + y2 + z2 = 9, below by the
S
plane z = 0 and on the sides by the plane x = -1, x =1,y =—1andy = 1.
ydV where S is the solid enclosed by the planes z = 0,z = y and the parabolic cylinder y =
S y p p y
1—x2,
ydV where S is the solid defined by the inequalities I< y< E,y <x<Z,0<z< xy.
S y q 6 2 2

JIf; xyzdV where S is the portion of the sphere x> + y® + z* = a? lying in the first octant.
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10.

11.

Paper - 1 Change of Variables in Double and Triple Integrals Practical -2
Objective Questions

D is the closed region in the XY plane bounded by y = V1 — x? and the x-axis.If R is the region in the r —
plane whose image is D under the transformation x = r cos @, y = rsin @ then R is

(@) {(r,0)/0 <r <+2,0<6 <2n} 0 {(,0)/0 <r<1,0<6 < 2m}
©) {(r0)/0<r<1,0<6<n/2} @ {(r,0)/0<r<1,0<06 <)

The double integral [ [o f(x,y) dxdy where S = {(x,y)/x* + y* < 2x}, expressed as an iterated integral in
polar coordinates is

(a) fozn foz cos® f(rcos@,rsin@)r drdf (b) f02n foz cos® f(rcosf,rsinf) drdf
() fog foz cos® f(rcos@,rsin®)r drdé (d) f_gz foz cos® f(rcos@,rsin®)r drdb
2
S={(xy)/a* <x*+y? < b*}with0 <a <b.Then [ [, f(x,y)dxdy expressed in polar coordinates is
(a) fozn fbaf(r cos 6, rsin@)r drdo (b) fozn f: f(rcos@,rsin®)r drd
(c) 2 f; f:f(r cos @,rsin@)r dodr (d) None of these.
The integral foz f; v f (\/m) dydx in polar coordinates is
@ S5 20 faryr drde ) [ (2 f(ryr drde
© e Iy For drds @[5 J < f @ drds

The area of the ellipse 4x? + 9y? = 36 is

/2 +6/V4+5sin2
N

% rdrde

(c) 4 fon/ 2 fos/ A+5sin® 6 rdrdf (d) None of these.
The volume of the region bounded by z = x2 + y2, z=0,x = —a,y =a andy = —a is
4a* 8a* 16a*
(a) - (b) Y () 3 (d) None of these.

The volume V of the solid above the region R = {(,0)/1 <r < 3, 0 < 0 < m/4} and under the surface z =

2 2 .
eX V" s

(a) me (b) me(e — 1) (c)g(e9-e) (d)ge.
If D is a plate defined by 1 < x < 2,0 < y < 1 and the density is ye™”, then mass of the plate is
e? e? e? 1
(a)e (b); (C)7—€ (d)?—€+z
The centroid of the region bounded above by the line y = 1 and bounded below by the curve y = x2/4 is
(@) (0, 3/5) (b) (1,3/5) (©) (2,3/5) (d) (~1,3/5)
The centroid of the rectangle bounded by the co-ordinate axes and the lines x = a and y = b has its centroid at
(a) (a/4, b/4) (b) (a/2,b/2) ©) (a/2,b/4) (d) None of these.

The moment of inertia of a homogeneous disk D, center at origin and radius a with density p about the origin
4
is %. Then the moment of inertia of this disk about y-axis is

(@ 0 (b) ()

npa*
8

npa*
4

npa*
2

(d)
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12. The density p of a region D is given by p(x,y) = k, k constant. Then the center of mass D
(a) depends on p for some value of k (b) depends on p for any value of k
(c) does not depends on p (d) is located at (0, 0)

13. The volume of the solid bounded by the elliptic paraboloid x? + 2y? + z = 16, the planes x = 2,y = 2 and
the three co-ordinate planes is given by the expression

@ [2, /2,16 —x2 = 2y?) dxdy (b) JZ, 17,(16 = x* = 2y?) dxdy
(c) foz f02(16 —x% = 2y?) dxdy (d) f04 f04(16 —x2 = 2y?) dxdy
14. The iterated triple integral f_zz f_j;_i; fjm(xz + y?) dzdydx in cylindrical coordinates is
@ [ [ [ r® dzdrde M) [7" [ [?r? dzdrd6
© [ [7 773 dzdrde @ [ [2f7 v dzdrde

15. A region R bounded by the coordinate axes and x + y = 1 in the first quadrant is the image of a region S lying
in the uv plane under the transformation u = x + y, v = x — y. Then the area of the region S is

(a) 1 (b) 12 (c) V2 (d) Data insufficient

16. S is the region in the first quadrant bounded by the curve xy = 1, xy = 2,y = x,y = 4x.
Ifu=xy,v= y/x Then [, f (x, y) dxdy becomes
@ f 22 dvau ) [ ;7 L2 dvau(
(c) log2 flz f() dv. (d) log 2 flz f () du.

17.8 = {(x,y)/Ix| + |yl <1} fu=x+y,v=—x+y,then [[, f(x+y)dxdy equals.
@ f, [}, fwdvdu ® [, 11, B avau
©4J, f, f@dvdu (d) 1, fadu

18. The expression for mass of a solid inside the cylinder x? + y? = a? and between the planes z = 0 and
z = h in the first octant with density x is

(@) foh foa Js @ty y dxdydz (b) foh foa I LA dxdydz
© Jy Iy 7" %2 dxdydz (@ fy J " y? dedydz

19. The expression for moment of inertia about the z-axis of homogeneous tetrahedron bounded by the
planes z = x + y,x = 0,y = 0,z = 1 with volume density u is

1 1=y (1 11—y (1
@ulyJo 7 fony & +y?) dzdxdy O ufy Jy 7 Jesy dzdxdy
() u fol fol_y xl+y z? dzdxdy (d) None of the above.

20. The integral expression for each mass of the solid in the first octant bounded by the cylinder x? +
y% = 1 and the plane y = z,x — 0 and z = 0 with density p(x,y,z) = 1 +x +y + z is

(a) fol IN 12 f;c (1+x+7vy+z) dzdxdy (b) fol Jo 1 ny (1+x+ v+ z) dzdxdy
© 5 [ i [} (1+x+y+2) dzdxdy (d) None of the above.
21. The moment of inertia relative to the xz plane of a three dimensional region D with density p at each
point is
(@) fff, x*p av ®) [fl, xp av © M, y*p v @ [ll, yodv
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22. The moment of inertia relative to the z-axis of a three dimensional region D with constant density 1
in spherical co-ordinates is

@) [If, p* sin® ¢ dpdpds ®) [If, p* sin® § dpdpde

) lll, p? sin® dpdgdo (d) [lf, p* sin* § dpdgdo
23. The moment of inertia of a three dimensional region D with constant density 1 in cylindrical co-
ordinates is

a) [ff, zdzdrdé (b) [ff, rzdzdrde (©) JIf, rz*dzdrd6 (d) [ff, rdrdzd6
24.25.1f D is the sphere x* + y* + z> < 9 then [[f dV is equal to

(a) 631 (b) 187 (c) 61 (d) 6*1
25.If D is the unit sphere x* + y? + z* < 1 then [f[ z dV is equal to

@) 0 (b):m (€37 (d) None of these

26. The volume of the portion of the solid cylinder x* + y? < 2 bounded above by the surface
z = x% + y? and below by the xy plane is
(@ m (b) 21 (c) 8m (d) 4w

Descriptive Questions

Evaluate the iterated integrals by converting to polar co-ordinates.

f IW dxdy

1. 1+x2+y2

2. fo Js VAT xtey? dydx

3. flf\/j;—L; (x% + y?) dydx

4. mmdxdy

5. f02a f(;/m (x% + y?) dydx
) “Z—W dxdy

7. ﬂf f x2 x dydx

8. Jo fmxy dxdy

9. /s f‘/—cos(x +vy?) dxdy

10. fo Jo Vax=x? Jx2+y? dydx

Evaluate the double integral as an iterated integral in polar co-ordinates.

1. 1. s (x + y)dA where S is the region in the first quadrant bounded by the lines y = 0,x = 5}—5 and

the circle r = 2.

2. I 1+:2A+ ~ where S is the sector in the first quadrant bounded by y = 0,y = x, and x? + y? = 4

3. Jf; 3ydA where S is the region in the first quadrant bounded by the circle (x — 1)? + y* = 1 and
below by the line y = x.
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III.

IV.

4. [, dAwhere S is the region in the first quadrant of the circle x* +y? — 8y = 0 cut by the line
y =+/3x.

5. JJ; dAwhere S is the annulus between the circles x? +y? = 4 and x* + y? = 16.

Using the cylindrical co-ordinates evaluate the following integrals:

1.f_22 f_% f:_xz_yz x2dzdydx

2 f2 [ [ s dadydx

3] fs \/m dxdydz where S is the region bounded by the plane z = 3, and the cone z =

4.f_22 f_j\/?—; f(icz+y2)2 x%dzdydx

5.7, foﬁ‘—yz [, (x® + y?) dzdxdy

6.Jff; (x* +y?)dxdydz where S is the solid bounded by the surface x* + y? = 2z and the plane z =
2.

7.f]. fs \/m d(x,y,z) where S is the solid region bounded by the cylinder x + y2? = 4 and the
planez =0,y + z = 4.

8.JI[; f(x,y,2)d(x,y,2) where f(x,y,2) =
z < 3}.

9.fff$ f(x,v,2z)d(x,y,z) where f(x,y,z) = H;—HZ and S ={(x,y,z) ER%:1<x?+y2<3, x>
0,y=>2x1<z<5.}

10. [, f(x,y,2)dzdydz where f(x,y,2) =
3,x<V3y<3xx>0,0<z<3}.

xz
1+x2+y2

and S={(x,y,2) ER31<x?+y2<3,0<

z
14+x2+y2

and S={(xy2)eR*1<x2+y2<

Using cylindrical co-ordinates find the volume of the solid region S in R? where

1.S is bounded by the paraboloid x? + y? = 4 — z and the plane z = 0.

2.S is bounded above by the upper hemisphere of x2 + y? + z? = 25, below by thw plane z = 0 and the
laterally by the cylinder x2 + y2 = 9.

3.5 is the bounded by the cone z = /x2 + y2 and the paraboloid z = x? + y2.

4.5 is the solid bounded above by the paraboloid z =5 — x? — y2 and below by the paraboloid z =
4x% + 4y?

5.S is the solid bounded below by the paraboloid z = x2 + y? and above by the plane z = 2y.

Evaluate the following integrals using spherical co-ordinates:

3/2
L], e(*+¥*+2°)"" G4y dydz where S is the unit sphere centered at origin.
—x2 —x2_y2
z-f_zz f_\/%f(;ﬁ} T z%\[x? + y? + 72 dzdydx.
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VL

VIL

3 Y dadyda.

1+x24+y2+22

4.fffs __dYdZ __ here S is bounded by the sphere p = a and p = b; (a > b > 0).

(x2+y2+22)3/2
5.Jff; x* + y*dxdydz where S is the portion of the sphere x* + y* + z* = a? cut by the cone x* +
2 _ 2,2
ye = 3z°.

3/2
x24+y2+z2 /

6. [f] e_( a? ) AYAZ here S is the spherical region given by x2 + y? + z2 < a2,

7.Jff; xyz dx dy dz where S is the solid in the first octant bounded by the sphere x* + y* + z* = 4.

8.Jff; x*dV where S is the solid region bounded above by the sphere x* + y? + z% = 1 and below by
the upper half of the cone z? = x? + y2.

Using Spherical / Cylindrical Coordinates find the volume of the solid region S in R3 in the following
examples:

1.S is the sphere x? + y2 + z2 = a?

2.S is the region between two concentric spheres p = a and p = b; (b > a > 0).

3.5 is above the cone z? = x? + y? and inside the sphere x? + y? + z2 = 2az, (a > 0).

4.5 is the volume cut from the sphere p = a by the planes § = 0 and 6 = % in the first octant.
5.5 is the volume of the solid region bounded by the surface p = cos ¢

6.S is the solid within the sphere x? + y2 + z2 = 9 outside the cone z = \/x2 + y2 and above the XY-
plane.

7.S is bounded by the cylinder x? + y? = 25 and the planes z = 0,z =8 — x — y.

8.5 is the solid enclosed between the cylinder x? + y? = 1 and the planes z = 0 and z = y + 1.

9.S is enclosed between the cylinder x?+ y? = 9 and the plane z = 1 and x + z = 5.

10. S is enclosed by the paraboloids z = 5x? + 5y? and z = 6 — x — y?

11. S is enclosed by the surface z = x? + y? above the plane z = 0 and inside the cylinder x? + y? = 2y.

Evaluate the following integrals by a suitable change of variables.

1. [, x*ydA where S is the region bounded by the lines 2x —y =1,2x —y = =2,x +3y = 0,x +
3y =1.

2.ffS (ﬂ)3 dA where S is the region bounded by the lines x — 2y =1, x -2y =2,x+ 2y =1,x +
x+2y
2y = 3.

3.Jf; (x* +y?) dxdy where S is the region in the XY-plane bounded by the curves
x2—y?=1x>—-y?=2,xy=2,xy = 4.

4.ff, dxdy where S is the region bounded by the curves xy = 4,xy = 8,xy* = 5,xy> = 15.

5.Jf; (x +y)dxdy where S is the region in the XY-plane bounded by the curves x* —y* = 1,x* — y? =
2, and the linesy = x — 3,y = x — 1.
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VIIL

6. I S LG} dxdy where S is the triangular region bounded by the parallelogram with vertices

cos(x+y)
(,0), 2m, ), (7, 2m) and (0, m).
7. Jl. (7 —x) dA where R is the region bounded by the straight lines 2x + 3y —1=0,2x + 3y —
3=0,x4+2y=0,x+2y—-5=0.
8. Jf cos (%) dA where R is the region bounded by the coordinate axes and line x +y = 1.
9. /I, (x=y)e* *=¥* dA Where R is the rectangular region enclosed by the lines

x—2y=1x—-2y=42x+2y=12x+2y = 3.

10. [l z :ﬁ dA where R is the region bounded by the lines

y=4x,y=4x+2,y=2—4x,y =5 — 4x.

Evaluate the following integrals using the indicated transformations:

L ff, (x* +y?) dxdy where S is the region bounded by the ellipse 4x* + y? = 4. Take u = x and v =
y

2
2.Jf; xy?dA where S is the region bounded by the lines x —y = 2,x —y = —1,2x + 3y = 1 and 2x +
3y = 0. Take x = §(3u +v)andy = %(u— 2v).
3.ffs e”™* dA where S is the region bounded by the lines 2y = 3x,y = 2x,and y = x + 1. Take x =
u+vandy =u+ 2v.
4.ff s %exz ~¥* dA where S is the region in the first quadrant bounded by the hyperbolas
x%2 —y? =1,x% — y% = 4, and the lines x = 2y, x = v/2y. Take x = usecv and y = utanv for
u > 0 and 0<v<§.

5. ffR e*¥ dA where R is the region bounded by lines 2y = x, y = x and hyperbolas xy = 1 and xy = 2.
Takeuz% v = Xxy.
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USAMTPO5 Integral Calculus SemV Revised Syllabus 2016-17
Paper - | Linelntegralsof Scalar and Vector Fields Practical -3

Objective Questions

t2

1. f:IR - IR?,(f (t) = (1+t2 1+t2) The image of [0, 1] is
a) One full circle. b) an arc of a circle.
c) anarc of a parabola d) none of the these

2. f:IR = IR*,(f(t) = (e' + 7", e' — e7"). The image of [0, 1] is an
a) anarc of a circle. b) an arc of a parabola
c) Anarc of a hyperbola d) none of these.

3. 1= [FdrwereF = (xy,yz,zx) from (0,0,0) to (1,1,1). Then I is
a) 0. b)1. c) 1/2. d) none of these.

4. The value of the line integral f (x? + y?) dr where C is the arc x* + y* = 1 from
1) to (1, 0) in clockwise diréction is

0,
aS /2. b) —m/2 c)m d) none of these.

5. The Cartesian representation of the curve having parametric equation
x =3+5sint,y=1+2cost;0 <t < 2mis

a) e 1 b=+ = 1L
25524 22 9 3‘21 12
&=, @2 g Q= , o= _
3 1 25 4

6. A parameterization a of a circle of radius 2 centered at the origin in the X Z plane
is given by
a)x: [0,2n] » [R? o« (t) = (2costt,2sint,0)
b) «: [0 2m | - !R3 o (t) = (2 cost t,2sint,1)
c) «:[m,3m] - IR« (t) =(2costt, 0, 25mt)
d) o: [0 2n] —» IR x (f) = (0,2 cost t,2sint)

7. The parametric equations x = 2 + 3t y=4+7t> elements.
)Thecurvey— x3,0 <x <1
b)Thecurvey = x 0 <x <1
c) The curve x* — y* =2,0 <x <1.
d) line having intercept on both the axes.

8. The parametric equations x = cos(cost) ,y = sin(cost),t € [0, r] describes.
a) one full circle
b) an arc of a circle in first quadrant
c) one half circle above the XY-plane
d) an arc of a circle in the first and fourth quadrant

9. The equationx = cost,y = cost ,0 <t < m parameterizes

a) an arc of a circle. b) an arc of a parabola
c) a line segment d) a branch ot a hyperbola.
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10. 1= f, 2555 where €+ x?+y? =r%. Thenlis
a) 0. b) 2m. @) 2 d) 24 . where A is area of the circle.

r2m y2m f

Descriptive Questions

|. Evaluate the integral of the scalar field f along the given path.

1f(x,y)= x>+ y, Cisthecurvex(t) = 3t,y(t) = t};0 <t <1
2.f (x,y,2) = x* +y* + 2?; C is the curve given by
x(t) = cost,y(t) = sint,z(t) =;0 <t < =m/2.

f,y,z) =x+y+z and y(t) = (sint,cost,t), 0<t<2m
f(x,y,2z) =coszy(t) = (sint,cost,t),0 <t <2n

f(x,y,z) =xcosz,y(t) =ti+t%,0<t <1

flx,y,2) =e"?, and y()=(1,2t2),0<t<1

f(x,y) = sinx + cos x, C is the line segment from (0,0) to (m,2n).
flx,y,2) =2x 49z, C: x()=tyt) =t%z{t)=t* 0<t< 1.
flx,y,2) = x>+ y? + z>

C; x(t) =cos t,y(t) =sin t,z(t) =t; 0<t< m/2.

CEON O AW

10.f(x,y,2z) = x+y + z Cis the line segment from (1, 2, 3) to (0, -1,1).

[I.  Evaluate the integral of the vector field F' along the given path.
1. F(x,y) = (x* — 2xy,y? — 2xy); C is the curve y = x? from (-1, 1) to (1, 1).
2. F(x,y) = (y,x?%); C is the line segment from (0, -1) to (4, -1)
and then to (4, 3).
3. F(x,y,2) = (xz, y+2,x); C:x(t)=e%,y(t) =e%z(t) =e*,0<t<1.
4. F(x,y,z) = 2x + yz,xz,xy+2z) C x*+y?*=1;, z=1 from (0,1,1) to (1,0,1).
5 F(x,y,z) = (x,z,—yx) C is the circular helix given by
x(t) = cos t, y(t) =sint,z(t) =2t; 0 < t < 3.

6. F(x,y,2) = (x%— xy,1); dong each of the following curves:
a) The straight line joiring (0, O, 0) to (1,1,1)
b) Thecircleof radius 1, with centre at the origin and lying in the yz, plane, traversed
counterclockwise as viewed from the positive x axis
c) Theparabolaz = x4,y = 0, between (—1,0,1) and (1,0, 1)
d) Thestraight line between (=1,0,1) and (1,0,1)
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Evaluate the following line integrals

Evaluate the line integral fc sinzdx + coszdy — (xyﬁ dz where C be parametrized by
x = cos30,y = sin®0,z = 6,0 < 0 < Tn/2.
Evaluate (he line integral fc x%dx + xy dy + dz, where C is parametrized by c(t) =
(t,t5,1),0<t < 1.
Evduate fc F(r).dr, where F(x,y,z) = sinzi + cos\/)Tj + x3k and C is the line segment from
(1,0,0) to (0,0,3).
Evaluate | o 2xydx + x*zdy + x*ydz, where C is an oriented curve connecting (1,1,1) to
(1,2,4).

Evaluate . (3x —y) dx +y dy where C is parametrised by

«:[0,log2] = IR?* a(t)= (e'— 1,e'— 1)
Evaluate the integral of the vector field F (x,y) = (x* — 2xy, y* — 2xy); along the parabolic
pathC y = x? from (—1,1) to (1,1).
Evaluate the integral of the vector field F (x,y,2) = (xz, y + z,x); along the given path
C is the curve x(t) = e,y (t) = e7,z(t) = e*;0 <t < 1.

Evaluate [, 1_3:_2 dx — (1;—?2) y dy where Cis the straight line path joining
(1,0) to (2,0) and (2,0) to (2,1).

Solve the following:
Calculate the work done by the force field F(x,y,z) = xi + yj when a particleis moved along the
path (3t%,¢,1),0 <t < 1.
Find the work done by force field when a particle is moved along the straight- line segment from
(0,0,1)to (3,1, 1).
Find the work which is done by the force field F(x,y) = (x? + y?) (i + j) around the loop
(x,y) = (cost,sint),0 <t < 2m.
Let F = (2% + 2xy)i + x%j + 3xz%k. Show that theintegral of F around the square with vertices
(+1, +1, 0) is zero.
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US/AMTPO5 Integral Calculus SemV Revised Syllabus 2016-17

Paper - 1 Green’s Theorem, Conservative Field and Applications
Objective Questions

1) F(x,y) = (x%y° axy°) isconservativein the plane then
a) a=z, b=1c=6 b)a=5/3,b=3,c=4
¢) b & c exists but a does not exist. d)a=1,b=2c=5.

2) F(x,y,z) = 2xy +y4,x* + 2xy + 2,y + %) then
a) there exist a function ¢p(x,y, z) such that F = V¢
b) there does not exist a function ¢p(x, y,z) such that F = V¢
c) ¢(x,y,2z) = 2x2y +..?.xy2 + 2y%,F = Vo

d) ¢(x,y,2) =x?y +rv? + "7” +yz,F = V¢

-y i+xj
e

3) Thelineintegral f: F-iffr; F =
a) dependson a.
b) does not exist as Green’s Theorem is not applicable.
¢) is aconstant independent of a.
d) none of the above.

and C:x* +y? = a°.

4) I'=¢ ydx+2x dywhereC is aclosed curve of the region x* + y* < a® Then I is
a) a? b)m a* c) 0. d) None of these.

5) 95.: P dx + Q dy = 0 around every Cisaclosed path € in a simply continued region R then

_y 9P _00Q . 1 .
a) g if P and Q are C™ function.
P _ 9Q
e always.
oP _ 3Q
c) dy ~ ox’

d) Nothing can be said about 2 and 2
ay dx

6) I =9 (x+y)i+ (x—y)j, WhereCis the ellipse b*x* + a’y* = a?b* then | is
a) wab b) 0. c)n(a+ b) d) ab.

7) I = [ ydx+xdy where Cis the path (¢°, sin®(/2)); 0 < t < 1 Then| is
a) l b) 0. c)-1. d) n.

8) Vflx,y,2) = nyzexzi + ze"z,? + yexzﬁ and £(0,0,0) =5.Then f(1,1,1).
a) S. b) e. c)e + 5. d) Je

9) fc ydx + xdy along every closed curve C is
a) 2m b) © c)m/2 d) None of these.

Practical 4
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10) P =log(x® +1) —2xe™¥,Q = x?e¢™ — log(y? + 1). Then
&) [ ¢, Pdx +Qdy = fcz Pdx + Qdy for any two curves C; & C, with same end points.

b) fcl Pdx + Qdy = fcz Pdx + Qdy for any two curves C1 & C2 by Green’s Theorem.

C) fcl Pdx + Qdy # fc2 Pdx + Qdy for any two curves C; & Cy,
d) None of these.

Descriptive Question

L. Find whether the following force field F is conservative .If so find @ so that F = V@ and
calculate the work done in the moving the particle from the point P to the point Q

PGy = PyY+xafy®+y);  P(LYD), Q2.0).

F(x,y) = (x* + y?, 2xy); P(1,0), Q(1, 1).

F = (ysinz, xsin z,xycosz). P(0,0,0), Q(m,m, m)

F = 2xi + 3yj + 4zk, P(1,—-1,0), Q(2,0,1)

LF=W+2)i+x+2)j+ x+y))P>Q,-1,0), Q(2,0,1)

S N

6. F = e¥*3%(i + xj + 3xk), P(1, -1,0), Q(2,0,1).

I1. Calculate the work done in the moving the particle from the point P to the point Q for the following force
fields, showing first that they are conservative.
1.F(x,y) = (x® + 4xy + 4y2, 2x% + 8xy + 8y%),P = (2,—1) and Q = (-4, 2).

2F(x,y) = (93"Z COS X, 2yey2 sin x), P= (g, 0) and Q = G, 1).
3.F(x,y,2z) = (e*sinz + 2yz,2xz + 2y,e*cos z + 2xy + 32z%),P = (U, il g) and Q = (1, 0, g)
4.F(x,y,z) = (3x*sinxyz + x® yz cos xyz, x*y cos xyz) ; P(1,—-1)0) Q(2,0, 1).
5.F(x,y) = (y(e® + 1), x(e® + 1)); P(1,0)Q(1, 1).
IIl.  Consider the vector field F(x, y,z) =e¥i+xe’J+ (z+ 1e?k.
1 Find & scalar functinn f such that F = Vf.

2. Use part (1) to evalnate the line integral fc F - d7. where C is the curve described by

FO) =ti+ 27 +t3k for0<t < 1.

IV. In the following problems show that the given line integral is independent
of the path. Evaluate the line integral.

((_3112)] (y* + 2xy)dx + (x? + 2xy) dy

(1m/2) .
2. f(om (e* sin y) dx + (e* cos y) dy.

1.
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(1,2,3)
3. f({),u,u) 2x dx + (x? — z%)dy — 2yz dz.

4, f((m'l) sinycosxdx + cosysinx dy + dz.

1,0,0)
(1,m/2,2) (l_ y ) 1
5. f(OJin 2 cos ydx + S~ 2x siny dy +- dz
6 I(Z,Z,Z) 2x dx+2y dy+2z dz
"HiE1=1-1 x24y24x2

V. Verify Green’s Theorem for the following examples:

1.P(x,y) =2x —y+4,Q(x,y) =5y + 3x — 6 and C is the triangular with vertices (0, 0), (3, 0) and
(3, 2) having positively oriented boundary.

2.F(x,y) = (2xy — x%,x + y?) and C is the region bounded by the closed curve I formed by y = x? and
y* = x in the anticlockwise direction.

3.F(x,y) = (2x — y* —xy) and C is the positively oriented boundary of the region enclosed by the circles
x2+y?=1andx* +y% =09.

4.F(x,y) = (—y,x) and C is the positively oriented boundary of the region defined by the lines
x=0y=0x+y=1andx+y=2.

VI.  Use Greens theorm to evaluate the following line integrals:
1. $4x?y dx+ 2y dy;C is the boundary of the triangle with vertices (0,0),
(1,2) and (0, 2).
2. $ 2x cos y dx + x* siny dy; C is the boundary of the region R enclosed
betweeny = x% and y = x.

3. ¢ —y dx + x dy;C is the boundary of the region R enclosed between
x+y=1x+y=2, x=0andy=0.
4. ¢ 4x* ydx+ 2y dy;C is the boundary of the triangle with vertices (0,0), (1, 2)and (0,2).
5. ¢$2xcosydx +x*sinydy; C is the boundary of the rezion R enclosed between y = x?andy = ax.
6. $(e** + 2y) dx + (x* + siny) dy; where C is the rectangle with vertices (2,1), (6, 1), (6,4) and.((2, 4).
7. $(cosxsiny — xy)dx + cosy sin x dx ; where C: x* + y? = 1.
8. gﬁc (y + 3x)dx + (2y — x)dy where C is the elipse x* + yT = 1.
0. §. (e™ —2x)dx + (xe™ + siny)dy where is the first quadrant arc of thecircle x* + y* = m.

10. . F where F(x,y) = (x* —2xy,x*y + 3) and C is the positively oriented boundary of the region,
y? =8xand x = 2.

VII. Using Green’s Theorem, find the area of the region D whose boundary is positively oriented simple closed
curve, in the following exampes:
1.D is thetriangle with vertices (1, 1), (4, 1) and (4, 9).
2.D lies in the first quadrant bounded by the lines 4y = x and 4y = y and the hyperbolaxy = 4.
3.D is bounded by the lines y = 1,y = 3,x = 0 and the parabola. y* = x.

4D = {(x,y): (")2/3 E (ﬁ)m <la>z 0]

a

5.D = {(x,y):2x* + 3y* < 1}
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6. D istheinterior of the circle C: r(t) = (a cos t)i+ (asin t)j, 0 <t <2m

7.D istheinterior of the ellipse C: r(t) = (a cos t)i+ (bsint)j, 0 <t <2m

8.D is the asteroid r(t) = (cos® t)i + (sin3 t)j, 0 <t < 2m

9.D is the region bounded by the closed curve r(t) = t%i + ((t?/3) — t)j,—/3 <t <3
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Paper - | Evaluation of Surface Integrals Practical 5

1) Theequation x = u? —v?,y = 2uv,z = u? + v> represents
a) acone. b) a sphere. ¢) a circle. d) aCylinder .

2) Theequationx =rcosf, y =rsiné, z=4—r? represents.
a) acylinder. b) a sphere. ¢) a paraboloid. d) none of these.
3) Forthecylinder x = 3cost, y =y,z = 3sint at the point (3/v2,1,3 /V2).
a) there isan unique unit normal vector.
b) thereare two unit normal vectors.
c) there is no unit normal vector.
d) there are infinitely many unit normal vectors.

4) Theequationsx =u+v,y=u—v,z=u?+v30<u<1,0<v<1l
a) acone. b) a sphere. c) a paraboloid d) a Cylinder.

5) Theequation x = 5cosf,y = 5sinf,z=7;0 < 0 < 2w represents.
a) astraight line segment.  b) a plane. ¢) a circle d) aCylinder.

6) Thesurfaceintegral of F(x,y) = —yi + xj on § where Sisthedisc inthe XY plane with
radius 2 oriented upwards and at the origin is

a 1l b) -1. c) 0. d) None of these.
7) The surface area of the triangle with vertices (1,0,0),(0,1,0)and (0,0, 1) is
a) /3. b) 1?— c) 24/3. d) /2.

8) Thesurfaceintegral of F(x,y,z) = x?i + y?j — zk onthe triangle with vertices
(0,0,0), (0,2, 0) and (0, 0, 3) is
a) 1. b) —1. c) 0. d) 12
9) The surface area of the sphere (x — a)? + (y — b)? + (z — ¢)® = r? is denoted by A.
Then,
a) A dependsona,hb,candr. b) A dependsonly on a, b, c.
c) adepends only on 7. d) None of these.

10) Theequation x = u + 2v,y = 2u — 3v,z = 3u + 4v describes.
a) ageneral plane. b) a plane passing through the origin.
¢) a linein R3 d) none of these.

11)  The magnitude of the fundamental vector product % X % for surface
Flu,v) = (u+v)i+(u—v)i+4k is
(a) V4 + v2 (b) V& + 128v* (¢) V4v? +1 (d) None of these.
12) The parametric representation of cylinder x* + y? =4, 0 < z < 1 is given by
(@ x=2cosu, y=2sinv, z=u?+v% 0<u<2m 0<v<m.
(b) x=2cosu, y=2sinu, z=u, 0<u < 2m.
(c) x=2cosu, y=2sinu, z=2 0<u<2nm 0<z<l1.
(d) None of the above.

1|Page Integral Calculus Practical 5



13) The parameterization x = coshucosv, y = coshusinv, z = sin hu, where
0<v<2m -0 <u < oo represents

(a) en ellipsoid (b) a hyperboloid of one sheet
(¢) acylinder (d) None of these.

14)  The fundamental vector product for the cone
x=rcosf, y=rsinf, z=r, 0<0<2m 0<r<1is
(a)(- rcosf, —rsiné, r) (b) (rcos@, rsinf, r)
(¢) (-rcos@, rsing, r) (d) (rcos@, —rsin8, r)

15)  The area of surface of revolution of the curve y = f(x) parameterized by
x=uy=f(ucosv, z=f(u)siny, a<u<b, 0<v<2nis

@ [ @)l y1+ (Fw)? du
() 27f |f@)|J1+(F'W)? du

© —Ji Fa) T+ F @) du
(d) None of these.

16)  Jf; xdS where S is the triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) is
@ V3 (b) 2 ©% (d) None of these

17)  The flux of the vector field ¥ = £ + ¥1 + zk across the unit sphere

x? + y% + z% = 1 equals

(a) % s (b) g T (d) % i (d) None of these.
18) Let F = P(x,y,2)i + Q(x,v,2)] + R(x, v, 2)k, where P, Q, R are continuously
differentiable and S is the surface given by z = g(x,y), (x,y) € D, then [, F. idS is given
by

@ If, (P52+ Q52+ R)dxdy ® ff, (-P2L- QL +R)dxdy
© ff, (PL+0 z—i —~R) dxdy (d) None of these.

19) The centre of mass of a uniform hemispherical surface of radius a having parametric
representation 7(u, v) = acosucosvi+ asinucosvj+ asinv k,
(u,v) € [0,2m] x [0,77/2] is given by

(a) G% g) (b) (OJ 0, g) (c) (0,0,0) (d) None of these.
20) The parameterized surface 7 (u, v) given by

x=2x0+au+bv, y=y,+au+bv,z=2zy+ azu + byv represents

(where xg, ¥g, 29, @1, @z, A3, by, by, b; are constants)

(8) A sphere with centre (xg, ¥y, 2g) (b) acylinder

(c) anellipsoid (d) aplane
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DESCRIPTIVE QUESTIONS

()  Evaluate surface integrals of scalar field f over S:

1

10.

f(x,y,z) =x+y+zandS is the cube centered at the origin (-1 < x <
1,-1<y<1,-1<z<1)

fl,y,2) = x* where S is the part of the plane x + 2y + 3z = 6 in the first
octant.

f(x,y,2) = x* + y* wheye S is the surface of the paraboloid x* + y* =2 —
z above the XY-plane.

f(x,v,z) = zand § is the upper hemisphere x? + y? + z? = a?.

f(x,y,2) =x+y+zand S is the portion of the plane x + y = 1 in the first
octant for which0 €z <1

f(x,y,z) =xz+ 2y on the surface whose paremeterization is r(u,v) =
u2i+v—:j+uvf€ where0 <u<land0<v<2

f(x,y,2) = z* where S is the portion of the cone x* + y? = z? between the
plane z = 1land z = 2.

f(x,y,2) =xyz, S isthesurface of the cone z? = x% + y? between z =
land z = 2.

f(x,y,2z) = y* and Sisthecylinder x* +y? =1,0 < z < 1and itstop and
bottom.

If; xdS,where S is thesurfacey = x* +4x,0<x<2,0<z <2

(1)  Evaluate the surface integrals of vector field F over S:

1.

o

0.

3|Page

F(x,y,z) = (182,—12,3y) and S is the surface 2x + 3y + 6z = 12 in the first
octant.

F(x,y,2z) = (x,y,0) and S is the hemisphere above XY -plane

F(x,y,z) = (x,y,z) and S is the piece of the cylinder with parameterization
r(x,y) = (cosx,sinx,y) where (x,y) € [0,%] % [0,1].

F(x,y,z) = yi + 2] + xzk and S is the parabolic cylinder y = x? bounded by
0sx<30=<2z=x2

F(x,y,z) = (y,—x,xyz) and S is the surface bounding the region defined by
x?+y? <2and 0 <z < x + 2 oriented outward.

F(x,y,2z) = yi + xJ + 2%k § is helicoids with vector equation

F(u,v) =ucosvi+ usinvj+vk. 0su<10<v <2r

F(x,y,z) = (x,y,2); § is the paraboloid z=x?*+y?>—1; -1 <z<0
oriented upwards.

F(x,y,z) =(e™,—y,xsinz) S is the surface parameterized by

a(u,v) = (2cosy,sinv,u); 0<u<50<v <2m.

F(x,y,z) = (0,y,1); S is the portion of the paraboloid z = x? + y? below
the plane z = 4 oriented downwards.
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10. F(x,y,z) = (x,y,2z); S is the surface parameterized by
a(u,v) = (ucosv,usinv,1—u?);1<u<20<v<?2nm.

(111 Find the surface area of S, represented by the following surfaces:
1.5 is the surface of the sphere x* + y* + 2% = d?.
2. S is the surface of the paraboloid z = 1 — x* — y* cut by the plane z = —3.
3. S is the part of the surface z = 9 — x? — y? that lies above thering 1 < x? + y% < 9.
4.5 is the partion of the upper hemisphere x* + y? + z? = 2 cut by the cylinder x? +

g -
ye=1,

5.5 is the area cut from the plane x + y + z = 5 by the cylinder whose walls are x = y?
andx = 2 — y?

6.5 is parametrically given by r(6,z) = (acosB,asinf,z) and (6,z) € [0,2m] X
[—1,1] with @ > 0 is constant.

7.5 is the torus parameterized by the equations x = (a + cosu)cosv,y = (a +
cosu)sinv,z =sinuwhere—-n <u,v<m, a=1.

8.5 is the surface of the cylinder x* + y* = a? which is cut out by the cylinder x? +
yZ = aZ

9. The part of the paraboloid z = x? + y? that lies under the plane z = 9.

10. The part of the plane x + 2y + z = 4 that lies inside the cylinder x* + y? = 4.

11. S is the portion cut from the paraboloid y = 1 — x? — z* by the plane y = 0.

12. S is the surface parameterized by x =1 cosf,y = 2rcosf,z=0,0<r < 1,0 <
0 < 2m.
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US/AMTPO5 Integral Calculus SemV Revised Syllabus 2016-17

Paper - L Stoke’s and Gauss divergence Theorem Practical 6
Objective Questions
1. Let F(x,y,z) = y1 — % + zx*y%*k and S denote the upper hemisphere
x? +y?+ 2% =1,z > 0 with unit normal A having non- negative z —component.

Then [f; (V x F). fi equals
(a) 0 (b) —2m (c) 2m d1

2. Let F(x,y,2) = ye?i + xe’] + xye?k and S be the surface of unit sphere with outward

normal 7. Then ffs (V x F). fi equals
()4 (b) 127 (c) 167 (do

3. LetF(x,y,2) =
(0, 0, 2). Then f dr equals
@ 1 (b) -1 (c) -2 (d) 2

71 — £) — yk and C be the triangle with vertices (0, 0, 0), (0, 2, 0) and
F.d

4. Let S denote an oriented smooth surface bounded by a closed curve C traversed
counterclockwise. Let ¥ = %1 + ¥ + yk. If A is a constant vector and 7 be the unit outward

normal to S. then ¢. (A x 7).dr equals
@ff; curl¥.nds (b) 0 (cy2 ff, A.AdS (d) None of these.

5. If Sisasphereand F is a vector field having continuous partial derivatives on an open region

containing S, then ffs curl F.fidS where fi is unit outward normal
(a8 Dependson F (h) 41 (¢) 2m (d)0

6. If V is asimple solid region whose boundary surfaceis S and i is a unit outward normal to S.

then for aharmonic function @ defined on aregion conteining S, [J, D® AidS equals
(a8 Volumeof V (b) surface areaof § (¢)0 (d) None of these.

7. If V is a simple solid region in R? bounded by a smooth oriented surface S with fi as outward

unit normal. and A is a constant vector in R?, then fg A.fidS equals
@ 1Al (b) (surface area of S) || A|| (c) (volume of V) ||A|| (d)o

8. Let 71 be a unit outward normal to a closed surface S which bounds a homogeneous solid V.
then ff, (x* + y?) (xi + yj).fdS equals
(@) |V, the volume of V (b) |S|, the surface areaof S
(c) 41,, where I, denote the moment of inertia about z-axis (d) None of these.

9. The flux of F(x,y,2) = x*i + y*] 4+ y*k outward through unit sphere Sis
12w

(a) 47 ()= (% (d) None of these.
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10. If ¢4 and S, are smooth oriented surfaces in R* having same boundary ¢ and 7 is a vCtOr
fietd on R? then [f, (V x F).7,dS = [[.,(V x F).#,dS if and only if
(a) iy =iy (A, =—1n, S nNS =0 (d) None of these.

11. Curl (grad (x + Z)) is
a) x21i+z%. b) 0. 00 d) none of these.

12. div (curl (x?,yz,sin z)) is
a) 2x+z+cosz b) O. ¢) 0. d) none of these.

13. F(x,v,2z) = (3xz, —5yz, z*) andcurl (pyz?,0,qxyz) = F. Then valueof p and g are
a) —1 &3 b) 1&—3 0-1& -3  d)1&3.

14. Let C be the circle x* + y? = 4,z = —3 oriented counterclockwise. Let
F=(yxz’,~zy*)andl = §, F - d7 Then
a) Stoke’s theorem is applicable and | = —112m.
b) Stoke’s theorem is applicable to calculate /.

C) Stoke’s theorem is not applicable but | = —112 7.
d) None of the above.

15. The surfaceintegral [f. V X F. fi dS where F is continuously differentiable vector field and

S is aclosed surface is
a)0 b) depends on F C) dependson S d) none of these.

16. The line integral [ 7 - d7 where C is a simple closed curve is
a)0 b) 1 C) dependson € d) none of these.

17. F(x,y,2) =(y+2zx+2zx+y) Then

aycurl F=0=divF b) div F = 3 and curl F = 0.
¢)curl F=0and div F = 0. d) none of these.

18. I = [[f, (div fi) dv whereV is the volume enclosed by a closed surface S. Then I is
a) surface area.of S b) volume V ) 0. d) None of these.

19. Thesurfaceintegral ff; F * @ dS where F = —; 7 = xi + yj + zk over the surface of

the sphere centered at (1, 1, 1) and radius 3 1s
a 1. b) depends on r c¢) 0. d) None of these.

M‘EJ"!'

20. The surface integral [f. (7 ) dS over aclosed surface S with volume V is
avVv h) 3V c) 0. d) None of these.
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21. Thesurface integral ff axi + by j + czk. dS over the surface of aunit sphere enclosing a
volumeV is
g)(a+b+c) 4m b)(a+ b+ c)V
) (a+ b + c)4n? d]i;-(a+b+c)

22. The surface integral ﬂ; (2 +y)) i+ (2 +22)j + (x? + %)k where S is the cube
0<x<10<y<10<z<1 .

a) -3 b) 3 c)0 d) None of these.

23. If ¢ is a harmonic function and S is the unit sphere, then the surface integral
JI, grad ¢ds
a) does not exist b)isl
C) isthe volume of the unit sphere d)isO

24. S is vertical cylinder of height 2, with its base acircle of radius 1 on the xy plane, centered
et the origin and S includesthe disksthat close it off top and bottom, then the surface

integer [[ yj equals
a)m b) 2 c)m/2 d)ym/4

25. The surface integral | L F. dS for a constant vector field F and S being a closed surface is
a) anon zero constant b) 0 C) never zero d) None of these

26. A vector field F is tangent to the boundary of aregion S in space. Then [ff, div FdV,

a) dependson F and S.

b) 0

C) dependsonilyon S

d) Gauss Theorem not applicable.

27. The result ﬂsl (VX F) ndS = '[[52 (VX F) - ndS where surfaces S; and S,.

have common boundary can be prove using
a) Only Gauss theorem and not by Stokes theorem
b) Only Stokes theorem and not by Gauss theorem
¢) Neither from Stokes not from Gauss theorem
d) None of the above.

DESCRIPTIVE QUESTIONS

Verify Stoke’s Theorem for F defined over S:
1.F(x,y,z) = 3yl —xz] + yz®k,S is the surface of the paraboloid 2z = x? + y?
bounded by z = 2.
2.F(x,y,z) = (x* —y*)i+2xyj and S is the rectangular lamina in the XY -plane
bounded by the linesx = 0,x =a,y =0andy = b.
3.F(x,y,2) = 2x —y,—yz*,—y*2),S is the upper half of the sphere; x% + y?+2z% = 1.
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A4.F(x,v,2) = *1 — xyj + z°k, where S is the triangle with vertices (2,0,0), (0,2, 0) and
(0,0,2).

5.F(x,,2) = (2xy +2°)1 — x] + 3z%xk, and S is the cylinder ; +2; = 1 bounded by
the plane z = 0 and open at theend z = h, (h # 0).

(1) Using Stoke’s Theorem, evaluate the following surface integrals [f; (curl F) - ndS
1. F(x,y,2z) = (y — z,yz,—xz) where S consists of the five faces of the cube
0<x<20<y<2and0 <z < 2 notinthe XY-plane end n is the outward normal.
2. F(x,y,z) = xi + z2] + y%k wher S is the plane surface x + y + z = 1 lying in the
first octant.
3. F(x,y,2z) = (zy,yz, zx) where S is the triangular surface with vertices
(0,0,0),(1,0,0) and (0,2, 1).
4. F(x,y,z) = (v,2x) and S is the surface of the paraboloid z = 1 — x% — y?;z = 0.
5. F(x,y,2z) = y*i+xy] +xzk where S is the surface of the hemisphere
x? +y?% +z? = 1; z = 0 and n is the unit normal with a non-negative z compnent.
6. F(x,y,2z) = (x — z,x* + yz,—3xy?) where S is the surface of the cone
z =2 —4/x%* 4+ y? above the plane z = 0.
F(x,y,2z) = (x3 — y3, —xyz,y?) where S is the ellipsoid x* + 4y% + 22 —2z =4
lying above XY-plane.

~

(1) Using Stoke’s Theorem evaluate the lineintegral ¢ F - dr:

1. §. xydx + x*ydy taken around the square C with vertices (1,0),(—1,0),(0,1) and
(0,—1).

2.F(x,y,z) = (x*y*®,a,z) and C is the circle x* + y* = r?%. in the XY-plane .

3.F(x,y,z) = (yz,2x,xy) where C is the curve x% + y% = 1,z = y4.

4.F(x,y,z) = (x%,y%,2z%) and C is the curve of intersection of the cylinder x* + y* = 2y
and the planc y = z.

5F(x,y,z) = (2z,x,3y) where C is the élipse, that is the intersection of the planez = x
and the cylinder x2 + y? = 4.

6.F(x,y,z) = (4y, 2z, 6y) where C is the curve of intersection of x% + y* + z? = 6z and
z=x+3.

(IV) Verify Gauss Divergence Theorem

1.F(x,v,z) = (x?,y% 2%) over a unit circle.

2.F(x,v,2z) = (yz, zx, xy) over the surface of the sphere x% + y% + z% = 9,

3.F(x,y,7z) = (x + y?)i — 2xj + 2yzk over the volume of the tetrahedron bounded by
the co-ordinate planes and the plane 2x + y + 2z = 6 in the first octant.

4.F(x,y,z) = (18z — 12x,3y) over the surface of the cone z = /x? + y? bounded by
the plane z = 4.

5.F(x,y,2z) = yi + xj + zk over the cylindrical region x* + y? = a?,z = 0 and
z=h,(h #0).
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V)

Using Gauss Divergence Theorem evaluate [f, F * ndS .

1F(x,y,z) =(y=x,z=1y,y —x) and S is the cube bounded by the planes
x=11l,y==%1z=1%1

2.F(x,y,2z) = (23,3 2z%) and S is the surface x* + y? + z% = a?

3.F(x,y,2z) = (x% y% 2z%) and S is the surface of the sphere x? + y* + z? = 25 above the
plane z = 3.

4.F(x,y,2) = (6x* + 2xy, 2y + x*z,4xy?) and S is the surface of the solid in the first
octant bounded by the co-ordinate planes, the cylinder x* + y? = 4 and the plane
z=4,

5.F(x,y,z) = (4x — 2y?,2%) and S is the region bounded by
=A== VE=02=3

2
6.F(x,y,2) = (x* ¥% 2%) and S is the surface of the cone% +=-2=0,(0<z<Db)

7.F(x,y,z) = (x+y,y +2z2z+ x) and S is the region given by
—4+x2+y’<z<4—x*—y50<x*+y? <4,
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US/AMTPO5 Integral Calculus Sem V Revised syllabus 2016-17

Miscellaneous Theory Questions
Practical 7

Unit 1

1. Define the double integral of a bounded function f : S = R where S = [a, b] X [c, d] is a rectangle in R?.
Show with usual notation that m(b — a)(d — ¢) < ffs f<MMb-a)d—-rc)

2. Define the triple integral of a bounded function f : R = R where S = [a, b] X [c, d] X [e, f] with usual
notation prove that

mb-a)d—o)(f-e) <L <[[; fdV<Up.f)<Mb-a)d—c)(f —e).

3. LetS{(x,y):a<x<b,¢; <y < ¢p,(x)} where ¢, ¢, : [a, b] = R are continuous.
a) Suppose f:S — R is such that f(x,y) = 0 and f is continuous in the interior of S. Prove that . s [ =0
b) Prove that [f ¢ [ gives the volume of the solid with base S, bounded above by the surface z = f(x,y).

Show further that [f. 1 dA gives the area of S.
4. Let f be defined and bounded on a rectangle R = [a, b] X [c, d]. Suppose f is integrable over R and for

each y € [c,d],the integral A(y) = f; f(x,y)dx exists, then show that [f = [ gives the volume of S where
S={(x,y,z2)ER*:a<x<bhc<y<d0<z<f(xy}

5. Prove that a continuous function is integrable for a rectangular domain in R?.
(Problems on Integrability of bounded functions having finite number of points of discontinuity)

6. a) State and prove Fubini’s Theorem for a rectangular domain in R2.
b) Prove Algebra of Integrable functions as a corollary using Fubini’s theorem for a Rectangular Domains.

7. a) State the change of variables formula for double integral clearly stating the conditions under which it is
valid. Explain further, how will you use it to express the double integral in polar co-ordinates.
b) State the change of variables formula for triple integral, stating clearly the condition under which it is
valid. Express further, how will you use it to express the triple integral in cylindrical co-ordinates
(7, 6, z) and spherical co-ordinates (p, 8, ©).
c) State the change of variable formula for double integral over a rectangular domain and invertible affine
transformation.
8. Let U be an open set in R? containing the rectangle [a, b] X [c, d]. Suppose f: U — R is a continuously

differentiable function. Show that g'(x) = fcd Z—i (x,y)dy where g(x) = fcd f(x,y)dy, Vx € [a,b]. (This
is known as Leibniz Rule for differentiation under integral sign).
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10.

Unit 2

. Define a parameterized curve in R™. When do you say that two parameterized curves in R™ are equivalent?

Show that two equivalent parameterized curves have essentially the same image set. Show that the converse
of this is not true by considering the curves a(t) = (cost,sint);0 <t < 2m and S(t) = (sint,cost); 0 <
t < 2m.

If U is an open set in R? /R3and T is a parameterized curve in U, define the line integral of f along T'; for a
continuous function f: U — R. Show further, if a, § are two equivalent parameterized curves, then the line
integrals of f along them coincide.

. Let U be an open set in R™ and « : [a, b] = U be a parameterization of curve I'. If f, g : U = R are

continuous function, then prove that
Jpef+dp=cf. f+d[. g
Where c, d are real constants. Further show that fr f= frl f+ frz f, where I'; and I, are restrictions of «

to [a, c] and [c,d] where a < ¢ < b.
When do you say that two parameterized curves in R™ are orientedly equivalent? Define the line integral of
a vector field F define on an open set U in R™ along an oriented curve ' in U. If T and I’ are two orientedly
equivalent curves in U, show that [ F = [ F.
Let f be a continuously differentiable scalar field defined on an open set U in R™. Suppose P, Q are two
points of U that can be connected by piecewise smooth curve C lying in U. Prove that
fc Vf -dr = f(Q) — f(P) given that C has parameterization r(t),t € [a, b] with r(a) = P and r(b) = Q.
OR

Let f be a continuously differentiable scalar field defined on an open set U in R™. Suppose C is a closed
curve in U, with parameterization r(t),t € [a, b]. Then prove that gSC VF-dr =0.

Suppose F is a continuous vector field defined on an open connected set U in R™. Define a function ¢: U —
Rby ¢p(v) = f:) F where v, is a fixed point in U and F is conservative.

Show that V¢p(v) = F(v).Vv € U.
Let F be a continuous vector field defined on an open connected set U in R™. Show that the following
conditions are equivalent.
(1) The line integral of F depends only on the end points of a curve in U and not on the curve.
(ii) F is the gradient of a C' function (i.e. F has a potential function) on U.
(iii)  For any C’ closed curve C in U, ﬁc F=0.
State and prove Green’s Theorem for a rectangle.
State Green’s Theorem for a closed region in R? whose boundary is a simple closed curve. Show how it can
be used to calculate area of the region.
F = (P, Q) is a continuously differentiable function defined on a simply connected region D in R?. Show

that § Pdx + Qdy = 0 around every closed curve C in D if and only ifZ—z = ‘;—i,v(x, y) € D.

Unit 3

Suppose U is an open set in R and F: U — R3 be a continuously differentiable vector field.

Define (i) curl F  (ii) div F.

Show that necessary and sufficient condition for a C? function F : R3 — R3 to be conservative is that curl
F=0.
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. Define a parameterized surface in R3.When do you say that two parameterized surfaces in R3 equivalent?
If S is a smooth parameterized surface in an open set U in R3 and f: U — R is a continuous scalar field,
define the surface integral of over S. Furtherif F : U > R3 is a continuous vector field, define the surface
integral of Fover S.

. For the surface 7(u, v) described by the vector equation 7(u, v) = X(u,v)i + Y(u,v)j +

Z(u,v)k, (u, v)u #€ T where X, Y, Z are differentiable on T, define the fundamental vector product % X
P

a_Z' If C is a smooth curve lying on the surface, C = 7 («x (t)), «;[a, b] = T, then show that % X

normal to C at each point.
. Let S = 7(T) be a smooth parametric surface in uv plane. Define area of S. If S is represented by an
equation z = f(x,y) then show that area of S is given by

i1, Jl (2 + (2 axdy

where T is projection of S on xy —plane.

or is
ou

. LetS =7(T) be a smooth parametric surface described by a differentiable function 7 defined on region T.
Let f be defined and bounded on S. Define surface integral of f over S. If R smoothly equivalent functions,
R(s,t) =7 (G(s,t)) where G(s,t) = u(s,t)i + v(s,t)] being continuously differentiable. Then show that

oo fdS = Jfp FS
Where G(B) = A.

State and prove Stoke’s Theorem for an oriented smooth, simple parameterized surface in R® bounded by a
simple, closed curve traversed counter clockwise assuming general form of Green’s Theorem.

. If S and C satisfy hypothesis of Stoke’s Theorem and f, g have continuous second order partial derivative.
Prove with usual notations.

a) Jo fVvg).dr = [[; (Vf x Vg)RdS
b) Je FVf). dr=0
c) Je V@) + gV f). dr =0

State Divergence Theorem for a solid in 3-space (or R*) bounded by an orientable closed surface with
positive orientation and prove the divergence Theorem for cubical region.

State and Prove Divergence Theorem for a simple solid region V bounded by an orientable surface S which
can be projected on XY,YZ, ZX planes.

10. Prove the following identities, assuming S and V satisfy the conditions of the Divergence Theorem and

scalar fields f and g, components of F have continuous partial derivatives, A is unit outward normal.
a) J; A. AdS = 0 Where A is a constant vector.

b) V| = %ffs 7. AdS where 7 = xi + yj + zk and |V| = volume of V.

c) JI; curlF. Ads = 0.

d) JI; (Duf)ds = [ff, V?fdV, where D, f is the direction derivative in the direction 7.
e I Uvg).nds = [[f, (fvig +Vf. Vg)av.

fy  Jf, (fVg—gVf). AdS = [ff, (fv?g — gV*f)av.
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US/AMT502 Linear Algebra Sem V Revised syllabus 2018

Practical no 2.1. Quotient Space and Orthogonal
Transformations,Isometries

Q1) Let V. =R3W, = {(x1,79,73) € R®: 2y + 25 + 23 = 0} and Wy = {(x1, 12, 23) €
R3 : 2y — 2o + 23 = 0} are subspaces of V. then
() dimV/W, = dimV/ Wy = 2, dimWa/ Wy 0 W, = 1
(b) dimV/W, = dimV/Wy = 1, dimW /W, A\ W, = 1
(c) dimV /Wy =dimV /Wy =1, dimWy /Wi N Wy = 2
(d) None of the above.

Q 2) Let V = My(R) , W; = Space of 2 x 2 real symmetric matrices, W5 = Space of 2 x 2
real skew symmetric matrices.

(2) dimV/Wy = 1,dimV/Wy=1 (b) dimV/W, = 2,dimV/Wy = 2
(¢) dimV /Wy =1,dimV/Wy =3 (d) None of the above.

Q 3) Let V' = PBy[z]| , the space of polynomial of degree < 2 over R along with zero
polynomial and W = {f € V' : f(0) = 0}. Then

(a) {I,z + I, (x + 1)2} is the basis of the quotient space V/W.
(b) {z+ 1,22 + 1} is the basis of the quotient space V/W
(c) {z + 1} is the basis of the quotient space V/W
(d) None of the above.
Q 4) Let V be a real vector space and T : R® — V be a linear transformation such that
S ={Tey, Tey, Teg} spans V. Then, which of the following is true ?
(a) S is a basis of V
(b) {e1 + KerT,e3+ KerT,es + KerT} is a basis of RS/ KerT
(¢) dimV/ImT >3
(d) dimR®/KerT <3
Q 5) Consider W = {(z,y,2) € R®: 2u+2y+2z = 0,32+3y—2z = 0,2+y—32 = 0}.Then
dimR3 /W is
(@)1 (b)2 (¢)3 (d)O

0 f()
where P»[R]= space of polynomials of degree < 2 along with 0 polynomial. Then

(a) kerT =0 and dim(My(R)/ImT) =3
(b) dim(P[R]/KerT) =1
(c) T is one-one and onto.
(d) dim(P[R])/KerT) =2

Q 6) Consider the linear transformation 7" : P[R] — M»(R) defined by T'(f) = (f(O) ~f2) 0 )



Q7) Let V = My(R) and W — {A € My(R) : A (g ?) _ (g f) A}.Then

(a) dimV/W =0 (b) dimV/W =1
(¢) dimV/W =2 (d) dimV/W =3

Q8) Let V =R*and W = {(z1, 29,23, 24) € R* : 2, = 25 and 23 = 24} a subspace of V.
Then

(a) {(1,1,0,0), (0, 1,0 1)} is the basis of V/W.
(b) {(1,0,1,0), (0, —1)} is the basis of V/W
(c) {(1,0,1,0), (0, 1,() 1)} is the basis of V/W
(d) None of the above.

—a

Q9) Let V = My(R).Consider the subspaces W = { (ZL d

{(a b):a,b,dER}.Then
—a d

) :a,b,c,dER} and Wy =

Q 10) Let V = My(R) and W = {A € My(R) : Tr(A) = 0} a subspace of V. Then

(a) {(é 8)(8 é)}is the basis of V/IV.  (b) {(é 8)}18 the basis of V/W

(c) { (0 1) } is the basis of V/W  (d) None of the above.

0 0

Q 11) Let V' = P,[z],the space of polynomials of degree< n over R along with zero
polynomial and D denote the linear transformation D : V' — P, 4[x] defined by
D(f) =% 1f W = kerD, then
(a) dimV/W =n—-1. (b) dimV/W =1
(¢) dimV/W =n  (d) None of these.

Q 12) Let A be a 5 x 7 matrix over R. Suppose rank A = 3.
A linear transformation 7 : R” — R5 is defined byT'(X) = AX, where X is a column
vector in R?, and W = kerT , U = ImgT, then

(a) dimR"/W = 3,dimR°/U =2. (b) dimR"/W = 2,dimR°/U = 2.
(c) dimR"/W =2,dimR5/U =1. (d) None of the above.

11

Q 13) Let V = M5(R) and A = 11

by T(B) = AB — B. Then

(a) T is a linear isomorphism.  (b) dimV/kerT = 1.
(¢) dimV/kerT =2. (d) None of these.

). A linear transformation 7' : V — V is defined
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Q 14) Let U, W be vector spaces over R with bases {uy, ua, ..., uy, } and {wy, wo, ..., w,}
respectively. Let V = U @& V and linear transformation Py : V — U be defined by
Py(u+v) =u, where u € U and w € W. Then

(a) dimV/kerPy =n. (b) dimV/kerPy =m
(c) dimV/kerPy =m —n. (d) None of these.

Q 15) Let V=R%: W = {(z,y) € R*: y = x}. Then

(a) {(1,1)} is a bases of V/W. (b) {(1,0)} is a bases of V/W.

(c¢) {(1,1),(1,—1)} is a bases of V/W.  (d) None of the above.
It o

Q 16) :R* - R* and 8 : R* — R* are translations such that «((1,1,1,1)) =
(1,0, — 1,3) and 5((2,2,2,2)) = (2,0,3,4) then «3(0,0,0,0) is
(a) (0,0,0,0). (b) (0,-3,—1,4). (c) (0,3,1,—4). (d) None of these.

Q 17) If a : R* — R? be an isometry defined by a((z,y)) = (% + @ -1 —T\/ﬁx + 5+ ‘/75)
and a(z,)) = (43, 3) then

() r=1,y=-1. (b) 2=+v3,y=1. (c) x=1,y=1. (d) None of these.

Q 18) Let « be an orthogonal transformation of the plane such that the matrix of « w.

S .
r. t. the standard basis of R? is v2 V2 | then « represents
V2 V2

(a) a rotation about origin through Z.  (b) a rotation about origin through 2.
(c) a rotation about the line y = —z.  (d) None of the above.

Q 19) Let o : R* — R? represents the rotation about origin by angle 7 and 3 : R* — R?
represents a reflection about y-axis. Then o « represents

(a) a rotation about origin through angle 3¥.  (b) a rotation about the line y = z.
(c) a rotation about the line y = —z.  (d) None of the above.

Q 20) Let a : R?® — R3 be an orthogonal transformation and E = {v € R3 : av = v}.
Then
(a) dimE =1 (b) dimE > 1
(c¢) If dimE = 2, then « is reflection with respect to the plane.
(d) None of the above.

Q 21) Let o : R® — R? represents reflection in the plane x + 3 + z = 0. The matrix of «
with respect to the standard basis of R? is

% 0 0 1 -2 -2 -10 0

@ [0 & O (b) +[-2 1 -2 ()l 0O 10 (d) None of
% —7 -l -2 -2 1 0 01

these.

Q 22) Let V be an n-dimensional real inner product space. Suppose B = {e;}; and
B = {f;}7_, are orthogonal basis of V. Then

(a) If T: V — V is a linear transformation such that 7'(e;) = f; for i = 1 to n,
then T is orthogonal.
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(b) If T: V — V is a linear transformation such that T'(e;) = f; for i = 1 to n,
then 7" need not be orthogonal.

(c) There exist a linear transformation 7' : V' — V such that {T'(e;)} is an
orthogonal basis of V', but {T'(f;)}, is not an orthonormal basis of V.

(d) None of the above.

Q 23) Let A and B be n x n real orthogonal matrices. Then

(a) AB and A + B are orthogonal matrices. (b) AB and BA are orthogonal
matrices.
(c) A+ B is an orthogonal matrix.  (d) None of the above.

Q 24) Let A, B be n x n real matrices. If A and AB are orthogonal matrices,then

(a) B is orthogonal but BA may not be orthogonal (b) B and BA both are
orthogonal matrices.
(c) B may not be orthogonal matrix.  (d) None of the above.

Q 25) Let o : R? — R? be an isometry fixing origin and a # identity. Then
(a) «((1,0)) is in the first quadrant.  (b) «((1,0)) € {(-1,0),(0,1),(0,—1)}.
(c) a((1,0)) lies on the unit circle S*.  (d) None of the above.

Q 26) If a : R? — R? is a linear transformation such that (v,w) =0 = (a(v), a(w)) =0
YV v,w € R%. Then

(a) a is an isometry of R%.  (b) « is an orthogonal transformation.
(¢) a = aT where T is an orthogonal transformation and a € R.  (d) None of the
above.

Q 27) Let a: R* — R? be defined by a((z,y)) = (ax + by + e,cx + dy + f)
where a,b,c,d, e, f € R. Then « is an isometry if and only if

(a) ad —bc# 0,e,f >0 (b) ad —bc = £1.
(c) a®>+ =10 +d*=1,ab+cd=0. (d) None of the above.

Q 28) Let V be a finite dimensional inner product space and o : V' — V be an isometry.
Then

(a) « is one-one may not be onto.  (b) «a is one-one only if «(0) = 0.
(c) ais bijective.  (d) None of the above.

Practical 2.1 Descriptive Questions

Q1) Let V=R?and W = {(x1, 79, 73) € R®: w3 = 32, } be subspace of V. Find a basis
of W and the quotient space V/W.

Q2) V=M(R)and W = {(g Z) ta,b,de ]R}. Find the basis of the subspace W

and the quotient space V/W

Q 3) Let V' = P,[z|,the space of polynomial of degree < 4 along with zero polynomial.
The linear transformation D : Py[z] — P,[x] be defined by D(f) = %. IfW =
kerD,then find bases of W and V/W.
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Q 4) Let V.= My(R) and N be a 2 x 2 nilpotent matrix. If 7": V — V is defined by
T(A) = NA— A, then find kerT, dimkerT and dimV/kerT. Is T onto? Justify your
answer.

Q 5) Let P,[R] denote the space of polynomials with real coefficients of degree < n along
with zero polynomial.Consider the linear transformation D : P,[R] — P,_;[R] defined
by D(f) = % and T : P,[R] — P,1[R] defined by T'(f) = «f.If A= DT —TD :
P,[R] — P,[R], find KerA, and dim(A/KerA).

Q 6) A linear transformation 7' : R® — R? be defined by T((x1, z2,x3)) = (71, 22). Find
basis of kerT and R?/kerT,

1 2 3
QT) LetA_<_1 01

AX (X being a column vector in R?). Find kerT,a basis of kerT and R3/kerT. Also
find ImT.

. A linear transformation 7' : R?* — R? is defined by T'(z) =

Q 8) Let V= My(R) and W = Space of 2 x 2 real symmetric matrices. Find a basis of
W and the quotient space V/W.

Q 9) Let V = P»(R), the space of polynomials of degree < 2 over R along with zero
polynomial. A linear transformation 7" : P,(R) — R is defined by T'(f) = fol f(t)dt.
Find kerT and basis of kerT,V/kerT.

Q 10) Show that following maps are isometries.

) =(x—2,y+1).
,Z)) :( ,—y,z).

1. o : R? — R? defined by o((z,y

Y

W) =CGet gy - —sr+ iy +3)
Y

((
2. a:R3 — R? defined by af(
a : R? — R? defined by «f((

((

4. a: R® — R3 defined by o((z L

Q 11) Show that the given maps are orthogonal transformations. Determine whether
they are rotations or reflections. In case of rotations,determine the angle of rotation
and in case of reflection ,determine the line of reflection.

L T(x,y) = G+ fy,—37+ 2y).
2. T(z,y) = (52 + Y, 757 — 5Y)-
4. (2,y) = (57 — 7Y 757 + 759)

Q 12) Show that the following maps are isometries. Express each of them as a composite
of an orthogonal transformation and a translation.

1. a:R? — R3 defined by a(x,y,z):(\%x—k\%y—l\%x—\%y—l—&z—k%.
2. a:R? - R? defined by a(z,y) = (g—%gy—i—l,‘/?ga:—i—%—@.

3. a:R3 — R? defined by a(x,y,z):(”2—6—1—‘/732—1,3/,‘/7%—%—1-5).
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Q 13) Find the orthogonal transformations in R? which represents reflections with respect
to the following lines.

l.z=y
2. y=—zx
3.y =2x.

Q 14) Find the orthogonal transformations in R? which represent reflections with respect
to the following planes.
l.z—y+2=0
2.2 —y=0
3.y=0
Q 15) If T : R? — R? is a linear transformation such that (u,v) =0 = (T'(u),T(v)) =

0 for each uw,v € R?, show that T = aS, where S : R? — R? is an orthogonal
transformation.
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Practical no 2.2. Cayley-Hamilton Theorem and its applications

Q1) Let A— (10 _9>, then

4 =2
(a) A7t = [A+8]] (b) A™'=[A—28]]
(c) At=L[-A+8I] (d) A™'=L[-A-38]]

Q 2) The following pairs of n x n matrices do not have same characteristic polynomial.
(a) Aand A®. (b) A and PAP~! where P is non singular n X n matrix.
(c) Aand A%2.  (d) AB and BA.

Q 3) Let p(t) = t* + bt + ¢ where b,c € R.Then the number of real matrices having p(t)
as characteristic polynomial is
(a) One (b) Two
(c) Infinity (d) None of the above

Q 4) Let p(t) = t3 — 2t*> + 5 be the characteristic polynomial of A then detA and trA are
(@) 5,—2  (b) 2,5
(c) =5,2 (d) -2,5

Q5) If Ais a3 x 2 matrix over R and B is a 2 X 3 matrix over R and p(t) is the
characteristic polynomial of AB, then

(a) 3 divides p(t)  (b) ¢ divides p(t)
c) t divides p(t one of the above
divid d) N f the ab
Q 6) Let A and B be n x n matrix over R such that trA = trB and detA =det B.Then
(a) Characteristic polynomial of A = Characteristic polynomial of B.
(b) Characteristic polynomial of A # Characteristic polynomial of B.
(c) Characteristic polynomial of A =Characteristic polynomial of B if n = 3.
(d) Characteristic polynomial of A =Characteristic polynomial of B if n = 2.
Q 7) Let A and B be n x n matrix over R such that characteristic polynomial of A =
characteristic polynomial of B.Then

(a) A and B are similar matrices  (b) detA = detB
(c) AB = BA (d) None of the above.

Q8) Let A= <_11 _11)

Q 9) Let p(t) = t3 — 2t? + 15 be the characteristic polynomial of A .Then det A

10 910
(a) 15 (b) -15 (c) 0 (d) None of these (a) A = <_2210 2%0 >

211 _211
(b) AlO = (_211 211 )
2 —29

@ar= (2 5) @ar= (5 2)
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Q 10) Let A be a 3 x 3 matrix and Aj, Ay be only two distinct eigen values of A.Then its
characteristics polynomial k4 (z) is

(a) (I‘ — )\1)(.73 — )\2)
(b) (x = A)(@ = A2)?
(c) (z—A)*(z = A2)
(d) (z— M) — A2) or (x — Ap)(z — No)?
Q 11) Let characteristic polynomial of A is t>+a;t+ag and and characteristic polynomial
of A=V is t? + a}t + a/o.Then
(a) agay =1and a; +a; =1 (b) aya; =1 and agay = 1
(¢) apag =1 (d) apay =1 and a| = aiq,
Q 12) If pi(t) = £ 4 ayt + ag is characteristic polynomial of A and py(t) = > + ajt + ay
is characteristic polynomial of A? then
(a) a; = a? and ay = a?  (b) a) = 2a; and ay = a?

(c) ay = a2, ay = a? —2ay (d) None of the above

Q 13) Let Agxg be a matrix with characteristic polynomial x?(z — 1)(z + 1)3, then trace
A and determinant of A are

(@) 2,0 (b) 2,0 (c)3,1 (d)3,0

Q 14) <8 2) and <(O)L Z) are similar (non- zero a, b, d)

(a) for any reals a,b,d. (b) if a =d.
(c) if a#d. (d) never similar.

Q 15) Let Agyxg be a diagonal matrix over R with characteristic polynomial (z—2)*(z+3)%.
Let V. ={B € Mg(R) : AB= BA}. Thendim V =
a) 8 (b) 12 (c) 6 (d) 20.
Q 16

If A—1, is a n x n nilpotent matrix over R, then characteristic polynomial of A is

(

)

(a) (t—1)" (b) "

(c) t"—1 (d) (t" = 1)t

Q 17) If A € My(R), tr A = —1, det A = —6 then det (I + A) is
(a) -6 (b) -5 (c) -1 (d) None of the above.

Q 18) Let A = [ai;]10x10 be a real matrix such that ;41 =1 for 1 <7 <9 and a;; =0
otherwise, then

(a) A%(A— 1) (b) (A — 1) A0 = 0 AA-I =0

Q19) T : R* — R* is a linear transformation such that T3 + 37% = 4. If S = T +
373 — 41, then

(a) S is not one-one. (b) S is one-one.
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(c) if 1 is not an eigen value of T' then S is invertible.
(d) None of these.

Q 20) Which of the following statements are true
1. If the characteristic roots of two n x n matrices are same then their characteristic

polynomials are same.

2. If the characteristic polynomials of two n x n matrices are same then their
characteristic roots are same.

3. If eigen values of two n X n matrices are same then their eigen vectors are same.
4. The characteristic roots of two n X n matrices are same but their characteristic

polynomials may not be same.

(a) ii and iv are true.  (b) i, iii are true.
(c) 1, ii and iii are true.  (d) only ii is true.
Q 21) A 2 x 2 matrix A has the characteristic polynomial 22 4+ 2z — 1, then the value of
det (21, + A) is
1
(a) ——— (b) 0

det A
(c) 24+det A (d) 2det A

Practical 2.2 Descriptive Questions

2 1 2
Q1) Let A= 3 0 2|. Then show that 5 is a characteristic root of A.
-1 2 4
Q 2) Find characteristic polynomial of the following matrix and verify Cayley-Hamilton
-1 0 1
theorem for A= -1 3 0
—4 13 -1

2 1
Q 3) LetA:(1 2)

(a) Find characteristic polynomial of A.

(b) Using Cayley-Hamilton theorem find A°.

2 1 1
Q4) Let A=|2 1 —2
-1 0 -2

(a) Find characteristic polynomial of A.
(b) Using Cayley-Hamilton theorem,find A=! and A* — 343 — 342+ 7A +61.

Q5) LetAz(S :?) andP:G g)

(a) Find P~*AP and compute A°
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(b) Verify that A and P~!AP have same characteristic polynomial.

10 -9 0
Q6) Let A=[4 —2 0
0 0 -2

(a) Find characteristic polynomial of A and express it as a product of linear factors.

(b) Compute A~! using Cayley-Hamilton theorem and find characteristic polynomial
of A=! and factorise it.

(c) Verify that product of constant terms of both the polynomials is 1.

1 2 =2
Q7 (a) fA=10 3 —1| Find A and characteristic polynomial of A~
00 1
1 2 0
) IEA=[2 -1 0 |. Find A"
0 0 -1
0 ¢ b
Q 8) (a) Verify Cayley-Hamilton theorem for | —¢ 0 a |. Find A~! if it exist.
b —a O

1 4

(b) Verify Cayley-Hamilton theorem for A = (2 5

TA® +11A% — A — 101

). Find A~! and A° — 4A% —

2 1 1
Q9) (a) A= (0 1 0. Find A® —5A7 + 7TAS — 345 + A* — 543 4 8A% —2A + I.
11 2

3 10 5
(b) A= -2 —3 —4]. Find A% —6A4° + 9A* + 443 — 1242 + 2A — I
3 5 T

Q10) (a) Find A" for A — (; 2)

1
(b) Show thatA™ = A"2 4 A% — ] for n > 3 for | 1 . Hence write A,
0

_ o O
O = O

Q 11) Let P(x) = 2* + azx® + as2? + ayx + a¢ be a monic polynomial of degree 3 where

0 0 0 —a
1 0 0 —aq .. .
ag, a1, a2, a3R and A = 01 0 —a | then show that characteristic polynomial
—as
0 1 —as

of Ais P(x).

Q 12) Let A7y be a diagonal matrix over R with characteristic polynomial (¢t+4)3(t—3)%.
Let V. ={B e M;(R) : AB = BA}. Find dim V.

Sem V Linear Algebra 10



Q 13) Express the characteristic polynomial of al +bA interms of the characteristic poly-
nomial of A.

Q 14) Let A and C be matrices such that ACA = 0, show that for every matrix B the
characteristic polynomial of AB and A(B + (') are equal.

Q 15) If A = wv', then the characteristic polynomial of A is 2"~ !(z — u'v) where u, v are
column vectors in R".
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Practical no 2.3. Eigen values and Eigen vectors

Q 1) The product of all characteristic roots of a square matrix A is equal to
(a) 0 (b) 1 (c) |A] (d) None of these.

Q 2) If eigen value of A is A\,then eigen value of A? is

(a) 1 (b) + (c) A* (d) None of these.

Q 3) If A is invertible matrix and eigen value of A is A, then eigen value of A1 is
(a) 1 (b) ¥ (c) A (d) None of these.

Q 4) If the determinant of a matrix A is non-zero, then its eigen values of A are
(a) 1 (b) 0 (c) Non-zero (d) None of these.

Q 5) If the determinant of a matrix A is zero, then one of its eigen values of A is

(a) 1 (b) 0 (c) -1 (d) None of these.

Q 6) The eigen space corresponding to eigen value 1 of [(1) ﬂ has basis

(a) {(1,0)}  (b) {(1,0),(0,1)}
(¢) £(0,1)}  (d) {(L, 1)}

a b 1
QT7) Let A= |c¢ d 1| wherea,b,c,d € R such that a + b = ¢+ d, then A has eigen
1 -1 0

value

(a) a+c (b)) a+b (¢c)a—d (d) b—d

Q 8) Zero is a eigen value of a linear map 7" from V' to V' if and only if
(a) KerT = {0} (b) T is bijective
(c¢) T is singular (d) T is non singular
Q 9) The eigen values of a 3 x 3 real matrix A are 1,2,3.Then
(a) Inverse of A exists and it is (5] 4+ 24 — A?)
(b) Inverse of A exists and it is ¢ (5 + 24 + A?)
(c) Inverse of A does not exist
)

(d) None of the above

1 -1 2
Q 10) The matrix A= |2 —2 4] has
3 =3 6

a) Only one distinct eigen value

()
(b) Only two distinct eigen values
(c) Three distinct eigen values

)

(d) None of the above

Q 11) The eigen vectors of the matrix A = ((1] ?) generate
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Q 12) The eigen vectors of the matrix
() 1 (b)2 ()3 (d)4

) generate a vector space of dimension

0 2

Q 13) The eigen space F(5) of the matrix A = (; 5

) corresponding to the eigen value

1 : 2
1 (b) is 1

(c) has a basis { G) } (d) has a basis { (_21> }

Q 14) Let V a vector space over R and I: V' — V be the identity map.Then

(a) is

(a) v is the only eigen vector of I for some v € V'
(b) 2v is the only eigen vector of I for some v € V
(c) 3v is the only eigen vector of I for some v € V
(d) every vector in V' is an eigen vector of [
Q 15) Let T: R?* — R? be the linear map which rotates every vector v € R? through an
angle 7.Then T has
(a) no eigen vectors
(b) only two eigen vectors
(c) only three eigen vectors

(d) infinitely many eigen vectors

Q 16) Let Asys be a real matrix of rank 1, then the eigen values of A are
(a) 0,0,1 (b) 0,0,trA (c) 0,0,det A (d) 0,0, —det A

1 ifit+j=11

0 otherwise

Q 17) Let A = [a;;] be a 10 x 10 matrix with aij = { . Then the set of

eigen values of A is

(a) {0,1} (b) {1, -1} (c) {0,1,10} (d) {0,11}
Q 18) Let A, «, be a real matrix, then

(a) A, A" have same determinant, same eigen values and same eigen vectors.
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(b) A, A" have same determinant, same eigen values but eigen vectors may be
different.

(c) A, A! have same eigen values but different determinants.
)

A, A have different eigen values.

(a) (1,1,---,1) is an eigen vector of A corresponding to the eigen value 1.
(b) (1,0,---,0) is an eigen vector of A corresponding to the eigen value 1.
(¢) (1,1,---,1) is an eigen vector of A corresponding to the eigen value n.
(d) 11is not an eigen value of A.

Q 20) Let the characteristic polynomial of As.3 be z(x —1)(z+2), then the characteristic
polynomial of A% is

(a) z(z+1)(x—2) (b) z(z —1)(z—4)
(¢) z(x+1)(x+4) (d) None of these.
0 01
Q 21) If matrix A= |a 1 b| has linearly independent eigen vectors corresponding to
100

eigen value 1, then
(a) a=0,b=0. (b)) a=1,b=1
(c) for any a,b. (d) a+b=0.

Q 22) Let characteristic polynomial of Asys be a real matrix and its characteristics poly-
nomial is 22 — 3z + 2. Then the characteristic polynomial of A~ is
(a) 22— 2z +1 (b) 2 -3z +2

(c) 2* =22+3=0 (d) 2 —3z+3

Q 23) One of the eigen vectors of the matrix A = <(2) 1) over R is

(a) G) (b) G) () (‘11) (d) None of these.

Q 24) If Ais asquare matrix of order n and A is a scalar,then the characteristic polynomial
of A is obtained by expanding the determinant:
(a) [MA] (b)) M —=1,] (¢) |[A—X,| (d) None of these

Q 25) At least one characteristic roots of every singular matrix is equal to

(a) 1 (b) -1 (c) 0 (d) None of these.

Q 26) The characteristic roots of two matrices A and BAB™! are
(a) The same (b) Different (c) Always zero (d) None of these.

Q 27) The scalar A is a characteristic root of the matrix A if:

(a) A — M is non-singular  (b) A — Al is singular  (¢) A is singular (d) None
of these.
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Q 28) If eigen value of A is A\,then eigen value of P71AP is
(a) 1 (b) ¥ (c) A (d) None of these.

Q 29) If X is a characteristic root of a matrix A then characteristic roots of —A and
al — A respectively are
(a) —Aanda— A (b) —Aanda (c) —Aand A (d) None of these.

Q 30) Which of the following statements are true
1. If the characteristic roots of two n x n matrices are same then their characteristic

polynomials are same.

2. If the characteristic polynomials of two n X n matrices are same then their
characteristic roots are same.

3. If eigen values of two n x n matrices are same then their eigen vectors are same.
4. The characteristic roots of two n x n matrices are same but their characteristic

polynomials may not be same.

(a) ii and iv are true.  (b) i, iii are true.
(c) i, ii and iii are true.  (d) only ii is true.

Q 31) Let T : R?> — R? be the orthogonal transformation of rotation through angle 6,
then
(a) T has no eigen values for any 6 € (0, 27).
(b) T has only one eigen value —1 for § = 7 and no eigen values if 6 € (0, 27) —
{m}.
(c¢) T has eigen value 1 for § = 7/4.
(d) T has only one eigen value for all 6 € (0, 27).
Q 32) Let T : R? — R? be the orthogonal transformation of reflection in the line y =
tan gx, then
(a) T has no eigen value for any 6 € (0, 27).
(b) T has only one eigen value 1 for every 6 € (0, 27).
(c¢) T has two eigen values 1, —1 for every 6 € (0, 27).
)

(d) T has an eigen value -1 for § = 7.

Q 33) Let A= {Z Z} where a,b, ¢, d € Z such that a + b = ¢ + d, then

(a) A has two integer eigen values.
(b) A may not have any eigen value.
(c) A has two eigen values which may not be integers.

(d) A has two eigen values only if b, ¢ = 0.

Q 34) Let A be an n x n orthogonal matrix with detA = —1. Then

(a) —1 is the only eigenvalue of A. (b) —1 is an eigenvalue of A.
(c) A has at least one real eigenvalue only if n is odd.  (d) None of the above.
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Q 35) Let A be an 2 x 2 orthogonal matrix with detA = 1. Then

(a) 1 is the eigenvalue of A. (b) —1 cannot be an eigenvalue of A.
(c) A may not have real eigenvalue.  (d) None of the above.

Q 36) Let z(z — 1)(z + 2) be the characteristic polynomial of a 3 x 3 matrix A, then the
characteristic polynomial of A? is
(a) z(z —1)(x —4) (b) z(z+ (z - 2)
(c) z(x+1)(x+4) (d) None of these.

Q 37) Which of the following statements are true-

(i) 0 is an eigen value of a matrix if and only if the matrix is singular.
(ii) A,xn has atleast one (real) eigen value if n is odd.

(iii) A matrix with all the diagonal entries equal to zero has zero eigen value.

)

)

)
(iv) det A = product of characteristic roots of A.
(a) all the statements are true. (b) (i), (ii), (iv) are true.
)

(c) (i), (iii) are true. (d) (i), (ii), (iii) are true.
Practical 2.3 Descriptive Question

Q 1) Find eigen values and bases of the corresponding eigen spaces for following matrices

1 92 010 200 00 -2 5 6 2
<32> 1 01 010 1 2 1 0 -1 -8
110 0 01 1 0 3 1 0 -2

-2 2 3

Q 2) Find eigen values and bases of the corresponding eigen values of A = | =2 3 2

-4 2 5

Hence find eigen values and the bases of corresponding eigen spaces of
(i) A=t (i) A3 —2A4%+ 1 (iii) A+ 21

Q 3) Let A, B be n x n matrices and x be an eigen vector corresponding to a non-null
eigen value A\, of AB. Show that Bz is an eigen vector of BA corresponding to .

Q 4) If X is an eigen value of A, ., show that the eigen subspace of A* corresponding to
A\¥ contains the eigen subspace of A corresponding to .

Q 5) Let v be a non-zero vector in R” and A = v'v where v is treated as a 1 x n row
vector. Then

a. Show that the eigen values of A are 0 and vo'.
b. Show that the eigen space corresponding to eigen value vv' is of dimension 1.

c. Identify the eigen subspace corresponding to 0.
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Q 6) Find all the eigen values and corresponding eigen vectors of the matrix

2 11

w23 @2 e

11 2

3 -1 2 8§ —6 2 -2 21

4 |1-1 2 1 (B)|-6 7 -4 (6) 2 1 2

2 1 3 2 -4 3 1 26
-1 2 1

Q7) Let matrix A= |—4 5 1 | and matrix B = 34%2 — 4A + I, where [ is 3 x 3

-1 -2 -3

identity matrix. Find the eigen values and corresponding eigen vectors of the matrix

B.

4 2 5
Q 8) Compute the eigen values and corresponding eigen vectors of A~ for A= |3 3 5| .Hence
3 2 6
compute the eigen values and eigen vectors of 4472 — 34~ + 21I.
3 -1 2
Q9) Let A= |—1 2 1] .Find the eigen values and corresponding eigen vectors of the
2 -1 3

matrix B ,where B = 2A4% + 3A — 51 where I is 3 x 3 identity matrix.

Q 10) Find eigen values and bases of the corresponding eigen vectors for a 3 x 3 matrix
having all its entries 1.

Q 11) Let V be a vector space of dimension 3 and {vy,vs,v3} be a basis of V. Find
eigen values and corresponding eigen spaces of T : V' — V be defined by T'(v;) =
V1, T(Ug) = + Vo, T(Ug) = U1 + VU2 + V3.

Q 12) If A is a nilpotent matrix (A* = 0 for some k € N) then show that 0 is the only
eigen value of A, hence show that =™ is the characteristic polynomial of A.

Q 13) Find a 3 x 3 real matrix A s.t. Au; = uy, Auy = 2uy, Auz = 3us where u; =

1 2 —2
2 ,Ug = —2 , Uz = —1
2 1 2

Q 14) Let A, B be n x n real matrices and Pg(x) be the characteristic polynomial of B.
Show that the matrix Pp(A) is invertible if and only if A and B have no common
eigen values.

Q 15) Let A\; and Ay be two distinct eigen values of a matrix A and let u; and usy be eigen
vectors of A corresponding to A; and A respectively, then show that u; + us is not
an eigen vector of A.

Q 16) Prove that if every non-zero vector of R™ is an eigen vector of Ay, then A is a
n X n scalar matrix.
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Q 17) If P3(R) is a vector space containing polynomials of degree < 3 along with the zero
polynomial over R and D : P3(R) — P3(R) is defined as D(f(z)) = f'(x) then find
the characteristic polynomial, eigen values and corresponding eigen space for D.

Q 18) Let Aj3x13 be a real matrix of rank 1 and P(t) be the characteristic polynomial of
A. Prove or disprove: (i) t*?|P(t) (ii) tr A is an eigen value of A.

Q 19) Consider the linear transformation T : My(R) — My(R) defined by T(A) = A"
Find the eigen values and corresponding eigen vectors of T

1 1.00001 1
Q 20) Prove that [ 1.00001 1 1.00001 | has one positive and one negative eigen
1 1.00001 1
value.
3
Q 21) Let A = [a;;] be a 3 x 3 real matrix where each a;; > 0 and Z a;; = 1 then prove
j=1
that any eigen value of A has absolute value < 1.

Q 22) Find a 3 x 3 matrix A which has eigen values 0, 1, -1 with corresponding eigen
vectors (0,1, —1)% (1, —1,1)*, and (0,0, 1) respectively.

Sem V Linear Algebra 18



Practical no 2.4. Similar matrices and Minimal polynomial

Q1) If A and B are 3 x 3 matrices over R having (1,—1,0)%, (1,1,0)*, and (0,0,1)" as
eigenvectors. Then
(a) A and B are similar matrices. (b) AB = BA.
(c) A and B have same eigenvalues. (d) None of the above.

Q 2) If n x n real matrices A, B are similar and f(x) is a polynomial in real coefficients
then f(A), f(B) have

(a) same characteristic polynomials but different minimal polynomials.
(b) same minimal polynomial but different characteristic polynomials.
(c)
(d) characteristic polynomials are different as well as the minimal polynomials are
different.

same characteristic polynomial and same minimal polynomial.

Q 3) For square matrices A, B of same size, which of the following statements are true?

i. If A, B are similar then they have same characteristic polynomial.
ii. If A, B are similar then they have same eigen vectors.
iii. If A, B have same characteristic polynomial then A, B are similar.
iv If A, B have same characteristic roots then A, B are similar.
(a) iand iv (b) only i
(c) i, il and iv (d) None.

Q 4) The matrix A = ((1) 1) is

o 20 o 0 0
(a) similar to (0 0) (b) similar to (0 2)

(c) similar to <1 X

0 1) (d) not similar to any diagonal matrix

. 1
Q 5) The matrix A = (3 4

(a) (140 —_152)
o (3 2)
@ (5 1)

(d) None of the above

) is similar to the matrix

Q 6) Degree of the minimal polynomial of n x n real matrix is

(a) equal to n. (b) less than or equal to n.
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(c) greater than n. (d) less than n.

. . A : .
Q 7) Minimal polynomial of [ where A, B are square matrices, is

0

0 B
(a) L.C.M. of the minimal polynomials of A and B.
(b) G.C.D. of the minimal polynomials of A and B.
) product of the minimal polynomials of A and B.
)

(c

(d) minimal polynomial of A— minimal polynomial of B.

1 -1 0 -2 00 010
Q8) Let A= diag {1,2,-1},B=|-1 2 0|,C=]0 1 0landD= {1 0 0],
0 0 3 0 01 0 0 2
then
(a) B,C,D are similar to A. (b) Only D are similar to A.
(¢) None of B,C, D are similar to A. (d) A is similar to D.

Q 9) If A is a square matrix with all its eigen values equal to 1, then
(a) AF is similar to A for every positive integer k.
(b) A* is not similar to A for any positive integer k # 1.
(c) A* is similar to A for only k = 2.
(d) A* =TI for some positive integer k.
Q 10) The minimal polynomial of the diagonal matrix A = diag {1,—1,1,—1} is
(a) 2*+1 (b) 22 —1
(c) (22 —1)* (d) None of these.
Q 11) Let A, «, be a real matrix, then the characteristic polynomial of A = the minimal
polynomial of A if
(a) and only if A has n distinct characteristic roots.
(b) A has n distinct characteristic roots.

(c) only if A is a diagonal matrix. (d) A is nilpotent matrix.

Q 12) The minimal polynomial of {1 Oé} is

0 1
(a) z —1 for any a € R. (b) (x — 1)% for any « € R.
(¢) z—1if @ =0 and (z —1)? otherwise. (d)z—1ifa#0and (x—1)>
otherwise.
1 a p
Q 13) The minimal polynomial of |0 1 ~| is
0 0 2
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(a) (z —1)(x —2) for any «, 3,7 € R.

(b) (z —1)*(x —2) for any a € R.

(c) (x—1)*(x—2)if a=0and (z —1)(x — 2) otherwise.
(d) (z —1)*(x —2) if a # 0 and (z — 1)(x — 2) otherwise.

1 B
Q14) Ifa= |0 v | then which of the following statements is true
0 1

o~ 9

(i)  — 1 is the minimal polynomial of A if and only if « = 5 =~ = 0.
(ii) (z —1)? is the minimal polynomial of A if and only if = v =0 and 3 # 0.

(iii) (z — 1)3 is the minimal polynomial of A if and only if 3 and exactly one of the
a,y are 0.

(iv) (x —1)3 is the minimal polynomial of A if and only if exactly two of the «, 3,

are 0.

(a) i, ii, iii are true. (b) only i is true.

(c) i and iii are true. (d) i, ii, iv are true.
2 0 0

Q15) Let A= [a 2 0 [. Then (t+ 1)(t — 2) is the minimal polynomial of A if and
b ¢ —1
only if
(a)b=c=0 (b)a=0
(c)b#0 (d)a=b=c.

Q 16) If Ny, Ny are real nilpotent matrices , then Ny, Ny are similar if and only if
(a) they have same characteristic polynomials. (b) They have same minimal polynomials.
(c) Either Ny or Nj is zero. (d) Ny =+£Ns

Practical 2.4 Descriptive Question

1 00 1 00

Q 1) Determine the minimal polynomials of [0 0 0| and |0 0 1|. Show that their
0 00 0 00

minimal polynomials are different though their characteristic polynomials are same.

Q 2) Show that a n x n matrix A such that A% = 0 is either a zero matrix or is similar

0 1
to [0 0].
Q 3) Find the minimal polynomial of

300 2 1 0
(1) {0 2 1 2) | -4 -2 0
01 2 2 1 0
2 1 0 3 1 6
3) -4 -2 0 412 1 0
2 1 0 -1 0 -3
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Q 4) Find the values of ’a’ and b’ such that the following matrices are similar.

—2.0 0 ~1 0 0
A=12 a 2|,B=|0 20
3 1 1 0 0 b

Q 5) Prove or disprove: A, is idempotent (4% = A) if and only if the minimal polyno-
mial of A is 22 — z.

Q 6) For every n x nreal matrix A, show that there exists an unique monic polynomial
of least degree that annihilates A.

Q 7) If di,ds, - -+ ,dy are the distinct diagonal entries of a n X n diagonal matrix A, then
k

show that the minimal polynomial of A is H(:l: —d;).
i=1

Q 8) Show that the minimal polynomial of A, is product of k distinct linear factors if
and only if A is similar to a diagonal matrix with £ distinct diagonal entries.

Q 9) Show that the minimal polynomial of the companion matrix corresponding to f(x) =
3+ ax? + a1 + ag is f(x).

1 i+j5=n
0 otherwise.

Q 10) If A, ., is a real matrix, A = [a;;] where a;; = { . Find the minimal
polynomial of A.

Q 11) Let A be a 3 x 3 matrix with all its entries = 1. Find the minimal polynomial of
A.

Q 12) find the minimal polynomial of A = , where a, b, c € R.

O = O
_— o O
o o

Q 13) Show that characteristic polynomial of A, y, where A> = A and rank A = k is
e G DL
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10.

Practical no 2.5. Diagonalization of a matrix

1 2

: LetA:( ).Then7

0 -2
(a) A and A' are both diagonalizable. (b) A is diagonalizable but A% is not.
(c) Neither A nor A% is diagonalizable. (d) None of the above.

1 2 4
.Let A= |0 —1 —2] and B = A% 4+ A2 + ] Then,
0 0 3
(a) A, B are not diagonalizable. (b)A is diagonalizable, but B is not diagonalizable.
(c) AB is diagonalizable (d) None of the above.

If T : R*> - R? is a linear transformation such that 7(61,23) = (189,93) and

T(67,47) = (195,117). Then
(a) T is diagonalizable with distinct eigenvalues. (b) T is not diagonalizable.
(¢) T does not have distinct eigenvalues, but is diagonalizable. (d) None of the above.

Which of the following matrices is not diagonalizable?

110 110 110 100
(a) [0 2 1| ()02 0] (© o1 0] (@020
00 3 001 00 2 00 3

Let A be a n x n real orthogonal matrix. Then
(a) A has n real eigen values and each eigen value is +£1. (b) A is diagonalizable

(c) A may not have any real eigen value. (d) (b) A2=1T
0000
a 0 0 0 D . .
Let A= 0 b o0 ol then A is diagonalizable if
00 c O
(a)a=bc=1 (b)a=1l=b=c (¢c)a=b=c=0 (d)a,bc>0
0 a
Let A = [0 —a]

(a) A is diagonalizable but not orthogonally diagonalizable.
(b) A is not diagonalizable for any a € R.
(c) A is orthogonally diagonalizable if and only if a = 1 (d) None of these.

If Ais a4 x 4 matrix having all diagonal entries 0, then
(a) 0 is an eigenvalue of A. (b) A*=0 (c) A is not diagonalizable. (d) None of these.

Let A be an n X n non-zero nilpotent matrix over R. Then
(a) A is diagonalizable. (b) A is diagonalizable if n is odd.
(c) A is not diagonalizable. (d) None of the above.

a —3
3 0
(a) A is not diagonalizable for any a € R. (b) A is diagonalizable YaRR.

(c) A is not diagonalizable if —6 < a < 6. (d) A is diagonalizable if —6 < a < 6.

Let A = ( ), a € R is a parameter. Then
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11. Let A and B be n x n matrices over R such that AB = A — B. If B is a diagonal-

izable matrix with only one eigenvalue 2, then,
(a) 2 is also an eigenvalue of A. (b) A is diagonalizable and —2 is the only eigenvalue of A.

(¢) A may not be diagonalizable. (d) None of these.

S =
N 1 Ut

1
12. The matrix A= [ 0
0

O =~ O
N OO

1
(a) Not diagonizable.  (b) is similar to [ 0
0

(c) is similar to (d) None of the above.

S O N
S NN O
w o O

13. Let A, B,C be 3 x 3 non-diagonal matrices over R such that
A?=A,B?>=—1,(C —3I)>=0. Then
(a) A, B, C are all diagonalizable over R. (b) A, C are all diagonalizable over R.
(c) Only A is diagonalizable over R. (d) None of the above

14. Let A € M3(R) such that AB = BA for all B € M3(R) . Then
(a) A has distinct eigenvalues and is diagonalizable.

(b) A is not diagonalizable.

(c) A does not have distinct eigenvalues but is diagonalizable.
(d) None of the above.

15. If A,B,C,D € M(R) such that A, B,C,D are non-zero and not diagonal. If
A2 =1,B?=B,C?=0,C # 0 and every eigenvalue of D is 2, then
(a) A, B,C, D are all diagonalizable. (b) B,C, D are diagonalizable.

(c) A, B are diagonalizable. (d) Only D is diagonalizable.
11 10
16. If A = {O 0} and B = [O O} then

a) Both A, B are diagonalizable, A is also orthogonally diagonalizable.

(c) Both A, B are diagonalizable, B is also orthogonally diagonalizable.

(d) Both A, B are diagonalizable, but both A, B are not orthogonally diagonaliz-
able.

(a)

(b) Both A, B are orthogonally diagonalizable.
)
)

Practical 2.5. Descriptive Questions

1. In each following matrices A,
(a) Find eigen values of A, geometric and algebraic multiplicity of each eigen values.
(b) Determine whether A is diagonalizable. In case, the given matrix is diagonaliz-
able find a non-singular matrix P so that P~'AP is a diagonal matrix.
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1 .. 1 2 . (11
( 2) (ii) (iii) (0 1)
1 10 1 1 0 3 1 6
iv) [0 1 0 @ lo22] @yl2 1 0
0 0 2 0 0 4 -1 0 -3
3 0 6 0 00 3 0 =2
(vii) { O —3 0] (viii)){0o 0 0] (ix)|—-7 0 4
5) 2 3 01 4 0 -3

2. For the following find a non-singular matrix P such that P7'AP is a diagonal
matrix.

(a) A= (_11 g) Hence find A%,

(b) A= (_11 _11> Hence find A,

(c) A= (2 é).Hence find A109.

1
1 -2 8

(d) A= {0 —1 0 |.Hence find A1000, 4=1000 42002 42003
0 0 -1

3. Determine constants a, b, ¢ so that the matrix A =

o O =
SN

b
c | is diagonalizable.
1

4. Characterize the diagonalizable 2 x 2 matrices A such that A2 —3A4 4+ 2] = 0 in
terms of their eigenvalues.

a b

5. Show that A = (0 d

> ,a,b,d € R is diagonalizable if and only if b = 0 or a # d.

. (1 6\. . . 3 0
6. (i) Is the matrix (2 0) is similar to (0 2).

. (1 2\, . 3 0
(ii) Is the matrix (0 3) is similar to (1 2).

7. Let A = (1 g) Find a non-singular matrix P such that P~'AP is a diagonal

matrix and hence find A9,

8. Find a 3 x 3 matrix A which has eigenvalues 0, land — 1 with corresponding eigen-
vectors (0,1. — 1), (1; —1;1)%, (0,1, 1)* respectively.

0 01
0 01
9. Find the eigenvalues and eigenvectors of 13 x 13 matrix A= | : .. ¢ | and
0 01
1 11

show it is diagonalizable.
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10. Let A,, real matrix such that A2 = A. Prove that A is diagonalizable.
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Practical no 2.6 Orthogonal Diagonalization and Quadratic Form

1. If v =1,0,1] is a row vector then,

10.

(a) v'v is not orthogonally diagonalizable.
(b) vv'v is orthogonally diagonalizable.

(¢) v'v is not diagonalizable.
(d) None of the above.

Let A be an m X n matrix over R. Then
(a) AA" is not orthogonally diagonalizable.
(b) I, + AA" is not orthogonally diagonalizable.
(c) AA" and A'A are orthogonally diagonalizable. (d) None of the above.

(21 i (30 B
Let A= <1 2). If PPAP = 01 , then P =
11 I 1 1
(a) [ w2 V2 M) [ V2 2] ()| V2 Y2]  (d) None of the above.
V2 V2 V2 V2 V2 V2
.LetA:(O a),aER.Then
—a 0
(a) A is not diagonalizable for any a € R.
(b) A is diagonalizable but not orthogonally diagonalizable.
(c) A is orthogonally diagonalizable if and only if a = 0. (d) None of the above.
The equation 22% — 4xy — y* — 42 + 10y — 13 = 0 after rotation and translation can

be reduced to
(a) an ellipse (b) a hyperbola (c) a parabola (d) a pair of straight lines.

The conic 22 + 22y + y* = 1 reduces to the standard form after rotation through a

angle
T T 21 T

@00
The quadratic form Q(z) = 23 + 4x129 + 73 has

(a) rank = 1, signature = 1. (b) rank = 2, signature = 0.
(c) rank = 2, signature = 2. (d) None of the above.

Let A be a 4 x 4 real symmetric matrix. Then there exists a 4 x 4 real symmetric
matrix B such that
(a) B2= A (b) B3 = A (c) B* = A (d) None of these

The matrix (; ]z) is positive definite if
(a) k>4 (b) —2< k<2 (c)|k]>2 (d) None of these.

ax® 4 bxy + cy? = d where a, b, ¢ are not all zero and d > 0 represents
(a) ellipse if b* — 4ac > 0 and hyperbola if b* — dac < 0.
(b) ellipse if b* — 4ac < 0 and hyperbola if b* — 4ac > 0.
(c) is a circle if b =0 and a = c else it is a hyperbola.
(d) None of these.

Sem V Linear Algebra 27



11. The conic 22 + 10z + 7y = —32 represents
(a) a hyperbola (b) an ellipse. (c) a parabola (d) a pair of straight lines.

12. For the quadratic from Q(z) = 223 + 223 — 22,19

(a) rank = 2, signature = 1 (b) rank = 1, signature = 1

(c) rank = 2, signature = 0 (d) rank = 2, signature = 2
13. For the quadratic from Q(x) = —3z% + 522 + 27,29,

(a) rank = 2, signature = 0 (b) rank = 2, signature = 1

(c) rank = 2, signature = 2 (d) rank = 1, signature = 1

14. The symmetric matrix associated to the quadratic from 5(x; — z9)? is,

(a) positive definite (b) positive semi definite (b) indefinite (d) negative definite.

15. The quadratic form Q(x) = 22?7 — 4xyxy — 3 after rotation can be reduced to
standard form
(a) 3yt — 23 or 2y7 +3y3 (D) 3yi +2y3 (c) =3y +2y5 (d) 2yf — 4y3

16. The equation 22 + y* + 22 — 2z + 4y — 62 = 11 represents
(a) None of the below (b) a hyperboloid of one sheet
(c) a hyperboloid of two sheet (d) a sphere.

17. The conic 322 — 4xy = 2 represents

a) an ellipse a hyperbola (c) a parabola a pailr of straight lines.
11i b) a hyperbol bola (d ir of ight li
1000
. 0100 .
18. Let Q(X) = X'AX, where A = 000 11’ X = (z1,x9,23,24)". Then by
0010
orthogonal change of variable, Q(X) can be reduced to

(a) y1y2 + .%2, (b) y1y2 + y% + y§
(i +ys+vs—vi (d)y3+y3 — ysya

19. If A,,«, be real matrix then which of the following is true-
(a) A has at least one eigen value. (b) VXY € R, (AX, AY) >0
(c) Each eigen value of A'A > 0 (d) A'A has n eigen values.

Practical 2.6 Descriptive Questions

1. Find an orthogonal matrix P such that P~'AP is a diagonal matrix, in each of the
following examples. A =

1 0 -1 8 -2 2 30 7 5 -2 —4
@0 1 2] -2 5 4] @05 0] @/[-2 8 -2
-1 2 5 2 4 5 70 3 —4 -2 5

2. In the following examples, make an orthogonal change of variables X = PY to
reduce the given quadratic form Q(X) to standard form Z Aiy?. Also, state rank

i=1
and signature of Q(X).

(a) Q(z1,m9) = 1122 + 62179 + 1923.

Sem V Linear Algebra 28



(b) Q(z1,22) = 2} + day39 + 3.
(c) Q(x1, 32, 73) = 23 + 23 + 23 — 4(x129 + 273 + T173).
(d) Q(zy1, w2, 23) = T2} + 2% + 23 + 8w179 + 81173 — 167973,
(e) Q(z1, w2, 23) = 2(x3 + 23 + 23 — 1179 + 173 — T2T3).
(f) Q(z1, w9, 73) = 5t + 822 + Hx2 — 4(x 29 + 22173 + T2T3).
(g) Q(z1, w9, 73) = 2323 — 4(2179 + 4dw973).
(h) Q(x1, 9, 73) = 23 + 22 — 22119 + 23573,
3. Find rank and signature of the following
1 2 00 1 200 05 00
21 00 21 00 5 0 0 0
(1)0012 (2>0021 <3)1050
00 21 0 01 2 00 1 5

4. In each of the following examples, find value of k, for which the symmetric matrix
associated to the quadratic form is positive definite.

(a) 22 + ka2 — dx29.
(b) 5% + 23 + ka3 + 4v 19 — 27173 — 27973,
(¢) 3% + 23 + 22° + 23123 + 2kxo13.

5. In each of the following examples, a translation in R? puts the conic in standard
form. Reduce the conic to standard form and identify it.
(a) 922 + 4y* — 362 — 24y + 36 = 0. (b) 2% + 10z + Ty = —32.
(c) y? — 8z — 14y + 49 = 0. (d) 2% — 16y® + 8x + 128y = 256.
(f) 22 +y* + 62 — 10y + 18 =0

6. In each of the following examples, a rotation of coordinate axes reduces the conic
to standard form. Identify the conic and give its equation in the standard form in
the rotated system.

(a) 222 —4zy —y* +8=10. (b)z? +2zy +y* —2=0. (c) ba? + 4wy + 5y* = 9.

x x
7. In each of the following examples a rotation | y | = | v’ | reduces the quadric to
z 2

standard form. Name the quadric and give its equation in z'y’z" system.
(a) 222 + 3y* + 2322 + 7222 + 150 = 0 (b) 42? +4y* + 422 + 4oy + 4wz +4yz — 5 = 0.

8. Reduce the following quadratic forms to standard form:
(a) 4z + 4y* + 8y + 8 (b) 922 — 6y + 63> + 2v/5x + 12y + 162.
(c) 2% + 4y* + 42% + 4oy — 4oz — Syz + 20 + 8y + 7

9. let A= . Let Q(X) = X'AX, find rank and signature of Q(X).

O = ot O
S ot O Ot
ot O Ot~
o ot o O
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Practical 2.7
Unit 1

Q 1) Let W be a subspace of a real vector space V. For vy, vy € V, show that

(i) (v1 + W) = (voa+ W) if and only if v; — vy € W.
(i) either (v + W) N (ve + W) = {0} or (v; + W) = (ve + W)

Q 2) Let W be a subspace of a real vector space V and V/W = {v+W /v € V}. Show
that addition defined by (v1+W)+ (ve+W) = (vy +v2)+ W and scalar multiplication
defined by a.(v + W) = a.v + W are well defined in V/W.

Q 3) Let W be a subspace of a finite dimensional vector space V. Show that dim V/W =
dim V— dim W.

Q 4) Let P,[R] denote the space of polynomials with real coefficients of degree < n along
with zero polynomial. Consider the linear transformation D : P,[R] — P,_;[R]

defined by D(f) = L and T : P,[R] — P,[R] defined by T(f) = =f. If A =

DT —TD: P,[R] — P,[R], find KerA, and dim(A/KerA)

Q 5) State and prove the 'First Isomorphism Theorem of vector space’ (Fundamental
theorem of vector space homomorphism).

Q 6) Show that any orthogonal linear transformation 7' : R? — R? is either a rotation
about origin or a reflection about a line passing through origin.

Q 7) Let V be a finite dimensional inner product vector space and T : V' — V be a linear
transformation. Prove that the following statements are equivalent.

(i) T is orthogonal.
(ii) |T(X)] = || X|| for all X € V.

(iii) If {e;}, is an orthonormal basis of V', then {T'(e;)}!, is also an orthonormal
basis of V.

Q 8) Let V be a finite dimensional inner product vector space. If f : V' — V is a function
such that (i) f(0) =0 (i) ||f(X) = f(V)|| = | X =Y, V X,Y € V, then show that
f is an orthogonal linear transformation.

Q 9) Let V be a finite dimensional inner product vector space and f : V' — V be an
isometry, then show that there exists unique xy € V and an unique orthogonal linear
transformation 7' : V' — V such that f = L,, o1 where L,, : V — V is a translation
map defined as L,,(X) = X + Xo.

Q 10) Let V be an n dimensional inner product space and W be a subspace of V of
dimension n — 1. Let u be a unit vector orthogonal to W. Show that T": V — V

defined by T'(z) = x — 2(z,u)u is an orthogonal linear transformation such that
T(w)=w, Vwe W and T(u) = —u.

Q 11) Let A be a n x n real matrix. Show that

(i) det xI,, — A is a monic polynomial of degree n in "’
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(ii) Coefficient of "~ in the polynomial is = - tr A.

(iii) Constant term of the polynomial is = (—1)" det A.
Q 12) State and prove the Cayley Hamilton Theorem.

Q 13) If T : R? — R? is a linear transformation such that (u,v) =0 = (T'(u),T(v)) =
0 for each u,v € R2? show that T = aS, where S : R> — R? is an orthogonal
transformation.

Unit 2

Q 1) Let V be a vector space of finite dimension 'n’and T': V' — V be a linear transfor-
mation. Show that following statements are equivalent.
(i) A € Ris a an eigen value of T
(ii) AL, — T is not injective. (I : V' — V is the identity map.)

(iii) A is an eigen value of a matrix A,where A is a matrix associated with 7" with
respect to any basis of V.

(iv) A is a root of the characteristic polynomial of A.
(v) The system of homogeneous linear equations [Al,, — A]X = 0 has non-zero solu-
tion X € R™.

Q 2) If X is an eigen value of a real n x n matrix A, then

(i) A is an eigen value of A’.

(ii) A* is an eigen value of A* for k € N. Hence f()) is an eigen value of f(A), for a
polynomial f(x) over R.

(iii) If A is invertible, then A~! is an eigen value of A~
Q 3) For n x n real matrix A, prove that -

(i) Characteristic polynomial of A = Characteristic polynomial of A’.

(ii) Characteristic polynomial of B = characteristic polynomial of A for any matrix
B similar to A.

(iii) For any real matrix C,«,, Characteristic polynomial of AC' = characteristic

polynomial of C'A.

Q 4) If Ais an n x n real matrix, and Ay, Ay, -+, \; are distinct eigen value of A with
X1, X5, -+, X as corresponding eigenvectors, then show that Xi, X,,---, X, are
linearly independent.

Or
If T:V — V is a linear transformation where V' is an vector space of dimension n

and Aq, Ao, - -+, A\, are distinct eigen value of T with X7, X, -+ , X}, as corresponding
eigenvectors, then show that Xi, Xy, --- , X, are linearly independent in V.
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Q 5) Let A be a n x n matrix having 'n’ eigen values, then prove that A is similar to an
upper triangular matrix.

Q 6) Show that minimal polynomial of a real matrix A,., divides every polynomial
which annihilates A. Hence the minimal polynomial of A divides the characteristic
polynomial of A.

Q 7) ais aroot of the minimal polynomial of matrix A if and only if « is a characteristic
root of A.

Q 8) Similar matrices have same minimal polynomials.

Q 9) Define invariant subspace. Let V' be a finite dimension vector space and T : V — V
be a linear transformation. Show that
(a) kerT,ImT are invariant under 7.
(b) eigen space of T is invariant under 7.

(c) If V is an inner product space, T is symmetric (i.e. (TX,Y) = (X, TY) VXY €
V) and W is invariant under 7', then W+ is also invariant under 7.

Unit 3

1. Define a diagonalizable matrix. If A is an n X n real matrix, and \;, Ao, - -+ , A, are
distinct eigen values of A, show that A is diagonalizable.

2. Define Algebraic and Geometric multiplicity of an eigen value of a square matrix.
Show that the algebraic multiplicity of an eigen value does not exceed its geometric
multiplicity.

3. For n x n matrix A, show that following are equivalent-

(a) A is diagonalizable.
(b) R™ has basis consists of eigen vectors of A.

(¢) There are n eigen values to A and algebraic multiplicity of each eigen value
coincides with its geometric multiplicity.

(d) sum of dimensions of eigen spaces of A is n.
4. Let V be an n dimensional vector space and T : V' — V be linear transformation.

When do we say that T is diagonalizable? Show that 7" is diagonalizable if and only
if V' has a basis consists of eigen vectors of T'.

5. Let A be real symmetric matrix of order n. Show that eigen values of A are real.
Also show that if A1, Ao, -+, A; are distinct eigen values of A and Xy, X5, -+ X}, are
corresponding eigen vectors then { X, Xy, -+, X} form an orthogonal set.

6. Define an orthogonally diagonalizable matrix. Show that every real symmetric ma-
trix is orthogonally diagonalizable.
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7. Define a quadratic form in n variables. Define symmetric associated to it. What
is the standard (normal or canonical) form of quadratic form? Show that every
quadratic form Q(z1, xe, - -+, x,) can be reduced to standard form by suitable change
of variables.

or

Show that every quadratic form Q(x1, s, - z,) over R can be to reduced standard

form Z A% by an orthogonal change of variables X = PY X = (zy,25--- ,2,)",
i=1
v = (y1,%2, - yn)" and P is an n X n orthogonal matrix.

8. Define a positive definite quadratic form Q(xy,xs, - ,x,). Show that quadratic
form () is positive definite if and only if Rank @) = sign @) = n.

or

Show that a quadratic form (@) is positive definite if and only if all eigen values of
associated symmetric matrix are positive.

or

Let A be an n x n real symmetric matrix. Then show that the following statements
are equivalent.
(i) (AX, X) > 0 for all non-zero X € R™. (ii) Each eigenvalue of A is positive.

9. Define positive definite symmetric matrix. Show that a symmetric matrix is positive
definite if and only if all leading principal minors of A are positive.

10. Consider the equation f(z,y) = az® + 2fxy + by* + cx + dy + e = 0. Show that
by applying rotation and translation the equation f(z,y) reduces to f(X,Y) =
MX —h)?+ MY —k)?2+L; bk, L eR.
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Practical 3.1 : Examples of Metric Spaces, Normed Linear Spaces.
Objective Questions 3.1

(1) Consider the following maps d : R x R — R.
(1) d(z,y) = [& — 2y (ii) d(z,y) = |2* —y7|
(iii) d(z,y) = |z — y* (iv) d(z,y) = |z —y|>
(a) (iii) and (iv) are metrics on R
(b) Only (iv) is a metric on R
(c¢) (ii) and (iii) are metrics on R
(d) (ii), (iii) and (iv) are metrics on R

(2) Let dy and ds be metrics on a non-empty set X. Then
2
(a) d? + d%,ad; where a > 0 are metrics on X, where (d3 + d3)(z,y) = (dl(x,y)> +

2
(do(w.)) " and (adh)(w, ) = a(di(z,))
(b) V/dy +v/dy,ad; where a > 0 are metrics on X, where (v/d; +v/ds)(x,y) = \/di(x,y) +

Vdo(z,y) and (ady)(z,y) = a(dl(x,y)>

(¢) ady+bdy where a,b € R is a metric on X, where (ad; +bds)(z,y) = ady(x,y) + bda(z, y)
(d) None of the above

(3) Consider the discrete metric d; defined on a non-empty set X by d;(x,y) = { é i i 7_£ z :

Then for z,y, 2z € X,

(a) di(z,2) <di(z,y) + di(y, 2)

(b) di(z, z) < di(z,y) + di(y, 2) if and only if x,y, z are distinct.
(¢) di(z,2) =dy(z,y) +di(y,z) if and only if x =y = =

(d) None of the above

(4) Let dy and dy be metrics on a non-empty set X. For z,y € X, let d(x,y) = min {di(z,y),ds(z,y)}
and d'(x,y) = max {di(x,y),dz2(x,y)}. Then
(a) Both d,d" are metrics on X. (b) d is a metirc on X, d’ is not.
(c¢) d' is a metirc on X, d is not.  (d) None of the above.

(5) Let (X,d;) and (Y, dy) be metric spaces. d,d',d" : (X xY) x (X xY) — R are defined
as follows:
(1) d((21,51), (22, 42)) = di(21, 22) + da(y1, 92)
i) d((21,91), (22,92)) = [(da(21,22))” + (da(y1,2))°)2

(i

(iil) @"((z1, 1), (22,92)) = [(di(21,22))* + (d2(y1, y2))?]
(a) d,d',d" are all metrics on X xY  (b) d,d" are metrics on X x Y
(c) d, d” are metrics on X X Y (d) None of the above.

(6) Let (X, || ||) be a normed linear space and x,y,z € X. If d is the metric induced by the
norm then
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(a) d(z+ z,y + z) > d(z,y) and the strict inequality may hold.
(b) d(x + z,y + z) > d(z,y) + d(y, z) and the strict inequality may hold.
() d(ﬂf +z,y+2)=dz,y).

(d) None of the above

(7) Consider the norms || |1, || |z and || [lc on R, ]|y = |21] + |22l [|2]l2 = /21 + 23, [|2]| =

max {|x1], |x2|}. Then
(a) 2[|zljoe < lzfla < 2lfly  (b) [|l2llec < lz]l2 < []]2
(€) 2||z]|oo < |||l < 2||z|l2  (d) None of the above

1
(8) Let X = ([0, 1] and consider the norms || ||1, | ||co on X, where || f|1 = / lf(@)] dt, || flleo =

0
sup {|f(t)],t € [0,1]}. Then for f(t) =t,g(t) = t* € X, if d; and dy are metric induced
by || ||1, and || || then

1 1 1
() di(fi9) = 5,d(f,9) = 5 (b) di(fi9) = &, do(f,9) =
1
(c) di(f,9) = =,dxo(f,9) = = (d) None of the above.
(9) Consider the normed linear space (1%, || ||2) where [ = {(xn) : (m,) is a sequence over R, such that
fo < oo} and for © = (21,22, ..., Zn,...), ||z]]2 = Zx Let e; = (1,0,0,...),e5 =
n=1
(0,1,0,0,...). Then for the metric dy induced by ||||2,
(a) d2(€1 + €9,€1 — 62) \/i (b) d2<€1 + €2,€1 — 62) =2
(c) da(e; +eg,69 —€3) = — (d) None of the above.

V2

(10) Let X be the set of all real sequences x = (x,,). Consider the metric d defined by

d(z,y) = 0 ifx=y

1 :
~ min {i:2; # Yt ifz#y

X

—~

Zn),y = (yn) € X. Then for distinct sequences x,y, z € X

where z =
(a) d(z,2) <d(z,y)+ d(y, z) and the equality may hold.
(b) d(z,2) < max {d(z,y),d(y, 2)}
(¢) d(z,z) > max {d(z,y),d(y,2)}
(d) None of the above.
(11) Let (X, ||) be a normed linear space and d be the metric induced by || ||. Then for
z,y,z € X,d(x,z) = d(z,y) + d(y, ) if and only if

(a) y =2

(b) y lies on the segment joining = and z and between them.
(c) z lies on the segment joining x and y and between them.
(d) None of the above.
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(12) Let X be a normed linear space and x,y € X. Then

(&) llz =yl <=l =1yl | () [le =yl =]l =yl |
() llz =yl =zl =llyll | (d) None of the above.

(13) Let X = M;(R). Consider the following maps from X — R.

(i) |A]l = | det A
(i) 1Al = ) lai;| where A= (ay)
1<i,j<2
(i) [JA] = max 1< j<olay|  where A = (ay)
Then
(a) (i), (ii), (iii) are all norms on X.
(b) (ii) and (iii) are norms on X.
(c) (i) and (ii) are norms on X.
(d) None of the above.
Topology of Metric Spaces: Practical 3.1
Examples of Metric Spaces, Normed Linear Spaces
Descriptive Questions 3.1

Let d; and dy be metrics on a non-empty set X. Check if the following are metrics on X.
Justify your answer.

(i) d, where d(z, max {dy(z,y),ds(z,y)} for x,y € X

) (z,y) =

(i) d, where d(z,y) = min {d;(z,y),ds(z,y)} for z,y € X

(iii) d, where d(z,y) = 2di(z,y) + 3ds(z,y) for z,y € X

(iv) d, where d(z,y) = (di(z,y))? + (da(z,y))? for z,y € X
) (z,y) =

(v) d, where d(z, max {1,d;(x,y),ds(x,y)} for z,y € X
Let (X, d) be a metric space. Show that the following are metrics on X.

(i) dy where d(z,y) = \/d(z,y)

) d(z,y)
d, where d(z,y) = — 2 Y)
(ii) d, where d(z,y) T+ d(.y)
. . 0 ifr=y
Show that d is a metric on R, where d(z,y) = @ty ifztyrycR

Let R" = {(z1,22,...,2,) : ©; € Rfor1 < i < n}. Show that || [|1,] |2, and || ||«

are norms on R" where for x = (x1,29,...,2,),||z|1 = Z 2], [|z]la =

|2]lc = max {|z1] : 1 < i <n}. Further, show that [|z]|o < [lz]2 < ||lz|; and
2]l < v/nllzll2 < n||z]|s for 2 € R®
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o0

(5) Let I* = {(z,) : (x,) is a sequence of real numbers such that in < oo} If x|l =
n=1
< 1
(Zmi) *for & = (21,29,...,2n,...) € I2, then show theat (12| ||2) is a normed linear
space.

(6) Let X = C10, 1] and show that || ||, : X — R and || ||c : X — R defined by,
1
/1l =/ [F@] dt, [ flleo = sup {|f(#)] : £ € [0,1]} are norms on X
0

(7) Let X = C10, 1] and consider the norms || ||; and || ||« defined by,

I1f1l1 2/0 [f@)1dt, |[fllee = sup {[f(#)] : ¢ € [0,1]}

Then for f =t,g=1t* h =131t € [0,1], find di(f, 9),doo(f,9),d1(f, 1), dso(f, h) where d;
and d., are metrics induced by the norms || [|; and || || respectively.

(8) Let X be the set of real sequences
(i) Show that d: X x X — R defined by
d(z,y) = 0 ifz=y

1
= if
min {7 : z; # y;} ifz#y
where z = (2z,,),y = (y») € X is a metric on X.
(ii) Show that d: X x X — R defined by

oo

T
d = .
D= 2 5Tt - )

i=1

where z = (z,,),y = (y») € X is a metric on X.

(iii) Let X = {(z,) : (z,) is a sequence of real numbers, z,, — 0}. Show that || || : X —
R defined by ||z|| = sup {|z,| : n € N} for = (z,,) is a norm on X.

(9) Let || ||2 be the Euclidean norm on R%. Let d : R? x R? — R be defined by

d(z,y) = |lzlls +llylla  ifz#y
= 0 ifr=y

for z,y € R2. Show that d is a metric on R?
(10) Show that d is a metric on N where for m,n € N,
d(m,n) = 0 ifm=n

ifm#n
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(11) Show that || || is a norm on X, where X = M(R) and ||A|| = max 1<; j<2|a;;| for A = (a;))

(12) Show that || ||; is a norm on [? where [' = {(a:n) L, € R,Z |z, | < oo} and ||z||; =
n=1

Z |z, | for x = (z,,)
n=1

(13) Show that C (set of complex numbers) is a normed linear space where norm is the absolute
value of a complex number.
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Topology of Metric Spaces Practical 3.2
Sketching of Open Balls in R%, Open and Closed sets, Equivalent metric spaces
Objective Questions 3.2

(Revised Syllabus 2018-19)

In a metric space (X, d)

(a) an arbitrary intersection of open sets is an open sets.

(b) an arbitrary intersection of open balls is an open ball.

(c) an intersection of finitely many open balls is an open ball.
(d) None of the above.

et , e a metric space and x,y € X,r,s > 0. z,r) = B(y,s), then
2) Let (X,d) b i d X 0. If B B h
a) r=yandr=s T = ut 7 may not be equal to s
(a) y and (b) yb y not be equal
(c) r=s (d) None of the above

(3) Let (X,d) be a metric space and x,y € X,0 <r < s. Then
a) B(z,r) C B(x,s) and the equality may occur. (b)) B(z,r) C B(x, s),
B(z,r) = B(z,s)ifr > 1 (d) None of the above.

(4) Let (X, d) be a metric space in which the only open subsets are ) and X. Then
a) d is a discrete metric on X.

b) For z,y € X,d(x,y) > 1ifx #y

c) X is a singleton set.

d) None of the above.

(5) Let G be a non-empty bounded open set in R? with Euclidean metric. Then G is of the
type
(a) (a,b) X (c,d), where a,b,c,d € R,a < b, ¢ < d.
(b) I x J, where I and J are union of finitely many bounded open intervals in R
(¢) Gy x Gy, where G and Gy are bounded open subsets of R.
(d) None of the above.

(6) Consider the normed linear space (R?, || ||1) where for z = (z1,75) € R?, ||z||1 = |21] + |72].
If B1((0,0),1) is an open ball with center (0,0) and radius 1, then
(a) B1((0,0),1) is a square with sides of length /2 which are parallel to coordinate axes.
(b) B1((0,0),1) is a square with sides of length v/2 and diagonals are parallel to
coordinate axes.
(¢) B1((0,0),1) is a square with sides of length 2 which are parallel to coordinate axes.
(d) None of the above.

(7) Let (X,d) be a metric space and =,y € X. Let d(x,y) = s > 0. Then B(x,r) N B(y,r) = 0,
if
(a) r >

(b) 0 <r< (¢) m>2s (d) None of the above

[N VA
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(8) Consider the normed linear spaces (R?, ]| ||1), (R? || |l2) and (R? || ||o) where for z =
(21, 22) € R? ||z|ly = |21| + |22, |2ll2 = /2] + 23, [[2]loc = max {|21], 22|}
If B1((0,0),1), Bx((0,0),1) and B4 ((0,0), 1) denote open balls in (R? || ||), (R?, || ||2) and
(R2, H o) respectively. Then

(a) Bi((0,0),1) Bg((O, 0),1) € B((0,0),1)
(b) B1((0,0),1) = By((0,0),1) = Bo((0,0),1)
(¢) Bx((0,0),1) € By((0,0),1) € B1((0,0),1)
(d) None of the above.
(9) Let (X,d) be a metric space aned d; be the metric on X defined by d;(x,y) = li(z—(g)y)

for x,y € X

(a) Every open ball in (X, d;) is an open ball in (X, d) and viceversa.

(b) Every open ball in (X, d;) except possibly B(z,r),r > 1 for any z € X is an
open ball in (X, d) .

(c) Every open ball in (X, d;) is an open ball in (X, d)

(d) None of the above.

(10) Let (X, || ||) be a normed linear space. Let A C X and U be an open subset of X in (X, d)
where d is the metric induced by || ||. Then
(a) A+ U is open if and only if A is open.
(b) A+ U is open.
(¢) A+ U is open if and only if A =0 or A is a singleton set.
(d) None of the above.

(11) Let (X,d) be a metric space , a € X and 7" > r > 0. Let U, = {z € X : d(z,a) >
rt,Up={r€ X :d(z,a)#r}and Us ={r € X : r < d(z,a) < r'}. Then

(a) U; and U, are open subsets of X, but Us; may not be open.

(b) Uy, Uy, Us are all open.

(c¢) U; is open subset of X, but U, and Uz may not be open.

(d) None of the above.

(12) Consider the metric spaces (N, d) and (N, d;) where d is the usual distance (induced from
R) and d; is the discrete metric in N. Then

)
(a) d and d; are equivalent metrics on N, but the two metric spaces do not have
same open balls.
(b) The open balls in two metric spaces are the same.
(c) Every open ball in (N, d) is an open ball in (N, d;)
(d) None of the above.

(13) Consider the following subsets of C with respect to the usual distance

(i) A={z€C:2=2}|{z€C:|z| <2}
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(i) B={2€C:|Rez| <a} wherea>0,a €R

(iii) C:{ZGC:Z#%,nEN}

(a) A, B and C are open.
(b) B,C are open.

(c) Only B is open.

(d) Only C' is open.

(14) Consider the following subsets (R3, d) where d Euclidean.

{(2,y,0) € R%}

{(x,y,2) € R®: ax + by + cz = d, at least one of a, b, c is not zero}
{(z,y,2) € R®: zyz # 0}. Then

(a) E,F and G are not open.

(b) Only G is open.
(c)
(d

QEE™
1l

F, G are open.
) Only FE is open.

(15) Let X = C10, 1] with norm || ||ec-
Let E={feX:f(0)#£0}, F={feX:[f(3) #0}. Then
(a) E is not open and F' is open.
(b) Neither E nor F' are open.
(c) Both FE and F' are open.
(d) E is open but F is not.

(16) Let X = C]0,1]. Then
(a) B1(0,1) is open in (X, || ||o0)
(b) B1(0,1) C By (0,r) for some r > 0.
(¢) Bx(0,1) C By(0,r) for some r > 0.
(d) None of the above.

Topology of Metric Spaces: Practical 3.2
Sketching of Open Balls in R2, Open and Closed sets, Equivalent metric spaces
Descriptive Questions 3.2

(1) Give an example of a metric space in which B(z,r) = B(y, s) but x # y and r # s.

(2) Determine which of the following sets are open in the given metric space. Justify your
answer in each case.

(i
(ii

(i

U={(z,y) € R®: zy # 0} with Euclidean metric.
U={(z,y) € R®: x = 0} with Euclidean metric.

Q in R with usual distance.

U={(z,y) € R®: 2° — y* < 1} with Euclidean metric.

)
)
)
)

(iv
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(v) U={(z,y) € R®: 2z + 3y < 1} with Euclidean metric.
(i) U= B((0,0),1)\{(5,%). (4, %)} € R* with Euclidean metric.
(3) Let (X,d) be a discrete metric space and x € X. Find
(i) B(z, 3) (i) B(z,3) (iii) B(z,1) (iv) B(z,r),r > 1

72 7 4

(4) Draw open ball B((0,0),1) in R? with respect to the given metric.

(i) dy induced by the norm || ||1, ||z]l1 = |z1| + |z2| for z = (1, x2) € R?

(i) dg, the Euclidean metric.
(iii) d; induced by the norm || ||s, [|Z]lcc = max {|z1], |zo|} for z = (21, 75) € R?
(iv) d where d(z,y) = 2|1 — y1| + 3|w2 — yo| for & = (21, 12),y = (y1,92) € R?

(5) Show that in the following examples U is open subset of (R?, d), where d is the Euclidean
metric. Also, for p € U, find maximum r, such that B(p,r,) C U.

(i) U={(z,y) eR*:2> 0,y >0} .

(i) U={(z,y) eR* 10 ¢ Z,y ¢ L} .

(iii) U=(0,1)x(0,1).

(iv) U={(z,y) eR*: I <z +y<1}.

(6) Let f,g € C[0, 1] and suppose f(t) < g(t) for each t € [0,1]. Show that U = {h € C[0, 1] :
f(t) < h(t) < g(t) for each t € [0, 1]} is an open subset of X = C[0, 1] under || ||oo norm
1

where || fllo = sup {|f(#)[ - £ € [0, 1]}

1
(7) Consider X = C]0, 1] under the norms || [|; and || ||« where ||f]; = / |f(t)] dt and

0
I flloc = sup {|f(t)] : t € [0,1]}. Draw the open ball B(0,1) in (X, || ||1) and (X, || ||o0)-
(meaning show when does f € C[0, 1] lie in the open ball B(0,1)).

(8) Describe the open balls B(p,r) for p € Z,r > 0 considering cases 0 <r < 1,r =1,7 > 1 in
the subspace Z of R with usual distance.

(9) Let (X,d;y) and (Y, d2) be metric spaces. Consider the metricd : (X xY)x (X xY) — R
defined by d((z1,y1), (€2,92)) = max {di(x1,22),d2(y1,y2)}. Letp € X, g € Y andr, s > 0.
Show that B(p,r) x B(g,s) is an open set in (X X Y, d).

(10) Consider the metric § on R? defined by

0(z,y) = =l + vl ifz#y
= 0 ife=y

for z,y € R? where || || is the Euclidean norm in R?. Find the open balls B((0,0),r) and
B(z,r) where z # (0,0),||z]| =eand 0 <e <
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(11) Check whether the following subsets of C with respect to usual distance are open. Justify
your answer.

1. A={2€C:2=2}J{z e C: 2] <2}
2. B={z€C:|Rez| <a, where a € R"}

3. C:{ZGC:Z#%,nEN}
(12) Let (X,d) be a metric space. We define a metric d’ on X x X by

d'((z1,22), (Y1, y2)) = max {d(z1,y1), d(2,92)}
Show that D = {(z,z) : x € X} is a closed subset of (X x X,d')

(13) Show that S" = {(z,y) € R?: 22 + y? = 1} is a closed subset of (R?, || ||2), || ||2 being the
Euclidean metric.

(14) In the following examples, show that the given pairs of metrics are equivalent.

d
(i) For a metric space (X, d), the metrics d and d;, where dy(z,y) = H(cxl—éxy,)y)’ r,y€e X
(ii) For a metric space (X, d), the metrics d and dy, where dy (z,y) = min {1,d(x,y)},z,y €
X

(iii) On N,d and d; where d is the induced metric from the usual distance d in R and d
is the discrete metric.

(15) Let X = C]0, 1] and d; and d, be the metrics on X induced by || ||; and || ||e. Prove or
disprove d; and d., are equivalent metrics on X.

(16) Let dy, da, ds be three metrics defined on R? as follows:
di(z,y) = |21 — 1| + |22 — o, do(w,y) = /(1 — 31)? + (22 — y2)?
doo(@,y) = max {|z1 — y1|, |w2 — 42|}, Vo = (z1,22) & y=(y1,92).
Prove that d;, ds, ds are equivalent metrics on R? by showing

d00<x>y) < dz(iC,Z/) < ﬁdm(w,y) and doo(x,y) < dl(xay) < 2d00(x7y>

(17) Let dy,ds, dw be three metrics defined on R™ as follows:

dl(xay) :Z|xz_yz|7 dg(l',y) = Z(wz_yz)Q
i=1 i=1

doo(z,y) = max {|z; —y;| - 1 <i<n}

Ve = (21, 29,...,2,) & y:(yl,yg,...,yn)l

ShOW that dl<x>y) 2 d2($7y) 2 doo(x7y) 2 n7§d2($’,y) 2 n_ldl(x,y)

10
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Topology of Metric Spaces: Practical 3.3
Subspaces, Interior points, Limit Points, Dense Sets and Separability, Diameter of
a set, closure
Objective Questions 3.3

(Revised Syllabus 2018-19)

(1) Consider the subspace Z of the metric subspace R with usual distance. Then
(a) Every open ball in Z is an infinite set.
(b) Every open ball in Z is a singleton set.
(c) Every open ball in Z is a finite set.
(d) None of the above.

(2) Let (X,d) be a metric space and A, B C X. Then
(a) (AUB)° = A°UB°,(ANB)° = A°NB° (b) (AUB)° C A°UB°,(ANB)° C A°NB°
(c) A°UB° C (AUB)°,(ANB)°=A°NB° (d) None of the above.

(3) Let A be a non-empty subset of R, (distance being usual) then A° can be
(a) empty

(b) singleton set

(c) a finite set containing more than one element

(d) countable but not finite

(4) Consider A = [0, 1) with the induced distance from the usual distance in R. Then
a) An open ball in A is of the type (—r,r) with 0 <r <1

b) [0,3) is an open ball in A

c) [0,1) is not an open ball in A

d) None of the above

(
(
(
(

(5) In the subspace (Q, d) of (R, d) where d is the usual distance in R, £ = {r e Q: 2 < r? < 3}

1S

(a) an open ball (b) an open set which is not bounded.
(c) open and closed (d) None of the above.
(6) Let A be a closed subset of R (distance usual) A # (), A # R. Then

(a) A= (A°)

(b) A is countable.

(c) A is not open.

(d) A is a bounded set.

(7) Let (X,d) be a metric space and A, B C X. Let D(S) denote the set of limit points of
S C X. Then
If A C B, then D(A)

(a) ¢ D(B)
(b) If AC B, then D(B) C D
() c
(d

(4)
If AC B, then D(A) C D(B) and the equality may occur.

) None of the above.

11
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(8) Let d be the usual distance on R and d; be the discrete metric on R. Let A = (0,1). If
D(A) denotes the set of all limit points of A, then

(a) In (R,d),D(A) = (0,1) and in (R, d;), D(A) ={0,1}

(b) In (R,d), D(A) =[0,1] and in (R,d;), D(A) =0

(c) In (R,d), D(A) = (0,1) and in (R, d;), D(A) = (0,1)

(d) None of the above.

(9) Consider the following subsets of R (distance in R being usual):
(i) N (i) @ (i) {2:neN} (iv) (=1,0) . Then 0 is a limit point of

AUB=AUB,ANB=4nB

(11) Let (X,d) be a metric space and A C X. If G C X is an open set such that GNA =0
then
(a) GNA=0 () GNA=0 (c) GNA=0 (d) None of the above
(12) Let A ={1, %, %, %, }L, %, %, %, %, %, - }in R Where_the distance is usual. Then
(a) Aisaclosed set. (b) A isnot a closed set, A= (0,1]
(c) Ais not a closed set, A =[0,1]
(d) None of the above.

(13) Consider Y = [0,1] C R, with the induced usual distance d of R. Let A =[0,1) C Y. Then
in (Y, d)
(a) 0A=1(0,1) (b) 0A={0,1} (c) 0A={1} (d) None of the above.

(14) Consider N with the induced usual distance of R. Let A = {1,2,...,10} C N. Then the
statement which is not true in (N, d) is
(a) A°=0 () A=A (¢c) 9A=0 (d) None of the above.

(15) Let A, B C R, and d be the usual distance in R. Then
(a) d(4°, B°) = d(A, B) = d(A,B) (b) d(A, B) = d(4, B)
(c) d(A°, B°) =d(A,B). (d) None of the above.

(16) Let (X,d) be a metric space and A, B C X such that A, B are non-empty and AN B = ().
Then
(a) d(A,B) >0 (b) d(A,B) > 0if A, B are open.
(c) d(A,B) > 0if A, B are closed. (d) None of the above.

12
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(17) Let S* = {(z,y) : 2* + y* = 1} C R?, distance d being Euclidean. For p € R? d(p, S!)
equals
(@) [l (b) llpll =1 (c) llpll+1  (d) None of the above.

(18) Let A ={1, %, }1, %, %, g, g, g, .-} (distance in R usual). Then A equals

(a) [0,1] (b) (0,1) (c) [0,1]NQ (d) {5 m,neN}N[0,1]
(19) Consider the set A = {1, 3, %, %, i, %, %, %, %, ‘—;, --+} (distance in R usuall Then A equals
(a) Ais a closed set B (b) A is not a closed set, A = (0, 1].
(c) Ais not a closed set, A =[0,1] (d) None of the above.
(20) Let A = {1 f: | s ]R} , (distance usual). Then the set of all limit points of A is
T
(a) (0,1] (b) (0, 00) (c) [0,1] (d) None of the above.
(21) Let A= . f|x| S R} , (distance usual). Then the set of all limit points of A is
(a) (—1,1) (b) [—1,1] (c) (0,00) (d) None of the above.

Topology of Metric Spaces: Practical 3.3
Subspaces, Interior points, Limit Points, Dense Sets and Separability, Diameter of
a set, closure
Descriptive Questions 3.3

(1) Give an example of a metric space (X, d), A, B C X such that A° = B° = but (AUB)° =
X

(2) Find the interiors of the following subsets in a given metric space.

(i) Z in (R, d) where d is the usual distance.
(ii) Q in (R, d) where d is the usual distance.
(iii) {(z,y) e R? : 2 >y} U{(0,0)} in (R?,d) where d is the Euclidean metric.

(3) Find the closure of the following subsets of C (distance being usual)

(i) S={z=%:neN}

(i) S={z=++4+<:m,neN}

(i) S={z=ao+1iy,z,y € (0,1),z,y € Q}
)

(iv) S={z=2+iy,z,y € (0,1)}

(4) Consider the subspace A = [0, 1) of R where distance in R is usual. Find B4(0,7) an open
ball in the subspace A for r > 0

(5) Consider the subspace A = [0, 00) of R where distance in R is usual. Find B4(0, 1) an open
ball in the subspace (A, d).

13
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(6) Show that A = {z € Q: —v2 < 2 < v/2} is both open and closed in the subspace Q of R
with usual distance.

(7) Prove or disprove : Let (X, d) be a metric space and A C X. Then

() () =4 (i) (A = 4°

(8) In R, with respect to usual distance, show that A = N, B = {n + % :n € Nyn # 1} are
closed sets such that AN B = (. Also find d(A, B).

(9) (i) In (R,d), where d is the usual distance, find d(Q,R\ Q) and d(Q, A) where A is any
non-empty subset of R.

(i) In (R? d),d being Euclidean, find d(A, B) where A = {(z,y) € R* : zy = 0} and
B ={(z,y) e R? : ay = 1}.

14
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Topology of Metric Spaces: Practical 3.4
Limit Points, Sequences, Bounded, Convergent and Cauchy Sequences in a
Metric Space
Objective Questions 3.4

(Revised Syllabus 2018-19)

(1) Let (x,) be a sequence in a metric space (X, d),z,, — p. Let A = {xz, : n € N}. Then
(a) pisa hmlt point of A
(b) p€
(c) There is a subsequence (x,, ) of (z,) having distinct terms such that z,, — p
(d) None of the above.

(2) Let S be an infinite subset of R such that SN Q = (). Then
(a) S has a limit point which belongs to R\ Q.
(b) S has a limit point which belongs to Q.
(c) S is not closed.
(d) R\ S has a limit point which is in S.

(3) Let dy and ds be equivalent metrics on X and (z,) be a sequence in X. Then
(a) (x,) is bounded in (X, d;) <= (x,) is bounded in (X, dy).
(b) (x,) is convergent in (X, d;) <= (z,,) is convergent in (X, ds).
(¢) (z,) is a Cauchy sequence in (X,d;) <= (z,) is a Cauchy sequence in (X,ds).
(d) None of the above.

(4) Every Cauchy sequence is eventually constant in

(a) (N,d) where d is usual.
(b) (@ d) where d is usual.
(c) (R\ Q,d) where d is usual.
(d) None of the above.
1 1
(5) d and d; are metrics on X = (0, 00) where d is the usual distance and dy(z,y) = |— — —'.
r oy

Then

(a) If (x,) is a Cauchy sequence in (X, d;) then (z,) is a Cauchy sequence in (X, d)
(b) If (z,) is a Cauchy sequence in (X, d) then (z,) is a Cauchy sequence in (X, d;)
(c) If (z,) is Cauchy in (X, d;), (z,) may not be Cauchy in (X, d).

(d) (x,) is a Cauchy sequence in (X, d) <= (x,) is Cauchy sequence in (X, d;)

(6) d and d; are metrics on X = (0, 00) where d is the usual distance and d;(z,y) =

Then

(a) If (x,) is a bounded sequence in (X, d;) then (x,) is a bounded sequence in (X, d)
(b) If (z,) is a bounded sequence in (X, d) then (z,) is a bounded sequence in (X, d;)
(c) If (z,,) is bounded in (X, d;), (z,) may not be bounded in (X, d).

(d) (z,) is a bounded sequence in (X,d) <= (z,) is bounded sequence in (X, d;)

15
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(7) Let dy and dy be metrics on X such that kids(x,y) < di(z,y) < kodo(x,y) for all z,y € X
where k1, ks > 0 are constants. The the statement which is not true is
(a) (z,) is Cauchy in (X, d;) if and only if (z,) is Cauchy in (X, dy).
(b) z, — pin (X, d;) if and only if z, — p in (X, dy).
(¢) (z,) is bounded in (X, d;) if and only if (x,) is bounded in (X, ds).
(d)

None of the above.

(8) Consider the sequence (zj) defined by ), = <(—1)k7 %) in R?. d and d; are metrics on R?
where d is the Euclidean distance and d; is discrete metric. Then
(a) (zy) is not bounded in (R?,d) and (R?, d,). (b) (x1) converges in (R?d).
(c) (zy) has a convergent subsequence in (R? d).  (d) () converges in (R? d;).

(9) Let p — z and y, — y in (R™,d), d is Euclidean distance. Which statement is not
true?
(a) [Jzg]l — ] and fyell — |yl
(b) (2x, yr) — (2, y)
(c) x is a limit point of the set A = {z}, : k € N} and y is a limit point of the set
B =A{y.: keN}
(d) zr+ye — Tty

1
(10) Consider X = €0, 1], [ f]lx :/0 [f@] dt, || fllee = sup {[f(#)] - 2 €[0,1]} Vf e X and

fn(x) = 2™ Then
(a) {fn} converges in (X, | ||1) but not in (X, || ||c0)
(b) {fn} converges in (X, || ||s) but not in (X, || ||1)
(¢) {fn} does not converge in both.
(d) {f.} converges in both.

0 itm=n
(11) Consider (N, d) where d(m,n) = m 1 Then

if
e ifm+#n

(a) Every sequence in (N, d) is bounded.

(b) Every sequence in (N, d) is eventually constant.

(c¢) Every Cauchy sequence in (N, d) is eventually constant.

(d) Every sequence in (N, d) is Cauchy.

(12) Consider the sequence z,, = n — [y/n] in (R, d) where d is usual metric. Then
(x,,) is Cauchy.

(x,) is monotone increasing.

(x,) is monotone decreasing.

d) (x,) is not convergent but has a convergent subsequence.

16
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(13) Let dy and dy be two metrics on X and there exists real numbers kq, ks > 0 such that
kida(z,y) < di(z,y) < kodo(x,y) Va,y € X. Mark the sentences which is not true.
(a) (x,) is a Cauchy sequence in (X, d;) implies (x,) is a Cauchy sequence in (X, ds)

(b) (z,) is a bounded sequence in (X, d;) implies (z,,) is a bounded sequence in (X, d5)
(¢) (z,) is a convergent sequence in (X, d;) implies (x,,) is a convergent sequence in (X, ds)
(d) (a), (b) and (c) are not true.

1
(14) The sequence (—) is not convergent in

n
(a) [0,1] with usual distance.
(b) [0, 1] with discrete metric.
(c) Q with usual distance.  (d) [0, c0) with usual distance.

(15) The Cauchy sequence which is convergent in (Q, d), where d is the usual distance, is

11 1
(a) (z,), where z, = 1+ — o + _1_5 4 4_5

1 2\
(b) () where xy =1 and z,, = 5(»% + x_n>

1 1\»
(¢) () = {0.1,0.101,0.101001,0.1010010001, - -- }  (d) (x,,) where z,, = —(1 + —)

n n

Topology of Metric Spaces: Practical 3.4
Sequences, convergent and Cauchy sequences in a metric space
Descriptive Questions 3.4

(1) Show that the following sequences in R? are convergent, distance being Euclidean.

(i) (2n) where z, = (% E)

nd 41

1 —1
(ii) (x,), where z,, = (2”, —) forn <9 and x,, = (210, —) for n > 10
n n

(2) Prove or disprove: Let dj,ds be equivalent metrics on a non-empty set X. Then

(i) (x,) is bounded in (X, d;) if and only if (x,) is bounded in (X, ds)
(ii) (z,) is Cauchy in (X, d;) if and only if (z,) is Cauchy in (X, ds)

(3) Let dy and ds be equivalent metrics on a non-empty set X such that there exist ky, ko > 0
such that

kldl(xay) < d2(337y) < dzdl(%y) Ve,ye X

Then show that

(i) (z,) is bounded in (X, d;) if and only if (z,) is bounded in (X, dy)

17
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(ii) (z,) is Cauchy in (X, d;) if and only if (z,) is Cauchy in (X, ds)

(4) Show that the sequence z,, = % converges to 0 in the usual metric space R but is not
convergent in X = (0, 1) with the usual metric.

1
(5) X = C[0, 1]. Show that f,(t) = e~™ converges to 0 w.r.t. the metric d;(f,g) = / |f(x)—

0
g(x)| dz but is not convergent w.r.t. the metric do(f, g) = sup{|f(x) — g(z)| : z € [0,1]}

(6) Let (X,d) be a metric space. If (z,,) and (y,) are sequences in X such that x,, — z and
Yn — y, then prove that the sequence d(x,,y,) — d(z,y) in R w.r.t. the usual metric.

(7) Let X = C[0, 1] be a metric space with the metric d., defined by
doo(f, 9) = sup{|f(t) — g(t)] : t € [0, 1]}
t
Show that the sequence { f,} in X given by f,(t) = % Vt € [0, 1], is a Cauchy sequence
n
in X.
(8) Prove that every Cauchy sequence in a discrete metric space is convergent.

(9) Let (x,) be a Cauchy sequence in a metric space (X, d) and (z,, ) be a subsequence of (x,,).
Show that d(z,,z,, ) — 0 in R w.r.t. the usual metric.

(10) Let (x,) and (y,) be Cauchy sequences in a metric space (X, d). Prove that (d(x,,y,)) is
a Cauchy sequence in R w.r.t. the usual distance.

(11) Let (X,d) be a metric space and d' be a metric on X defined by

d'(z,y) = min{l,d(z,y)}

Show that (z,) is a Cauchy sequence in (X, d) if and only if it is a Cauchy sequence in
(X,d).

(12) Let (X, d;) be a metric space and (z,) be a sequence in X. Show that z,, — z in (X, d;)
if and only if dy(z,,2) — 0 in (R, d) where d is the usual distance in R.

(13) Let (a,) and (b,) be sequences in a metric space (X,d;) and z,, = d(a,,b,).If (a,) is a
Cauchy sequence in (X, d;) and xz,, — 0 in (R, d) (d is the usual distance), then show that
(b,) is a Cauchy sequence.

18
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Topology of Metric Spaces: Practical 3.5
Complete Metric Spaces
Objective questions 3.5

(Revised Syllabus 2018-19)

(1) F, = [n,00) for each n € N. Then N,enFy,
(a) has infinitely many points  (b) is a singleton set.

(c) is the empty set. (d) None of the above .
(2) In R with respect to usual distance N,enF, is a singleton set when
(a) Fp=[-nn] (b) Fp=[nn+1] () Fo=[1—,1 (d) F,=1[0,n]
1 1
3 1——1+—)1i
@ N ( Liy n) i

(a) {1} (b) (0,2) (c) empty (d) None of these.

(a) [-1,1] (b) (=1,1) (c) empty (d) None of these.
) N —%H is
(a) {0} (b) [-1,1] (c¢) [0,1] (d) None of these.

© o]

neN

(a) -O} (b) empty (c) [0,1] (d) None of these.

(7) f:R — R be any function (distance is usual). Then
(a) f is continuous on R if and only if f satisfies intermediate value property.
(b) If f is continuous on R then satisfies intermediate value property.

(c) If f satisfies intermediate value proerty and f~'({r}) is closed V r € Q then f is
continuous on R.
(d) None of the above.

(8) f:[0,1] — [0, 1] is defined by

- x ifq;EQﬂ[O,l]
f(m)—{ 11—z ifze(R\Q)NJ[0,1]

(a) f is continuous on [0, 1] and does not satisfy intermediate value property.
(b) f satisfies intermediate value property but f is not continuous.
(¢) f is continuous only at = 3 and f[0,1] =[0,1] .  (d) None of the above.

(9) Cantor’s Theorem is applicable in the following and N,enF}, is a singleton set
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,1],d usual distance, F, = [—1, 1]

(i
(ii 1), d usual distance, F, = [0, 2]

) X =[-1
) X = (0,

(iii) X =R, d discrete metric, F,, = (0 l)
) X =10,

‘n

(iv 1], d usual distance, F,, = [1 — £, 1]

(a) (i) and (ii) (b) (i) and (iv) (¢) (i), (ii) and (iv) (d) None of these.

(10) Let dy and ds be equivalent metrics on X. Then
(a) (X,d;) is bounded = (X, dy) is bounded.
(b) (X,dy) is complete => (X, dy) is complete.
(¢) (x,) is a Cauchy sequence in (X, d;) = (z,,) is a Cauchy sequence in (X, ds).
(d) None of the above.
(11) Consider the following subspaces of R where distance in R is usual.
(1) Q (17) Z (i) {0} U{L :n € N} (1v) [-1,1) UN. Then
(a) (i) and (iv) are complete .
(b) only (ii) is complete.
(c) (1) (iii) and (iv) are complete.
(d) None of the above.

(12) Suppose || ||1 and || ||2 are equivalent norms on a normed linear space X. Then the
tatement which is not true is

a) (X, || |J1) is complete if and only if (X, || ||2) is complete.

b) (z,) is a Cauchy sequence in (X, | ||; if and only if (x,) is a Cauchy sequence in
X, ).

¢) A is a bounded set in (X, || ||1) if and only if A is bounded in (X, || [|2)-

d) (a), (b) and (c) are not true.

(
(
(
(
(

(13) Consider the following subspaces of (R, d) where d is usual distance :

() 0.00) () 0.1UR3] (L1258 L2231 (iv) Z Then
(a) All the sub spaces are complete . (b) Only (i) is complete.
(c) Only (ii) is complete (d) Only (iii) is not complete.

—

(14) Let (X,d) be a complete metric space. A, B be complete subspaces of X such that
AN B # () then
(a) AU B is a complete subspace of X but AN B is not.
(b) AN B is a complete subspace of X but AU B is not.
(¢c) AU B and AN B are complete subspaces of X.
(d) None of the above.

(15) Consider the following subspaces under usual distance in R.
(i) {v2,v3,v5} (i) {{/p:pis a prime number}  (iii) {zr € R\ Q: = < v/89} Then
(a) (i), (ii), (iii) are not complete.

(b) (i), (ii), (iii) are all complete.
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(c) (i) and (ii) are complete and (iii) is not.
(d) None of the above.

(16) Consider the following subspaces of (R, d), where d is usual distance in R. If N, Z, Q, R\ Q
are subspaces of (R, d). Then
(a) N,Z and Q are complete , R\ Q is not complete.
(b) N,Z,Q and R \ Q are all complete.
(¢) N,Z are complete and Q, R\ Q are not complete.
(d) None of the above.

b
(17) Consider the space C[a,b] with norms || ||; and || ||« where ||f|l1 = / |f(x)] dr and

1 loe = sup{|£(z)[z € [a,]}. Then

() (Cla, 8L, ]| 1) and (Cla, 8], ] ) are complete.

(b) (Cla,b],|| ||;) is complete but (C[a, b], | |le) is not complete.
(c) (Cla,b],|| ||s) is complete but (Cla, b], || ||;) is not complete.
(d) None of the above.

Topology of Metric Spaces: Practical 3.5
Complete Metric Spaces
DESCRIPTIVE QUESTIONS 3.5

(1) Check whether Cantor’s Intersection theorem is applicable for the following examples. Also,
find NyenFy, in each case, where (F},) is a sequence of subsets of R and the distance in R is

usual.
(a) Fn = (0,00) (b) F, = (0,4) (c) Fp=[1—2,2+ 1]

(2) Let f : R — R be a function which satisfies intermediate value property: for a,b € R
with f(a) < A < f(b), there exists ¢ between a and b such that f(c¢) = A. Further if
{z € R: f(x) =r} is closed set for each r € Q, then show that f is continuous on R.

(3) Prove that there is no continuous function f : [0,1] — R satisfying z € Q <= f(z) ¢ Q.

(4) Let f: R — R be a function such that f~'({z}) has exactly two points for each = € R.
Show that f cannot be continuous on R.

(5) Let h be defined on [0, 1] (usual distance) as follows:

0 if x is irrational.
h(z) =14 = if a is rational number®, with(m,n) = 1
1 if x=0

Prove that h is continuous only at irrational points in [0, 1].
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(6) f:[0,1] — [0, 1] is defined by

f(:v):{ x if xeQn]o,1]

l—z if 2zeR\QNIO0,1]
Show that f([0,1]) = [0, 1] whereas f does not satisfy intermediate value property.

(7) Show that the equation cosx = z has at least one solution.
(8) Show that the equation x® — 15z + 1 = 0 has 3 solutions in the interval [—4, 4].

(9) Show that the function f(z) = (x —a)*(x — b)*> + x takes the value (a+b)/2 for some value
of x.

(10) Let f(z) = tanx ; then f(n/4) = 1 and f(37/4) = —1. But there is no ¢ € (7w /4,3n/4)
such that f(c) = 0. Explain why this does not contradicts Intermediate value property.

(11) Prove that if f, g are continuous on [a,b] and f(a) > g(a) and f(b) < g(b) then there is a
point ¢ € (a,b) such that f(c) = g(c).

(12) Use the intermediate value property to show that there is a square whose diagonal has
length between r and 2r and has area equal to half the area of the circle of radius r.

(13) Show that a Cauchy sequence in a metric space (X, d) where, X is a finite set and d is
any distance, is eventually constant. Hence show that (X, d) is complete.

(14) Show that Cauchy sequence in (N,d) (or (Z,d)) where d is usual distance is eventually
constant. Hence show that (N,d) (or (Z,d)) is complete.

(15) Show that a Cauchy sequence in a discrete metric space (X,d) is eventually constant.
Deduce that (X, d) is complete.

(16) Show that (R? d) is a complete metric space where d(z,y) = 2|r; — y1| + 3|xa — yo| for
= (r1,22),y = (y1,92) € R?.

(17) Show that (N, d) is a complete metric space where for m,n € N,

d(m,n) = { "

(18) Let (Xi,d;) and (Xs,ds) be metric spaces and d be a metric on X; x X5 defined by

d((xl,xg), (yl,y2)> = /d3(z1,y1) + d3(z2,y2). Show that (xn> = (xl(n),xg(n)> in X; x
X, converges to (p1, pe) if and only if z1(n) — p; and z3(n) — p,. Hence prove that if
X1, Xy are complete, then X; x X5 is complete.

0 Itm=n

m-+n
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(19) Let (Xi,d;) and (X3, ds) be complete metric spaces. Show that <X1 x Xo, d’) and <X1 X
Xo,d" ) are complete metric spaces where
dl((l"l,iﬁz)a (y1, yz)) = ady(z1,y1) + Bdz (72, y2)
d”((l’l,l'g), (yl,yg)> = \/ad%(xl,yl) + ad3(ra, y2). where a, 8 > 0.

(20) Show that the metric space (C10,1],d;) is not complete where di(f,g) / |f(x

g(x)| du.
Hint: Consider the sequence {f,} in C[0, 1] defined by
0 ifo<t< % %
Faf)={ -4t ity-bers]
1 ifi<t<1

(21) Prove that (0,1) as a subspace of (R,d) (d being usual distance) is not complete but is
complete as a subspace of (R, d;) where d; is discrete metric.

(22) Show that C[0, 1] with || || defined as || f]l = sup{|f(¢)] : t € [0,1]} is complete.
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Topology of Metric Spaces: Practical 3.6
Compact Metric Spaces
Objective Questions 3.6

(Revised Syllabus 2018-19)

(1) Let (X,d) be a metric space and K C X. Then
(a) K is compact. (b) K is compact if K is closed.
(¢) K is compact if K is bounded. (d) K is compact if K is finite.

(2) Let (X,d) be a metric space and (x,) be a sequence in X such that x,, — zg as n — 0.
Then
(a) {z,:n € N} is a compact subset of X
(b) {z, :n € N}U{xp} is a compact subset of X
(¢) {zn : n € N} U {zo} is a compact subset of X only if (z,) is a sequence of distinct
points.
(d) None of the above.

(3) Let {A,} be a family of compact subset of a metric space (X, d) such that N,enA, # 0.
Then
(a) AjU...UAg k € N and N,enA, are compact subsets of X.
(b) AyN...UA k€N and U,enA, are compact subsets of X.
(¢) UnenA, and N,enA,, are compact subsets of X
(d) None of the above.

(4) Which of the following statements is false?
(a) A compact subset of a metric space is closed and bounded.
(b) A closed and bounded subset of a metric space is compact.
(c) A finite subset of a metric space is compact.
(d) A closed subset of a compact set in a metric space is compact.

(5) Which of the following are compact sunsets in the given metric space?
(a) [0,1] in (R, d;) where d; is discrete metric.
(b) Nin (R,d) where d is usual distance.

)
(c) {( (=1) ) 'n € N} U {(0,0)} in (R?,d) where d is Euclidean distance.
n
(d) la,
(6) Consider the following subsets of (R?, d), (d being Euclidean distance)
(i) A={(z,y) eR*: 2 —y* =1}

(i) B={(z,y) eR?:y? =}
(iii) C = {(z,y) € R? : 222 4+ 3y*> = 100} Then

n’
b] N Q where a, b are irrational numbers in (Q, d) where d is usual distance.
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(a) A, B,C are compact.
(b) B,C are compact and A is not compact.
(c) Only A, B are compact.
(d) C is compact.
(7) Let (X,d) be a metric space and x € X. Let B[z,r] denote the closed ball {y € Y :
d(xz,y) < r} Then
(a) Blx,r] is compact. (b) B[z, r] is compact only if r < 1.
(¢) Blz,r]is compact if X =R and d is Euclidean distance.  (d) None of the above.
(8) In the metric space (Z,d), (Z is the set of integers, d is usual distance), K C Z
(a) if and only if K is closed. (b) if and only if K is bounded.
(c) if and only if K has a limit point. (d) if and only if 0 € K.
(9) Which of the following subsets of R? are compact?
(a) {(.ﬁlf,y,.ﬁ(?) cR’: .T2+y2 - 22 = 1} (b) {(l’,y,l’) € R’ :2? _y2 -2t = 1}
(c) {(z,y,z) eR3: 2? + > + 22 =1} (d) None of the above.
(10) Which of the following subsets of R? is not compact? (distance being Euclidean) (a) The
‘ 2 g
ellipse {(z,y) € R?: St = 1}, (a,b>0)

(b) The rectangular hyperbola {(z,y) € R? : xy = 1}
(c) The set {(x,y) € R? : 2% +2y?> < 32}  (d) The set {(z,y) e R? : |x| < 1, |y| < 1}

(11) In the metric space (R, d) (d begin usual distance)
(a) [0,1] U[2,3] is compact. (b) [0,1]
(c) [0,1]U{z € N:x > 3} is compact. (d) [0,1]

(12) Consider the following subsets of R? (distance being Euclidean).

2.3) is compact.
(2, p

U
U [2, 00) is compact.

(i) A={(z,y) e R?: 2> +y* =1} (iii) C ={(z,y) eR*: 2? +y* > 1}
(i) B={(z,y) e R? : 2? + 94> < 1}

(a) A, B,C are all compact. (b) A and B are compact, C' is not compact.
(c) Only B is compact. (d) Only A is compact.

(13) Consider the following subsets of (R", d) (d being Euclidean distance)
A= {(zy,...,2p) €ER" 1y + 29+ ...+ 2, =0}

B = {(ml,...,xn)ER”:fozl}
i=1

n

C= {(xl,...,xn)GR”:Z]a:i\Snforlgign}
i=1

D= {(z1,...,2,) ER": 2y =2, =0}
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(a) A, B,C,D are compact sets. (b) Only B and C' are compact sets.
(¢) Only B,C and D are compact sets. (d) None of the above.

(14) Let A, B be compact subsets of (R,d), (d being usual). Then the following set is not
compact.
(a) A x B in (R? d),d being Euclidean (b) AUB in R
(c) ANBin R (providled ANB #0). (d) A\ BinR (provided A\ B # 0).

(15) Let (x,) be a sequence in [0, 1]. Then, which of the following is not true.
(a) (x,) has a convergent subsequence.
(b) (z,) is bounded but may not be convergent.
(c) (x,) is Cauchy.

(d) (x,) may have subsequences converging to different limits.

(16) Let A be a compact subset of R. Then
(a) A may not be compact. (b) A° may not be compact.
(c) 0A may not be compact. (d) None of the above.

(17) Let A be a compact subset of R. Then which of the following statements is not true
(a) A is complete. (b) A has a limit point in R
(c) Ais closed and bounded. (d) A° and 0A are bounded.

Topology of Metric Spaces: Practical 3.6
Compact Metric Spaces
Descriptive Questions 3.6

1
(1) Using definition, show that K = {— ‘n € N} U {0} is a compact subset of (R, d), where d
n

is usual distance in R. Also find a finite subcover of the open cover {B(, )} en of K.

(2) Let (X, d) be a metric space and (z,,) be a sequence in X converging to zo. Using definition,
show that K = {z,, : n € N} U{zo} is a compact subset of (X, d)

(3) In the following examples, show that the set is not compact b considering the given open
cover of the set:

(i) Cla, b] in the metric space (Cla, b, || [|«); [|f|lcc = sup {|f(¢)] : t € [a, b]}. Show that
the open cover {B(0,n)},en of Cla, b] has no finite subcover. 0 being the constant
zero function).

(ii) (0,1) in the metric space (R, d), d being the usual distance . Show that the open cover
{(£,1)}nen of (0,1) has no finite subcover.

(iii) {— n € N} in the metric space (R, d), d being the usual distance. Show that the open

cover {(5, 2)nen of {+ : 7 € N} has no finite subcover.
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(iv) [0,1] in the metric space (R,d;),d; being the discrete metric. Show that the open
cover {B(z, 3)}sep0,1) has no finite subcover.

(4) Check if the following sets are compact in the given metric space. Justify your answer.
(i) {(z,y) € R?: 22 — y*> = 1} in (R?,d), d being Euclidean metric.
(i) {(z,y) € R?: xy = 1} in (R? d), d being euclidean metric.
(iii) {n+2:

(5) Prove or disprove:

(i

(ii
(iii
(iv

(6) Determine which of the following subsets of (R? d), where d is Euclidean distance is com-
pact. Justify your answer.

n € N} in (R, d), d being usual distance.

A closed and bounded subset of a metric space is compact.
A closed ball Bz, r| in a metric space is compact.
A compact set in a metric space is not open.

Interior and closure of a compact set are compact.

\_/\_/\_/\_/

y) €R? x|+ |yl < 1}

y) € R? : |z| < 1}

WER r2105y<])

y)ERzzaer v =1}, (a,b > 0)

y) € R? : zy = 0}

(7) Let A, B be compact subsets of R, distance being usual. Show that
(i) A+ B is a compact subset of R.

(i) AU B is a compact subset of R.
(iii) A x B is a compact subset of (R? d),d being Euclidean distance.

(8) Show that A = (0, 1] is not a compact subset of (R, d), d being Euclidean distance by

(i) exhibiting a sequence in A which has no convergent sequence.

(ii) exhibiting an infinite subset of A which has no limit point in A.

(9) Show that {(z1,2s,...,2,) € R" : 22 + 222 + - - - + nz? < (n+ 1)?} is a compact subset of
(R™,d), d being Euclidean.

(10) If A, B are disjoint non-empty subsets of (X, d) and A is closed, B is compact then show
that d(A, B) > 0.
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(11) Consider the set A = (—v/2,v/2) N Q in a metric space (Q,d) where d is a usual metric
from R. Is the set A:

(i) closed and bounded in (Q,d)?
(ii) compact in (Q,d)?
(12) Show that the closed unit ball B[0,1] in [? is not compact, where [? := {(x,) in R :

(o]
Z |z, | < 00 i.e. convergent }; Further, for any = = (z,,) € I%; define ||z||, =
n=1

The metric on /2 is the metric corresponding to this norm.
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Topology of Metric Spaces: Practical 3.7
Miscellaneous.

Revised Syllabus 2018-19
UNIT 1

(1) Define a metric space (X,d) and a normed linear space (X, || ||). Show that on a normed
linear space d : X x X — R defined by d(z,y) = || — y|| is a metric.

(2) Define an open ball B(z,r) in a metric space (X, d). Show that an open ball is an open
set.

(3) State and prove Hausdorff property in a metric space (X, d)
(4) Show that in a metric space (X, d)

(i) an arbitrary union of open sets is open.

(ii) a finite intersection of open sets is open.
(5) Give an example to show that an arbitrary intersection of open sets need not be open.

(6) Let (X,d) be a metric space. Show that a subset G of X is open if and only if it is a union
of open balls.

(7) Prove that any nonempty open subset of R (distance being usual) can be written as a finite
or countable union of open mutually disjoint intervals.

(8) Let (X,d) be a metric space and A C X. Show that

(i) A° is an open set and is the larges open set contained in A.
(ii) A is open if and only if A = A°
(9) Let (X,d) be a metric space and A C X. Show that
(i) ACB= A°C B°
(i) ANB)°=A°NDB°
(iii) A°U B° C (AU B)° and the inequality may be strict.

(10) Show that two metrics d and d' on a non-empty set X are equivalent if and only if for
each z € X, any open ball By(x,r) contains an open ball By(z,r,) for some " > 0 and
any open ball B/(z,s) contains an open ball By(z,s") for some s > 0.

(11) Let (X,d) be a metric space and F' be a subset of X. Show that the following statements
are equivalent:
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(i) X \ F' is open.
(ii) F contains all its limit points.

(12) Show that in a metric space (X,d) , the following statements are equivalent for a subset
G of X.

(i) G is open
(ii) G does not contain any limit point of X \ G.

(13) Let (X,d) be a metric space and A C X. Show that

(i) Ais a closed set.
(ii) A is closed if and only if A = A.

(14) Let (X,d) be a metric space and A, B C X. Show that

(iii) AN B C AN B and the inequality may be strict.

(15) Let (X, d) be a metric space and A C X. Show that D(D(A)) C D(A) where D(S) denotes
the set of limit points of S C X. Hence show that D(A) is closed.

(16) Bolzano-Weierstrass Theorem: Consider a metric space (R, d), where d is the usual metric.
Prove that every infinite bounded subset of R must have a limit point in R.

UNIT II

(1) Let (X,d) be a metric space and A C X. Show that p € A if and only if there is a sequence
of points in A converging to p.

(2) Let (X,d) be a metric space and A be a subset of X. Show that p is a limit point of A if
and only if there is a sequence of distinct points converging to p.

(3) Prove: Every bounded sequence in R with usual metric, has a convergent subsequence.

(4) Show that a sequence (xy) in (R",d) (where d is Euclidean distance) converge to a point
p = (p1,p2,---,pn) € R"if and only if xi — p;, for 1 < n; in R with respect to the usual
distance, where z, = (z},z%,--- ,z%). Hence deduce that (R",d) is a separable metric
space.

(5) Let (X,d) be a metric space and Y be a non-empty subset of X. Show that

(i) A subset G of Y is open in the subspace (Y, d) if and only of G = V NY where V is
an open set in (X, d)
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(ii) A subset F' of Y is closed in the subspace (Y,d) if and only if F = HNY where H is
closed set in (X, d).

(6) Let (X, d) be a metric space. Show that a convergent sequence in (X, d) is Cauchy. Give
an example to show that the converse is not true. further show that a Cauchy sequence
(x,) in (X, d) is convergent if and only if it has a convergent subsequence.

(7) Show that the metric spaces (X, d;) and (X, dy) are equivalent if and only if (z,,) converges
to pin (X, d;) if and only if (z,) converges to p in (X, ds)

(8) Let (X,d) be a metric space . Show that a subset A of X is dense in X if and only if
G N A # () for each non-empty open subset G of X.

(9) Let (X, d) be a metric space. If A C X is dense in X and B is a non-empty open subset of
X then ANB =B.

(10) Prove that the metric space (R, d) is complete where d is the usual distance.
(11) Prove that the metric space (R?,d) is complete where d is the Euclidean distance.

(12) Prove that the metric space (C,d) is complete with respect to the distance given by
d(Zl, ZQ) = |Zl — 22|

(13) Show that the metric space (Cfa, bl, d) is complete where d(f, g) = sup{|f(z) —g(x)| : = €
[a, b]}.

(14) Let (X,d) be a metric space and (Y, dy) be a subspace of (X,d). If (Y,dy) is complete
then show that Y is closed.

(15) Let (X,d) be a complete metric space. If Y is a closed subspace of X then show that the
subspace (Y, dy) is complete.

(16) State and prove Cantor’s intersection theorem in a metric space (X, d).

(17) If in a metric space (X, d), for every decreasing sequence {F,} of non-empty closed sets
with d(F,) — 0, NuenF), is a singleton set then prove that (X, d) is complete.

(18) Nested Interval Theorem (As a particular case of Cantor’s intersection theorem): Let
Jn = [an,b,] be a sequence of intervals in R such that J,.; C J,Vn € N. Then show
that ﬂ Jy # 0. If further we assume that lim ¢(.J,,) = 0 then show that ﬂ J,, contains

n—aoo

neN neN
precisely one point.

As a consequence of Nested Interval Theorem:

(19) Show that set R of real numbers is uncountable.

(20) Density of rationals: Let < y be real numbers. Show that there exists a rational number
r € Q such that x <r < y.
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(21) Intermediate Value Theorem: Let f : [a,b] — R be continuous. Assume that f(a) and
f(b) are of different signs, say, f(a) < 0 and f(b) > 0. Show that there exists ¢ € (a,b)
such that f(c) = 0.

UNIT III

(1) Show that a compact subset of a metric space is closed and bounded. Give an example to
show that a closed and bounded subset of a metric space is not compact.

(2) Prove: A closed subset of a compact metric space is compact.

(3) Let (X,d) be a metric space and K is a compact subset of X. If F' is a closed subset of X
then show that F' N K is compact.

(4) Suppose (X, d) is a metric space and C is a non-empty collection of compact subsets of X
then

(i) () K is a compact subset of X.
Kec

(i) If C is finite then |J K is a compact subset of X.
KeC

(5) Prove that a set A in a discrete metric space (X, d) is compact if and only if A is a finite
set.

(6) Consider a metric space (R, d) where d is usual metric, ) # A C R. Prove that A is closed
and bounded if and only if A satisfy Hein-Borel property. (A set is said to satisfy Hein-
Borel property if every open conver of that set admits finite subcover).

Remark: The above result can be generalised to (R™, d) as follows(without proof):
A subset A of (R",d) is closed and bounded if and only if it satisfy Hein-Borel property.
Hence, A C R" is compact if and only if it is closed and bounded.

(7) Consider a metric space (R, d) where d is usual metric, ) # A C R. Prove that A is closed
and bounded if and only if A is sequentially compact. (A set A is said to be sequentially
compact if every sequence in A has a covergent subsequence).

(8) Consider a metric space (R,d) where d is usual metric, ) # A C R. Prove that A is
sequentially compact if and only if A satisfy Bolzano-Weierstrass property. (A set A is said
to satisfy Bolzano-Weierstrass property if every non-empty, infinite subset of A has a limit
point in A).
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Numerical Methods 1
Secant method, Regula-Falsi method.

Numerical Methods Objective Questions 1

(1) If f(z) is a polynomial function with f(4) =0, f'(4) = 7, f"(4) = 10, f"”(4) = 30 and all other
higher derivatives of f(z) at x = 4 are zero. Then f(x) is
(a) ba® — 55x? 4+ 207z — 268
(b) z* — 5a? 4+ 20z — 26
(¢) 5 — 1002 4+ 1552 — 299
d) None of the above.

3

(
(2) The interval in which the smallest positive root of the equation z* —x — 4 = 0 lies is

(a) (0,1) (b) (1,2) (c) (0.5,1.5) (d) (2,3)

(3) The negative root of the smallest magnitude of the equation 3z% + 10z* + 10x + 7 = 0 lies in the
interval

(a) (=1,0) (b) (=3,-2) (¢) (=2,-1) (d) (—4,-3)

(4) Suppose p must approximate 150 with relative error at most 1073. Then the largest interval in
which p must lie is
(a) [149.85,150.15]
(b) [149.8,150.2]
(c) [149.5,150.5]
)

(d) None of the above.
(5) Errors present in the statement of a problem before its solution are called

(a) truncation error (b) rounding error.

(c) inherent error (d) relative error.

(6) Errors caused by using approximate results or on replacing an infinite process by a finite one is

(a) truncation error (b) rounding error.
(c) inherent error (d) relative error.
3_6
(7) The absolute error of 5 4 574 using 3 digit rounding arithmetic is
e—>.
(a) 0.0788 (b) 0.154 (c) 0.55 (d) None of these

(8) Which of the following statement is true:

a) Rate of convergence of Regular-falsi method is of second order.

(
(b) Rate of convergence of Secant method is of second order.

)
)

(c) Rate of convergence of Secant method is of order @
)

(d) None of the above.



(9) If xx_1 and x are k — 1-th and k-th approximations to the root of f(x) = 0 by secant method,
then the next approximation x,; is

@) = e = Pl
(b) = < (xi’;:;’zle) only if f(xx)f(zr1) <0
e
@) oy T@)T = @

f(xg) = fop-1)
(10) Consider the equation cosx — ze® = 0. Taking z¢g = 0, x; = 1, then the approximations xs, x3, 4
by Secant method are
(a) w9 = 0.3147, x3 = 0.4467, x4 = 0.5317.
(b) zo = 0.3147, x3 = 0.4467, x4, = 0.5103.
(¢) zg =0.3147, x3 = 0.4467, x4 = 0.4523
(d) None of the above.

(11) The secant method of finding roots of non-linear equations falls under the category of

(a) bracketing method (b) graphical method
(c) open method (d) random method.
(12) The secant method formula, for finding the square root of a real number R from the equation
??—R=0is
Tiwio + R TiTi_1
(a) ———— (b)————
Ti + Ti—1 Ti+ Ti1
S dq)=
© 3{n+ 2} @) 2t
(13) The next iterative value of the root x? — 4 = 0 using secant method, if the initial guesses are 3
and 4 is
(a) 2.2857 (b) 2.5000
(c) 5.5000 (d) 5.7143

(14) The root of the equation f(z) = 0 is found by secant method.Given one of the initial estimates is
xo = 3, f(3) = 5 and the angle of the secant line makes with x — axis is 57°, the next estimate of
the root x; is

(a) —3.2470 (b) —0.24704
(c) 3.247 (d) 6.2470

(15) For finding the root of sinz = 0 by the secant method, the following choices of initial guesses
would not be appropriate

T ™ ™ 3
(a) Z and 5 (b) Z and I
—T T T T
(c) > and B (d) g and 5



(16) Let f(z) = 2* — 6. With py = 3 and p; = 2, the value of p3 by Regula Falsi method is

(a) 2.44444
(b) 2.45454
() 2.44949
(d) None of the above.
(17) A solution to  — cosz = 0 in the interval [0,7/2] that is accurate to within 107" using Regula
Falsi method is
(a) 0.7390835
(b) 0.6110155
)

(c) 1.4330021
d) None of the above.

(
(18) Order of convergence of Regula Falsi method is

(a) 1.321 (b) 1.618
(c) 2.231 (d) 2.312
(19) In Regula Falsi method, the first approximation is given by
af(b) —bf(a) bf(b) —af(a)
= TS by = 2 — 4G
W= ) fa) =) = 7 a)
bf(a) —af(b) af(a) —bf(b)
A AN, d) g = =2 70
0 == 1) =) = )
(20) For finding a real root of a equation using Regula Falsi method, the curve y = f(z) is replaced by
(a) Parabola (b) Circle
(c) Straight line (d) Tangent to a curve

) In Regula Falsi method, if a root of f(z) = 0 lies between x; and z, then the approximate value

(21
of the desired root is 1 + h
(a (21— x2) |1 b) (22 — 21)|y1]
\y1!+|y2! ‘?Jl’+’y2|
(21 — m2)|ya| Q) (22 — 21)|yo]
[y1] + |y2] y1| + |yal

(22) While finding the root of an equation by method of False position the number of iterations can
be reduced if we start with

(b) smaller interval

(a) large interval
(d) None of the above

(¢) random interval

) If ¢(a) and ¢(b) are of opposite signs and the real roots of the equation ¢(x) = 0 is found by False

(23
position method, then first approximation x; of the root is
ag(b) + be(a) ag' (b) + bg'(a)
R ) =+ o
abg(a)¢(b) ag(b) — bo(a)
) 5) — 000 @ 50— ot

3



Numerical Methods Descriptive Questions 1

(1) For the equations
(i) 2'—2—-10=0
(ii)) z—e™*=0
(iii) 2? =322 +2—-10=0
(iv) e * =sinx.
)

(v

Determine the initial approximations to find the smallest positive root. Find the root correct to
five decimal places by

x:——l—smx

(a) Secant Method.
(b) Regula Falsi Method

(2) Let f(x) = e *(22% + 5z + 2) + 1. Taking zo = —1 and z; = 2.2, find a root correct to 4 decimal
places using Secant method.

(3) A real root of the equation x* — 5z + 1 = 0 lies in (0, 1). Perform three iterations of the Secant
method. Take each iteration correct to six places of decimals.

(4) (i) Solve 5sin*z — 8cos® x = 0 for the root in the interval (0.5,1.5) by Regula Falsi method.

(ii) Find the solution to (x —2)*> —Inz = 0, in the interval [1,2] accurate to within 10™* using
Secant method.

(5) Find a root of x cos(=%5) = 0 using Regula Falsi method correct to 3 decimal places.

(6) Find a root of 2% = 672;_1 using Regula Falsi method correct to 3 decimal places.

7

Find a root of e ~! + 10 sin(2z) — 5 using Regula Falsi method correct to 3 decimal places.

)

(7)

(8) Find a root of e® — 322 = 0 using Regula Falsi method correct to 3 decimal places.

(9) Find a root of tan(x) — x — 1 = 0 using Regula Falsi method correct to 3 decimal places.
)

(10) Find a root of sin(2z) — e~ = 0 using Regula Falsi method correct to 4 decimal places.



Numerical Methods 2
Fixed-point Iteration method,Newton-Raphson method

Numerical Methods Objective Questions 2

(1) The iterative method that can be used to solve the quadratic equation 2% + z — 3 =0 is

All of the above.

)

b) $n+1 = 2wt
)
) None of the above.

_ 1 a
Tnt1 = 3 <$n+a)~

1
(3) The equation cos <%> +0.1482—0.9062 = 0 has roots of smallest magnitude in the intervals

(a) (=2,—1) and (1,2) (b) (—1,0) and (0,1)
(¢) (=%, —=3) and (37, 7F) (d) None of the above

(4) Applying Newton Raphson method to find 1/18, taking initial approximation xzy = 4 and rounding
off to four decimal places, the next iterations are

(a) xo =4.5123 and x5 = 4.5121

(b) @y = 4.2426 and x5 = 4.2426

(c) x9 =4.5813 and z3 = 4.5813
)

(d) 2o =4.1419 and x3 = 4.1419
(5) Newton-Raphson method applied to the equation f(x) = ¢, where ¢ is a constant and

(@) COS T when |z| <1
"~ | cosz+ (2 —1)? when |z| > 1

gives x, = (—1)" for each n, where initial approximation is xy = 1. Then ¢ equals

(a) sinl —2cos1 (b) cos1 + 2sin1
(c) 2sinl — cos 1 (d) cos1 —2sin1

(6) Let f(z) =1— 2* and o = 0. Then by Newton Raphson method the value of z; is
(a) 0.12928  (b) 0.17294  (c) 0.12478  (d) undefined

(7) Newton-Raphson method is applied to find % where NN is a positive integer. For the sequence of
iterates z,, to converge, the initial approximation xq should

1



(a) lie between 0 and &
(b

lie between 0 and

Z[e 2zl

)

)
(c) lie between 0 and
(d)

lie between % and N

(8) Let f(z) =x — 2sinz. Then
(a) with the initial approximation =y = 1.1, the sequence {x,} diverges and with initial approx-
imation 1.5, the sequence {z,} converges.

(b) with the initial approximation zo = 1.1, the sequence {z,} converges and with initial ap-
proximation 1.5, the sequence {x,} diverges.

(c) with the initial approximation zq = 1.1, and 1.5, the sequence {z,} converges.
(d) with the initial approximation zq = 1.1, and 1.5, the sequence {x,} diverges.
(9) Applying Newton Raphson method with o = 0.8 to the equation 2 — 22 — x + 1 = 0 which has

exact root 1, then the rate of convergence for the first three root is
(a) of first order.

(b) of second order.
(c) of third order. (d) of order @

(10) Suppose the Newton Raphson method produces a sequence that converges linearly to the root
x = « of order p > 1, then the Newton Raphson iteration formula

pf(zy)

Lhtl = Tk —
’ f'(r)
will produce a sequence {z;} that converges

a) quadratically to p

(c

(a)

(b) linearly to p
) cubically to p
)

d) None of the above.

(
(11) Newton-Raphson method has rate of convergence of order
(a) 1 (b) 2
(c) 3 (d) None of the above.

(12) Iteration method had rate of convergence of order
(a) 1

(b) 2
(c) 3

(d) None of the above.

(13) To find the smallest root of the equation f(z) = 2* — 2 — 1 = 0 by iteration method, f(x) = 0
should be rewritten as

r=a—1 (b) z = (z+1)3
<C) r= Iéfl (d) T = Ix_?

(14) Newton-Raphson converges if



<1

’f f(w)

<1 ®) |45

<1 (d) None of the above

@)f (=)
(c) ’[”( g

(15) Which one of the following is not correct

(a) Newton-Raphson method has quadratic rate of convergence.

(b) To solve f(x) = 0 by iteration method the given equation is written in the form = = ¢(z)
where |¢'(z)| < 1 is an interval containing root.

(¢) The method of Regular-Falsi converges faster than the secant method.
(d) None of these.

Numerical Methods Descriptive Questions 2

(1) Obtain polynomial approximation to f(z) = e* (around = = 0) using Taylor series expansion.Find
the number of terms in the approximation so that truncation error is less than 1076 for 0 < 2 < 1

(2) Solve the following equations using iteration method

(1) 22 —42+2=0
(2) ¥ +22+1=0

(3) Find a real root of the equation 2* = 1 — 2% in the interval [0, 1] with an accuracy of 10~*using
iteration method.

(4) Find a real root correct to three decimal places of the equation 2x —3 = cos(z) lying in the interval
3 m

[5, 5] using iteration method.

dz;—azxt
: S+ s of second order.Process for calculation of the

cube root of a.Use the scheme to find 43 to four decimal places.

(5) Show that the iterative scheme z;,1 =

(6) Use the method of iteration to find a positive root of the equation xe®* = 1 given that root lies in

[0, 1]

(7) Use iterative method to find a real root of the equation sinx = 10(z — 1) correct to three decimal
places.

(8) Use iterative method to find a real root of the equation 2z = cosx + 3 correct to three decimal
places.

(9) Use iterative method to find a real root of the equation 2z — log;,x + 7 correct to four decimal
places.

(10) Use iterative method to find a real root of the equation sin?z = 22 — 1 correct to four decimal
places.

(11) For the equations

(i) 2*—2—-10=0

(ii)) z—e™*=0

(iii) 2* =322 +2—-10=0
(iv) e ® =sinx.

(v) =3 +sinz.



(19)

(vi) wsinz 4+ cosz =0

Determine the initial approximations to find the smallest positive root. Find the root correct to
five decimal places by Newton-Raphson Method

Perform four iterations of the Newton Raphson method to obtain approximate value of (17)Y/3
correct to six decimal places taking initial approximation as xy = 2.

The equations 2¢™* = x+r2 + ILH has two roots greater than —1. Calculate the roots correct to

five decimal places using Newton-Raphson Method.
Find all roots of cosz — 22 — 2 = 0 correct to five decimal places by Newton-Raphson method.

Apply the Newton-Raphson method with 2y = 0.8 to the equation 2® — 22 — 2 +1 = 0 and verify

that the convergence is of first order. Apply Newton-Raphson method z, 1 =z, — m }c,((“;:)) where

m = the multiplicity of root (= 2) and verify that the convergence is of order 2.

Show that the equation f(z) = 1 — ze'™® has a double root at x = 1. Obtain the root by
Newton-Raphson method taking xy = 0.

Find the negative root of the equation f(x) = cos (@) + 0.148z — 0.9062 = 0. Correct to 4
decimals by Newton-Raphson method taking xq = —0.5.

The equation f(z) = 0 has a simple root in the interval (1,2). The function f(x) is such that
|f'(x)] > 4 and |f"(z)| <3V x € (1,2). Assuming Newton Raphson method to converge for all
initial approximations in (1,2). Find the maximum number of iterations required to obtain root
correct to 6 decimal places after rounding.

Using Newton-Raphson method compute the point of intersection of the curve y = x® and straight
line y = 8x 4 4 near the point x = 3 correct to 2 decimal places.



Numerical Analysis 3

lteration methods based on second degree equation - Muller

6]

2)

3)

“)

®)

(6)

(7

®)

Method, Chebyshev Method, Multipoint iteration Methods

Numerical Methods Objective Questions 3

For the equation x’-5x+1=0 taking approximations xo=0, x;=0.5,x,=1 Muller's method
gives next approximation Xx;as

(a)0.234516 (b)0.191857 (c) 0.282314 (d)0.120416

In Muller's method the equation f(x)=0 is approximated by

(a) a cubic polynomial passing through three points lying on f(x)=0
(b) a quadratic polynomial passing through three points lying on f(x)=0.
(c) alinear equation passing through the given points.
(d) None of the above.
Using Chebyshev's, to find the root of f(x)= x’-5x+1=0 taking initial approximation

x0=0.5, the next approximation x, is
(a)0.723145 (b)0.213414 ()0.631423 (d)0.123160

Chebyshev method and Muller's method require for each iteration

(a) three function evaluations for both.
(b) two function evaluations for both.

(c¢) One function evaluation for Muller's method and three function evaluations
for Chebyshev's method.

(d) None of the above.
The equation f(x) =cosx—x"—x=0 has
(a) two real roots , one in the interval (—1,0) and the other in the

interval (0,1) .
(b) two real roots, one in the interval (—2,—1) and the other in the interval (0,1).

(c) three real roots, one in the interval (-=2,—1), one in the interval (0,1) and the

: . 3
other in the interval (771, 21)

(d) None of the above.

Using multipoint method to find the root of x* —5x+ 1 =0, taking initial
approximation xo = 0:5, we get next approximation x; as

(a) 0.354281 (b) 0.204732 (c) 0.532412

The rate of convergence of Muller method is
(a)1.5 (b)1.84 (c)2 (d)3

Using Chebyshev method to find an approximate value of 1 /7 , taking initial

1



approximation as x, = 0.1, the next approximation xis

(a) 0.092 (b)0.112 (c)0.139 (d)0.214

(9) Muller's method to find a root a off(x)=0, the initial approximations
Xg, X1, Xpsatisfy

(a) la — x;<0.5, fori = 0,1,2.
(b) la — x;1<0.1 , fori = 0,1,2.
(c) For all initial approximations.
(d) None of the above.

(10) Consider the equation f(x) = x3 — 3x — 5 = 0. Taking approximations xq = 1,%; =
2,x, = 3, the next approximation between 2 and 3 obtained by Muller method is

(a) 2.9 (b) 2.09 (¢) 2.26 (d) 2.84
(11) Muller method

(a)will converge to only real roots from a real initial approximation.

(b)will converge to both real and complex roots from a real initial approximation.
(c)will converge to only complex roots from a real initial approximation.
(d)None of the above.

(12) Muller method

(a) converges cubically for both simple root and multiple root.
(b) converges quadratically for both simple root and multiple root.

(c) converges cubically for a simple root but the convergence becomes linear at a
multiple root.

(d) converges quadratically for a simple root but the convergence be-comes linear
at a multiple root.

Numerical Methods Descriptive Questions 3

(1)  Perform five iterations of Muller method to find an approximate root of the equation
f(x) = cosx — xe* = 0. Use initial approximations x, = —1,x; = 0,x, = 1.

(2)  Perform two iterations with the Muller method for the following equations:
x> —=(1/2)=0,xg=0,x; = 1,x, = 1/2.
() iIn—x+3=0,xy= X = %,xz =1.
(3) Use the Chebyshev method with f(x) =x? —a and g(x) =1—a/x? to obtain the
iteration methods converging to v/a in the form

2
1 a 1 a
Xiea1 = 5 (X +x—k)—a(xk—g)
1 X2 3x, X2
Xer1 = 5% B =)+ (1 —=5)?

Perform two iterations with these methods to find the value of Va



“)

®)

(6)

(7

®)

Perform two iterations with the (a) Chebyshev method, (b) Multipoint iteration method
for the following equations:

(i) x’=5x+1=0; x0=0.5,

(i1) cos x — xe*=0; xo=1.

(iii) x*—x—10=0; where the root lies in the interval(1,2).

Perform two iterations with the Chebyshev method to find an approximate value of 1/7.
Take the initial approximation as xo=0.1.

Use Muller method to find two iterations of the function

() f(x) = (x*-2)sin(x*-2); xo=1.2, x; = 1.3, x, = 1.4.

(i) fx) = x® = 7x* + 15x* =9, xo= 1.5, x, = 1.6, x, = 1.7.
Round off each iteration and final answer to 4 places of decimals.

The multiple root ¢ of multiplicity two to the equation

f(x) = 9x* +30x° + 34x” + 30x + 25 =0
is to be determined. Take xo = —1.4 and approximations correct to 4 places of decimals
using multipoint method. Verify that the rate of convergence has order 3.

Perform four iterations of finding a root of the polynomial p(x) = X +3x5+5x -7
starting with the points x0 = 1; x1 = 2; x3 = 3 using Muller method.



Numerical Analysis 4
Bierge Vieta method &Bairstow’s method

Numerical Methods Objective Questions 4

(1) The polynomial f(x) = 4x° + 10x* — 5x3 + 13x2 — 6x + 2 = 0 has
(a) has maximum of three positive and two negative roots.
(b) has maximum of four positive and one negative root.
(c) has maximum of two positive and three negative roots.
(d) None of the above.
(2) The number of real roots of the equation 4x* + 2x? — 1 = 0 in the interval

(-1,1) is
@4 (b2 ©) 0 @1

(3) The number of real roots between 0 and 3 of p(x) = x* — 4x3 + 3x2 +
4x — 4 = 0 using sturm sequence is

(a) 4 (b) 2 ©0 (d) 1
(4) The number of real and complex roots of the polynomial
fx)=x*—4x3+3x2+4x—4=0is
(a)4 and O (b) 2 and 2
(c)0and 4 (d) None of these
(5) Then multiplicity of the root x = 1 of the polynomial equation
fx)=x5—2x*+4x3—x2—-7x+5=0 is
(@0 (b) 1 (c)2 (d3

(6) The sturm sequence of the polynomial equation f(x) = x3—=5x+1=0
is

(a) x3—5x+1,3x%—5,10x — 3,473

(b) 3x%—5,10x — 3,473

(¢) —x3+5x—1,-3x2+5,—10x + 3,473
(d) None of the above

(7) The sturm sequence of the polynomial equation f(x) = x> —5x+1 =10
(a)x® —5x + 1,3x% — 5,10x — 3,473,
(b) 3x2 —5,10x — 3,473
(¢)—x3+5x—1,—-3x%>+5,—10x + 3,473
(d)None of the above

(7) For the polynomial p5(x) = x3 + x? — x + 2, taking initial approximation
po = —0.9, qo, = 0.9, the first iteration by Bairstow's method is

(a) p, = —0.9124,q, = 0.9231.



(b) p1
© p1
(d) ps

(9) Consider the polynomialf(x) = x> — 3x + 1. The first iteration p, for the
root in (0,1) by Birge Vista method taking initial approximation p, = 0 is
(a) p, = 0.5000 (b)p; = 0.3333
(b) (¢) p; = 0.2000 (d)p; = 0.1121

—1.0047,q, = 1.0031.
—1.2312,q, = 1.2516.
—1.5213,q, = 1.6123.

(10) Taking initial approximation as p, = 0.5, g, = 0.5, the quadratic factor of
x*+ x3 + 2x% + x + 1 = 0 by Bairstow's method is

@x?+x+1 bx?—x+1
(©x?+2x+1 (d)None of these
(11) Let f(x) = 1 — x%andx, = 0.Then by Newton Raphson method the value
of xis

(@) by =a? b, =az—2a,a

(b) by =af —2aqa,,b, = a5 — 2a,a3 + 2a4a,
() by = a? —agaz, b, = a5 —2a,a, + 2aya;
(d) b, =a? b, = a3 —4a,a,

(12)The method which is used to find complex roots of a polynomial is

(a) Graffe's root square method.
(b) Bairstow method.

(¢) Muller method.

(d) All of the above.

Numerical Methods Descriptive Questions 4

(1) (a) Using synthetic division, find the value of p(2),p'(2), p"(2) for
the polynomials:
Ox*—x3+x—-5=0
()x°> +x*—3x2+2x—-7=0

(b) Find multiplicity of root of
fxX)=x"—2x*+4x3—x2-7x+5=0
using Sturm's sequence, obtain the exact number of the real and the
complex roots of the polynomials (In case of multiple roots, count the
multiplicity)

@D x3+x+1=0
(i) 2x3 —x?>+2x—1=0
(i) 4x* + 4x3+3x2+4x—4=0

(2) Use the Birge-Vieta method to find a real root correct to three decimal
places of the following equations:

(i) x3—11x2+35x—22=0,p, = 0.5.



(i) x>—x+1=0,p, =—1.5.
(i) x6—x*—x3—-1=0,p,=15

(3) Find all real roots of the equation x> = 3x — 1 correct to two decimal
places using Birge Vieta method.

(4) Find correct to four significant digits, the roots of the polynomial equation
x* —6.789x3 + 2.995x% — 0.04369x + 0.00008925 = 0:

If the largest root is determined first and polynomial is deflated, show that
the zeros of the deflated polynomial equation differ from those of the
original polynomial and find their exact values.

(5) It is given that f(x) = 9x* + 12x3 + 13x2 + 12x + 4 = 0 has a double
root near 0.5. Perform iterations to find this root by Birge-Vieta method.

(6) Given two polynomials p(x) = x® — 4.8x* + 3.3x% — 0.05 and
Q(x) =x%—(4.8—h)x*+ (3.3 + h)x?—(0.05—h)

(1) Calculate all the roots of P .

(i1) when h << 1, the roots of Q are close to those of P . Estimate
the difference between the smallest positive root of P and the
corresponding root of Q.

(7) Use Bairstow's method to find the roots of z* — 8z3 + 2422 + 336z +
120 = 0 with the trial factor z2 — (g)z +§ = 0 in the first instance.

(8) Show that if x2 + x + 1 is an approximate quadratic factor of the poly-
nomial f(x) = x3 — x — 1, then one iteration of Bairstow's process gives
the improved approximation x? + 1.333x +.6667By continuing the

process further, estimate the complex zeros of the polynomial
equationf (x) = 0.

(9) Using Birstow's method, obtain the quadratic factor of the following
equations performing two iterations.

(i) x*—3x3+20x%+ 44x + 54 = 0 with (p,q) = (2,2)

(i) x* — %%+ 6x% + 5x + 10 = 0 with (p, q) = (1.14,1.42)
(i) x3 —3.7x2 + 6.25x — 4.069 = 0 with (p,q) = (=2,5)
(iv) x*—5x3+ 10x? — 10x + 4 = 0 with (p, q) = (0.5,—0.5)

(10) Use initial approximation to p, = 0.5,q, = 0.5 to find a quadratic factor
of the form x2 + px + q of the polynomial equation x* + x3 + 2x2 +
x + 1 = 0 using Bairstow method and hence find all its roots.

(11) Use initial approximation py = 2,q, = 2 to find a quadratic factor of the
form x2 + px + q of the polynomial equation x* — 3x3 + 20x? + 44x +
54 = 0 using Bairstow method and hence find all its roots.
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Numerical Analysis 5
Direct Methods to solve
System of Equations

Gauss Elimination Method, Triangularization Method, Cholesky’s
Method.
Numerical Analysis Objective Questions 5

Consider the system of equations AX = b,where

2 00 X1 4
A=[3 1 0[.X=[x,| b=|7
52 4 X3 24

The solution is given by
(a)x1=2,x2=0,x3=5, (b)x1=2,x2=1,x3=3
(¢) x;, =2, x, = —1, x3 =4, (d) None of the above.

The system of equation AX=b,where

21 3 x|
A=0 0 2|,X=[x,] b=|7
005 X3 24

(a) has one solution x; = 2,x, = 0,x3 = 1.5 ,(b) is not solvable, (c) has infinitely
many solutions, (d) None of the above.

The goal of forward elimination steps in the Gauss elimination method is to reduce
the coefficient matrix to a (an) matrix.
(a) diagonal, (b) identity, (c) lower triangular, (d) upper triangular

Division by zero during forward elimination steps in Gaussian elimination of the set
of equations AX=b implies the coefficient matrix A

(a) is invertible, (b) is nonsingular, (c) may be singular or nonsingular, (d) is
singular

Partial pivoting involve searching for

(a) the smallest coefficient of an unknown quantity amongst a system of equations.

(b) an average of smallest and largest coefficient of an unknown quantity amongst a
system of equations.

(c) the largest coefficient of an unknown quantity amongst a system of equations.

(d) None of above.
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Pivoting equation of the following system is
(1) —3x4+2y+z=1
(ii) —2y+6z=0
(iii) 12y+z= 37
(a) Equation (i), (b) Equation (ii), (c) Equation (iii), (d) None of the equations.

A square matrix is said to be triangular if

(a) the elements above or below the main diagonal are zero.
(b) the elements above and below the main diagonal are zero.
(c) the elements above and below the main diagonal are one.
(d) the elements above and below the main diagonal are one.

A square matrix A is triangular if

(a) a;=0 for 1> j and b;=0 for j > 1,
(b) a;=0 for 1 < j and b;=0 for j <1,
(c) a;=0 for 1> jand b;=0 for j <1,
(d) a;;=0 for 1 < j and b;=0 for j > 1,

The LU decomposition method is computationally more efficient than Naive Gauss
elimination for solving
(a) a single set of simultaneous linear equations.
(b) multiple sets of simultaneous linear equations with different coefficient matrices
and the same right hand side vectors.
(c) multiple sets of simultaneous linear equations with the same coefficient matrix
and different right hand side vectors.
(d) less than ten simultaneous linear equations.

The uy, and uy3 of upper triangular matrix U in the LU decomposition of the matrix
given below
2 31 1 0 Offuyy upp ug
1 2 3=ty 1 0 0 uy usy
31 2| |3 £3 10 0 us;
is
(a) 2, 5/2, (b) 1/2, 2/5, (c) 5/2,1/2 (d) 1/2, 5/2

The lower triangular matrix L in the LU decomposition of the matrix given below
25 5 4 I 0 Ofu, u, u;

10 8 16|=[f, 1 0|0 uy, uy,
8 12 22| |¢y, ¢, 1[0 0 u,

is



1 0 0 25 5 4

() |040000 1 0, (b)| 0 6 14.400
1032000 1.7333 1 0 0 —4.2400
(1 0 0 1 0 0

(© |10 1 0], (d)|0.40000 1 0
18 12 0 0.32000 1.5000 1

(12) The upper triangular matrix U in the LU decomposition of the matrix given below
25 5 4 I 0 Ofu, u, ug,

0 8 16|=|4,, 1 00 wu, uy
0 12 22 by ly 1110 0wy
is
1 0 0 25 5 4
(a) | 0.40000 1 0 (b)| 0 6 14.400
10.32000 1.7333 1 0 0 —4.2400
(25 5 4 1 0.2000 0.16000
©] 0 8 16 (d]0 1 2.4000
10 0 -2 0 0 —4.240

(13) Cholesky method to solve the system of equation AX = b is applicable for a
symmetric matrix A

(a) if det (A) > 0, (b) if A is non singular,
(c) if A is positive definite, (d)if A = 0.
(14) The value of a for which
2 2 a
A=(3 8 5
1 6 10

1s positive definite is
(a)a < 25 (b)a > -5 (c)a>5 (d)None of these.

Numerical Methods Descriptive Questions 5

(1)  Solve the following system of equations by Gauss Elimination method:

(a) x1 + 2x2 + .X3 = 3 (b) le + xZ + 4.X3 = 12
le + 3x2 + ?).X3 = 10 le - 3x2 + Z.X3 = 20
3x1 - xZ + Z.X3 = 13 4x1 + 11x2 - .X3 = 33
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Find the solution of the following system by pivot technique of Gauss Elimination
method:

A [0:0003120 0006032 [x _ [0.003328
| 0.5000 08942 | 77 77109471

X2

Solve the following system of equations by Gauss Elimination method by selecting
pivot equation:

(a) X, +3x3=9 (b) 2x, +2x, +2x3 =4
2%, +2x5,—x3 =28 —Xq + 2x5 — 3x3 = 32
—xq + 5x; =8 3x1 — 4x3 =17

(c) 4x,+ 10x, — 2x3 =—20 (d) x4 —x,+2x3=3.8
—x1 — 15x, + 3x3 = 30 4x; + 3x, —x3 = =5.7

25x, — 5x3 = =50 Sx1+x,+3x3=2.8

(€ 5x;+ 10x, — 2x5 = —0.30
2x1 _xZ +.X3 = 1.91
3x1 + 4x2 = 1.16

Solve the following system of equations by method of Triangularization:

(a)le+xZ+3X3:13 (b) x1+x2—x3=2
x1 + 5x2 + .X3 = 14’ 2x1 + 3xZ+5.X3 = _3
3x1+x2+4x3=17 3x1+2x2—3x3=6
© (1/3) %1 — (1/2)x, + (1/4)x; = 1 (d) 1.2, — 2.3x, + 3.2x5 = 2.72
(1/2) X1 + (1/4).7(,'2 - (1/3)X3 =1 2.3x1 + 3.2xZ+1.2.X3 = 0.39
(1/6) X1 — (1/4).7(,'2 + (1/12)X3 =0 3.2x1 - 1.2x2 - 2.3x3 = 1.60
(e) le + 4x2 + ?).X3 = 9 (f) x1 + xZ + ?).X3 = 10
3x1 + xZ - Z.X3 = 1 3x1 + 2x2+4x3 = 20
xl_xZ+X3:6 3x1+5x2—x3=30

Solve the following system of equations by LU decomposition:

1 1 1-2 -10
402 1 | 8
13 22 0 7

1 3 2-1 -5

also find A~ 1.
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Find the inverse of the matrix using LU decomposition with a;; = a;, = az3 =1
3 21

A=|2 3 2
1 22

Show that the following matrices are non-singular, but cannot be written as the
product LU where L is the unit lower triangular and U upper triangular.

1 2 3 2 1 -2
(A)A=|2 4 1 (b) A= |4 2 3
2 31 -6 3 7
Factorize the matrix
4 3 -1
A=11 1 1
3 5 3

into the product LU where L is the unit lower triangular and U upper triangular.

Apply Crout’s method to solve the following equations:

(a) x1 + xZ + Z.X3 = 7 (b) le + 3x2 + Z.X3 = 2
3x1 + zxZ + 4.X3 = 13 10x1 + 3xZ+4X3 = 16
4x1 + 4x2 + Z.X3 = 8 3x1 + S.XZ + .X3 = _6

Decompose the matrix

11 1
A= |4 3 -1
305 3

by Crout’s method.

Solve the following systems of equations using Cholesky method.

(a) 4xq + 2x, + 14x; = 14 (b))  9x; +6x, + 12x3 =174
2x1 + 17x, — 5x3 = =101 6x1 + 13x,+11x3 = 236
14x; — 5x, + 83x3 = 155 2x, + 11x, + 26x3; = 308

(c) 4x, +6x,+8x3=0 (d) 4x; +10x, + 8x3 = 44
6x1 + 34x, + 52x; = =160 10x; + 26x,+26x3; = 128
8x; + 52x, + 129x5; = —452 8x, +26x, + 61x; = 214

Solve the following systems of equations using Cholesky method. Also find A™1



4 -1 0 1
(a) A= |-1 4 -1 b= 0
0 -1 4 0

(b) 12x+4yz=15, 4x+7y+z=12,—x+y+62=6
(14) Find inverse of the following matrices by using Cholesky method.

1 2 3 1 -1 2 2 -1 2
@| 2 8 2|M®|-1 4 6| @)]|-1 1 -1
3 22 82 2 6 29 2 -1 3
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Numerical Analysis 6
Iterative Methods to Solve
System of Equations and Eigen Value Problems

lteration Methods: Jacobi iteration method, Gauss-Siedal method.
Eigen Value Problem: Jacobi's method, Power method.

Numerical Analysis Objective Questions 6

Let
o 1 1
3 4
A= |l o L
3 2
Lty
L 4 2 i

The spectral radius of A is
(a) Greater than 1 ,(b) equal to 1, (c) less than 1, (d) equal to V2

For the matrix

1 V2 2
V2 3 42,
2 V2 1
the rotation matrix that will zero out a5 is
I 0 - L_ 1 0 0
V2 1 1
(a) 1 0 ] O —_— ——
1 NERNG
0 — 1 1
2 0 — —=
: v2 ] BN

(c) (d) None of these




(3) A square matrix [A]
@) |a;] 2 Zn:‘aif
I

) |a|2 Y|a} i =120 and|a| > Y)a,
j=1 j=1

i#j i#j

is diagonally dominant if

nxXn

, 1=12,...n

, forany i =1,2,...,n

, forany i =12,...,n

n
(c) |a“.| > Z‘aij
j=1

@ |a,| 2 Z\a/
j=1

n
, 1=12,...,n and |aﬁ| > Z‘aij
j=1

, 1=12,...n

(4)  The interval, which contains the eigen values of the symmetric matrix is
1 23

2 41
316

18

(a) [—6, 6] (b) [—7,7] (c)[—10,10] (d) None of these

5) 12 7 3 x 22
For |1 5 1 ||x,|=| 7 | and using [xl X, x3]=[1 2 1] as the initial
2 7 =11 x -2

guess, the values of [x1 X, x3] are found at the end of each iteration as

Iteration # | x, X, X

1 0.41667 | 1.1167 | 0.96818
2 0.93990 | 1.0184 | 1.0008
3 0.98908 | 1.0020 | 0.99931
4 0.99899 | 1.0003 | 1.0000

At what first iteration number would you trust at least 1 significant digit in your
solution?

(@)1 (b)2 (©)3 (d)4
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The eigen values of the matrix are diagonal elements if the matrix is

(a) Diagonal (b) lower triangular
(c) Upper triangular (d) all of these

The Strurm sequence of the matrix

2 -1 0
-1 2 -1
0-1 2

is
@fo=1LA=2—- A fr = (2 - /1)](;" — fre1, 7=123
® fo=1LA=A-2f1= (/1 _z)fr — fre1, 7=123

©fo=LA=A-2f1= (/1 _z)fr + fro1, =123
(d) None of the above

Let
51 1
A=|-1 1 0],
0-050

Then

(a) There are 2 eigen values contained in the disc |4 —5I < 2.
(b) There are 3 eigen values contained in the disc |4 —5I < 2.

(c) There is exactly 1 eigen value contained in the disc | 4 —5I < 2.
(d) None of the above

The largest eigen value of the matrix

1 2 0
2 1 -1
0 -1 2
lies in the interval
(a) 4,5) (b) (3,4) (©)(1,2) (d) None of the above

Consider the linear equation Ax =b. Let us express A= L+D+U, where L is a lower
triangular matrix, D is a diagonal matrix and U is an upper triangular matrix. All
diagonal elements of L and U matrices are zero. Using this definition, we can write:
Dx= —(L+ U)+ b . This yields us: xX**"=D"" [b— (L+ U)x"]



Which of the following iterative methods does the above expression represent?
(a) Jacobi iteration (b) Gauss-Seidel (c¢) Power method (d) None of the above.

(11) For the system of equations
4x, + x5 +x3 = 2
X, +5x,+2x3= —6
X, +2xy+3x3 = —4

Taking initial approximation x(® = (0.5,—0.5, —0.5)%. Jacobi iteration method
gives x(K+1 a5

1
1

o L _1 1
2 2 2
1 2 (k) 4
a|l-— 0 —= + —— , k=0,1,2........
@ -3 3| X 3
bz, 6
L 3 3 ] | 5]
o L _1 1
4 4 2
1 2 k) 6
b)|-— 0 —-= + —— , k=0,1,2........
®) =3 50X 4
1z, _4
| 3 3 | | 3]
o L _1 1
3 3 2
1 2 k) 4
c)|l-—— 0 —-= + —— , k=0,1,2........
©1=3 50X 3
1z, _3
| 5 5 | | 2]
(d) None of the above
(12) Let
10 k b,
A=21 3 ,b= b2 ,b1,b2,b3€R
k 01 bs

The necessary and sufficient condition on k so that the Jacobi method converges for
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solving AX =b is
@k>0 (k<0 () |k|<l @@k>2
Which of the following statements is false :

(a) If A is strictly diagonally dominant matrix , then the Jacobi iteration scheme
converges for any initial starting vector

(b) If A is strictly diagonally dominant matrix , then the Gauss-Seidel iteration
scheme converges for any initial starting vector

(c) Rate of convergence of Gauss-Seidel scheme is thrice as that of the Jacobi
scheme

(d) None of the above

The rate of convergence of the Jacobi iteration method for solving the system of
equations 3x+y+z=2,x+4y+2z=-5,x+2y+52=2.

(a) 0.17 (b) 1.17 (c)2.17 (d) none of these

Consider the linear equation Ax =b. Let us express A= L+D+U, where L is a lower
triangular matrix, D is a diagonal matrix and U is an upper triangular matrix. All
diagonal elements of L and U matrices are zero. Using this definition, we can write:
Dx= — (L+ U)+ b . This yields us: xX*""=H x"+c, k=0,1,2.... where H= — (D+L)"'U
and c=(D+L) ~'b.

Which of the following iterative methods does the above expression represent?

(a) Jacobi iteration (b) Gauss-Seidel (¢) Power method (d) None of the above.

For the system of equations
2x, — X, = 7
—X; +2x;—x3=1
—X, +2x3 =1

Taking initial approximation x(® = (0,0, 0)t. Gauss Seidal iteration method gives
2 (et g
0 1/2 0 7/2
0 1/4 1/2 9/4
x () 4

(a) x (k+1)
0 1/10 1/4 13/8
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[0 172 0 | (772
by xGer = [0 174 12 gy | 974

0 1/8 1/4 ] 11/8 |

[0 172 0 | (772
@ xlesn o [0 14 U2 gy | 974

0 1/8 1/4 | | 13/8 |
(d) None of above

To ensure that the following system of equations,
2x,+ Tx,— llx;= 6
x+ 2x,+  x;= -5
Tx,+ Sx,+ 2x,= 17
converges using the Gauss-Seidel method, one can rewrite the above equations as
follows:

2 7 —11[x,] [6
@|1 2 1 |[x,|=|-5
75 2 |x3| |17

® |1 2 1 |x|=|-5

[\
|
|
[
[
Re
(@)

(©

[\
[
=
(3]
Il
|
(9)]

2 7 —11|x] |17

(d) The equations cannot be rewritten in a form to ensure convergence.

The eigen values of the matrix

2 2 4
V26 W2
4 2 2

using Jacobi method is
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(a)—1,2,3 (b)—2,4,8 (c)—2,3,6 (d) None of the above
Using Power method, the iterations reduce the original matrix to

(a) a diagonal matrix (b) an upper triangular matrix
(c) alower triangular matrix (d) a tridiagonal matrix

The largest eigen value in the magnitude of
1 1
o )
with initial approximation x, = [1 1]¢, using Power method is

(a) 1 (b)9 () 10 (d) None of these

Numerical Analysis Descriptive Questions 6

For the following system of equations

1) dx+y+2z=4 (i) 10x + 4y — 2z =12
3x+5y+z=7 x—10y—z=-10
x+y+3z=3 5x +2y—10z = -3

(a) Obtain the Jacobi iteration scheme in the matrix form.
(b) Starting with x(® = (0,0, 0)¢, iterate three times.
(c) Show that the Jacobi iteration scheme converges.

For the following system of equations:
6x+y+z=20
x+4y—z =6
x—y+5z=7

(a) Obtain the Jacobi iteration scheme in the matrix form.
(b) Starting with x(®) = (3.3333, 1.5, 1.4)¢, iterate three times.

For the following system of equations
9X1+X2+X3:b1
2X1 + 10X2 + 3X3 = bz

3X1 + 4X2 + 11X3 = b3

(a) Obtain the Jacobi iteration scheme in the matrix form.
(b) Starting with x(® = (0,0,0)%, b = (10,19, 0)?, iterate three times.
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(c) At each iteration, obtain maximum absolute relative error.
(d) Show that the Jacobi iteration scheme converges.

3 2 X1 _ 5

1 5 X2 B 6
(a) Obtain the Jacobi iteration scheme in the matrix form.
(b) Starting with x(® = (0,0, 0)¢, iterate three times.

(c) At each iteration, obtain maximum absolute relative error.
(d) Show that the Jacobi iteration scheme converges.

Consider the system

Show that for each of the following matrices A, the system Ax = b can be solved by
Jacobi iteration with guaranteed convergence.

5 -1 3 -2 0 4 4 2 =2
@l2 -8 1|, (b)] 2 -8 1], ©|0 4 2
-2 04 5 -1 3 1 0 4

For the following system of equations:

-3 1 0] | x )
|2 -3 1| |xl=1]0
02 =3 |, -1
5 1 -2] | x 2
G) 3 4 ~1| |y, |= |2
2-3 5] | 10

(a) Set up the Gauss-Seidel iteration scheme in matrix form.

(b) Show that the iteration method is convergent and hence find its rate of
convergence.

(c) Starting with x(®) = (0,0, 0)¢, iterate three times.

Apply Gauss-Seidel method to solve the system
3x+y+z=3, 2x+y+5z=5, x+4y+z=2

Give the condition of convergence of Gauss-Seidel’s iteration method and show that
it is satisfied in this case.
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Find the solution to the following system of equations using the Gauss-Seidel
method.

12x, + 3x,-5x;, =1
x, + 5x, + 3x; = 28
3x, + 7x, + 13x; =76

(a) Starting with x(® = (1,0, 1)¢, iterate two times.
(b) absolute relative approximate error at the end of each iteration
(c) Is the solution converging?

Given the system of equations

3x, + 7x, + 13x; = 76
x+ 5x, + 3x; = 28
12x, + 3x,-5x; = 1
find the solution using the Gauss-Seidel method. Use (1,0, 1)t as the initial guess.

Using [x; x, x3]'=[1 3 5]' as the initial guess, find the values of [x,,x,,x,] after
three iterations in the Gauss-Seidel method for

12 7 3 | x 2
I 5 1 |x,|=[-5
2 7 =11 x 6
For
12 7 3 || x 22
I 5 1 ||x|=|7
2 7 —11|| x -2

and using [x; x, x3]'=[1 2 1]' as the initial guess, find the values of
[x1 X, x3] after three iterations using Gauss-Seidel method.

The upward velocity of a rocket is given at three different times in the following
table

Velocity vs. time data
Time, ¢ (s) 5 8 12
Velocity, v (m/s) | 106.8 | 177.2 | 279.2




The velocity data is approximated by a polynomial as

v(t):a1t2+a2t+a3, 5<t<12
Find the values of a,, a,,and a, using the Gauss-Seidel method. Assume an initial
guess of the solution as

a, 1
a, |[=|2
a, 5

and conduct two iterations. Is the above system of equations converging?

(13) Use Jacobi iteration to find the eigen values of the following matrices :

2.2 2 2 V2 4
@l-2 1 2 i) |[V2 6 2
6 4 -1 4 V2 2

(14) Find all eigen values of the matrix
321

232
123

using Jacobi Iteration till the off-diagonal. Elements in magnitude are less than
0.0005.

(15) Use Jacobi’s method to find the eigen values and eigenvectors of the matrix

216
@132
624

15.010 0.000 0.008
(b) | 0.000 15.010 -0.0058
0.008 —0.0058 15.010

(16) Determine the largest eigen values and the corresponding eigenvector of the
following matrices correct to three decimal places using Power method. Take the
initial approximate vector as v° = [1 1 1]¢
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410 011 -5 7 6 -3

G [1 202 G) |[-217 -7 (i) |[-12 —=20 24
01 4 —4 26 -10 6 -12 16
16 30 —42 ~12 =72 -59
(v) | -24 —47 66 v | 5 29 23
—12 -24 34 —2 -12 -9

Find the largest and smallest eigen values and the corresponding eigenvectors of the

4 1-1
matrix A=| 2 3 —1| take the initial approximate vector as v(® = [1 1 1]¢.
-21 5

[ Hint: The smallest eigen value of A is the largest eigen value of A™1]

Find the smallest eigen value in magnitude of matrix

2-1 0
A=-1 2 -1
0-1 2

Using four iterations of the power method. Also obtain the corresponding
eigenvector. Take the initial approximate vector as v(® = [1 1 1]¢.

Find the eigen value correct to two decimal places, which is nearest to 5 for the
matrix.

41 0
141
01 4

using inverse power method. Also obtain the corresponding eigenvector. Take the
initial approximate vector as v® = [1 1 1]*. [Hint: the eigen value of A, which
is nearest to 5 is the smallest eigen value in magnitude of A — 5I. Hence, it is the
largest eigen value in magnitude of (A — 5I)"]

11
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Numerical Analysis 7
Miscellaneous Theoretical Questions
Unit 1

(a) Derive the Newton-Raphson iteration method

f(xg)

TR TR T )

=1,2,---

(b) Suppose Newton-Raphson method produce a sequence {zj},— that converges to the root a of the
function f(z). Prove that

(i) If « is a simple root, then the convergence is quadratic and

(@)
k1l ™ S i)

(ii) If a is a multiple root of order m, then the convergence is linear and

e |? for sufficiently large n.

m—1

lek+1] = lek] for sufficiently large n.

(c) Suppose that Newton-Raphson method produce a sequence {zj},-, that converges to the root a of
order m > 1 of the function f(z). Prove that the iteration method

mf(zy)

T+l = Tk — f/(frk)

has quadratic rate of convergence. Hence find the double root near x = 1.1 of 23 — 422 + 52 —2 = 0.

(d) Show that Newton-Raphson iteration formula applied to the function f(z) = 22 —a (a > 0) leads
to the iteration formula

oy >0
Tl == | T + — x
R L, 0

for evaluating y/a. Also considering the function f(z) = 2P — a, show that the sequence given by

1 a

Tpr1=— | (p— Dk + 1 zo >0

p xy,

can be used to evaluate a'/P.
(a) Derive the secant iteration formula
T — Th—1

Tht1 = T — Flon) = f(xkfl)f(xk) for k=1,2,---

to find the root of the continuous differentiable function f(x).
1
(b) Show that the rate of convergence of the secant method is p = 5(1 +/5).

(¢) Prove that if r is the root of f(x) = 0 and if the equation is rewritten in the form x = F(z) in such
a way that |F'(z)| < L <1 in an interval I, centered at = = r, then the sequence x,, = F(z,,—1) with
xo arbitrary but in the interval I has lim =, = r
(d) Show that the iteration formula
flaw)  {f @)} (" (er)}

Tkl = Th — 7( -

) 2{f"(a)}’

is cubically convergent formula for finding the roots of the polynomial equation f(z) =0

(a) Derive the Regula-Falsi iteration formula

= Tk = Tk—1 = .
Tl = T~ Fo ST f(mk,l)f(:nk)’ f@p) f(zr—1) <0 for k=1,2,

to find the root of the continuous differentiable function f(x).

(b) Show that the rate of convergence of Regula-Falsi method is linear.



(1)

(a)

()

Unit 2

Derive the Muller’s iteration formula
2a2

Th+1 = Tk — 3
a1 \/a% — 4agas

for finding the roots of the polynomial f(z) = agz? + a1 + as.

k=23,..

Show that the rate of convergence of Muller method is (approximately) 1.84.

Derive Chebyshev iteration formula

U (C N W (CORN A MCT
T P ) 2<ﬂmw> (ﬁww

Tk
for finding the roots of the polynomial f(z) = agxz? + a1x + a2, where ag, a1, as are constants.

), k=1,2,3,..

Show that the rate of convergence Chebyshev method is 3

Derive the Multipoint iteration formula of Type 1:

f ()
1SR’
/' ("’"k - 2f’<x’2)>

for finding the roots of the polynomial f(z) = agx?® + a1x + a2, where ag, a1, as are constants.

Tht1 = Tk — k=1,2,3,..

Derive the Multipoint iteration formula of Type 2:

f(zk)
e () _
Th+1 = Tk — f/(.’L'k) - f’(l‘k) , k= 1,2,3,

for finding the roots of the polynomial f(z) = agx?® + a1x + a2, where ag, a1, as are constants.

In a polynomial when do we say that a change of sign has occurred ? State the Descarte’s rule of
sign. Determine the number of positive and negative roots of the polynomial

f(z) = 42° + 102* — 52° 4 132 — 62 + 2

using Descarte’s rule of sign change.

If pi, is an approximation of the root of p of the polynomial equation p, = apxz™ + a12™ ' 4+ --- +
Gn—1% + a, = 0, then show that the next approximation to the root using Birge-vieta method is
D41 = Pk — by k =0,1,... where b, satisfies the recurrence relation by, = ag + pcp_1 with ag = by

Cp—1"’
and ¢ satisfies the recurrence relation ¢, = by + pcr._1 with ¢g = by.

Discuss Bairstow process for determining the roots of an algebraic equation.

(4) Derive Newton-Raphson method for system of non-linear equations in two unknowns as f(z,y) = 0 and

g(x,y) = 0.



Unit 3

(1) Explain forward and backward substitution method for the system of equation AX = B

(2)

(a)
(b)
()

Describe Triangularization method for solving numerically a system of linear equations.
Describe Cholesky method for solving numerically a system of linear equations.

Discuss the operational count for Gauss elimination method.

(3) Describe Jacobi iterative method for solving numerically a system of linear equations. Give sufficient

conditions for convergence of the process.

(4) Describe Gauss-Seidel iterative method for solving numerically a system of linear equations. Give sufficient

conditions for convergence of the process.

(5) (a) Prove that the iteration method of the form z(*+Y) = Hz(®) 4+ ¢ k =0,1,2,... for the solution of

Az = b converges to the exact solution for any initial vector if ||H|| < 1

If A is a strictly diagonally dominant matrix, then show that the Gauss-Seidel iteration method
coverges for any initial starting vector.

If A is a strictly diagonally dominant matrix, then show that the Jacobi iteration method coverges
for any initial starting vector.

Let L and U denote lower and upper triangular matrices obtained by triangular decomposition and
consider the process

A= Ag= LoUy, Ay = UgLo = L1Uy,..., A = Up_1 L1 = LUy, . . .

show that A and Ay have the same eigenvalues. Also show that if By = LiLo... Ly converges as
k — oo, then Aj converges to an upper triangular matrix having the same eigenvalues of A.

Describe Jacobi iterative method for finding the eigenvalues of a symmetric matrix. Give sufficient
conditions for convergence of the process.

Assume that the n x n matrix has n distinct eigenvalues A1, Ag, ..., A\, and that they are ordered in
decreasing magnitude, i.e.
Al > [A2| = [Ag] = - > [l

If Xy is chosen appropriately, then show that the sequence {Xk = (:cgk),:cgk), .. ,x%k))t} and {ct}

generated recursively by
1
Y, = AX, and Xpy1 = —Y;
Ck+1
where

Cht1 = asg-k) and ch-k) = max {\:Uﬂ 1< < n}

will converge to the dominant eigenvector V; and eigenvalue A1, respectively.



Practical No. 1
Congruences |

Objectives

1) The remainder obtained upon dividing the sum 1! +2!1 43!+ ... (375)! By 15is
a)3 b)O )1 d) None of these.

2)The remainder when the sum 13+23+3%+ ... +(99)*+(100)° divided by 4 is
a)3 b)0O «¢)2 d) None of these.

3) Which of the following statement is false:
(a) Cube of any integer is of the form 9k or 9k + 1 or 9k — 1
(b) Cube of any integer is of the form 7k or 7k + 1 or 7k — 1

(c) Cube of any integer is of the form 5k or 5k + 1 or 5k — 1
(d) None of the above

4) What is the remainder when 89 divides 2**

a) 1 b)13 c)7 d) None of these.

5) Following is the Complete Residue System modulo 7.
a)A=1{2,-9,11, 12, 4, 18, 25}.
b)B={-19,-11, 4, 6, 15, 75, 84}.
c)C=1{3,19, 19, 23, 28, 35, 42}.
d) None of the above.

6) If S={ay, ay, ....... an} is a Complete Residue System mod n then
S:={aay, aay, .....aan}is also a Complete Residue System mod n if.

a)(a,n)=1 b)(an)>1 c)a>a; forall aj‘'s  d) None of the above.

INfry, ro, .. re-1is any Reduced Residue System modulo a prime P then ]_[ff;ll r; is
congruent mdulo p to

a) -1 b)p c)1 d) None of these.

8) The number of elements in a Reduced Residue System modulo 8 is
a) 4 b) 7 c) 8 d) None of these.



9) Which of the following set forms a Reduced Residue System mod 12
A)A={3,15,21,33}
B) B= { 4,20,28,44}
C)C={5, 25, 35, 55}
D None of the above.

10) The least positive integer congruent to 17> mod 6 is
a) 1 b)2 «¢) 3 d)5
11) The remainder when 9%°° divided by 17 is

a) 11 b)12 ¢)13 d) None of these.

12) If x=y (mod m) then
a) (x,m)=(y, m) ¢) (x, m) # (y, m)
b) (x, m)=2(y,m) d) Nothing can be said

13) If p is an odd prime then x> =-1 mod p has a solution if and only if
(a)p=1mod4 (b)p=2mod4 (c)p=3mod4 (d) Nothing can be said

14) If p, q are distinct primes such that for an a, a®* =a mod q and
a% =a mod p then

(a)a®™=amodpg (b)a*"=1modpqg (c)a’"=0modpq d)None of these.
15) The remainder when 17! divided by 19 is

(@)1 (b) 2 (c)3 (d)o



Practical No.1
Descriptive

1) If a=b (modn4) and a = c (mod n,) Prove that b = c (mod n) where
n = gcd(ng, ny)

2) Prove that 97 divides (2*%-1)

3) Verify that 0,1,2,22, ..... , 2° form a Complete residue system modulo 11 but
0,1%,2%, ....... 10 do not
4) Show that 1%, 2%, ......... m? is not a Complete residue system modulo m when
m>2
5) List all the elements in a Reduced Residue System modulo 30
6) Prove that n** — 1 is divisible by 7 if (n, 7) = 1.

7)Prove that n*® — n is divisible by 2, 3,5, 7 and 13 for any integer n.
8)Prove that n*?- a'?is divisible by 13 if n and a are prime to 13.

9)Prove that n*?- a'?is divisible by 91 if n and a are prime to 91.

5

10) Prove that %_n + ins + lirn is an integer for every integer n.

11) What is the last digit in the ordinary decimal representation of 2999
12) What are the last two digits in the ordinary decimal representation of 3400
13) Show that 2, 4, 6,....... 2m is a complete residue system modulo m if m is odd.
14) If p is an odd prime, prove that :1%.32.5%...... (p—2)2 =(-1) (p+1)/2 (mod p),

and 22.42.6%....(p-1)* = (-1) ®"?mod p).
15)If p is a prime other than 2 or 5, Prove that p divides infinitely many of the
integers 9,99,999,9999,........

16) For a prime p, and integers a, b if a° = b” mod p then prove that
(i)a =b mod p (i) a* =b° mod p?
17) If p, q are distinct primes prove that p** + g°* =1 mod pq
18) Find a solution of x* = -1 mod 29.
19) Use Fermat’s method to factor the following numbers: 10541 , 340663, (2'!) - 1

20)Employ the generalized Fermat’s method to factor the following numbers:4573, 6923

21) Use Kraitchik’s method to factor the number 20437



Practical No.2
Congruences li
Objectives

1)The value of ¢(728) is
a) 288 b) 290 c) 382 d) None of these

2) The number of positive integers < 1200 and relatively prime to 1200 is
a) 420 b) 320 c) 520 d) None of these

3)The number of positive integers < 4500 that have a factor greater than 1 in common with
4500 is

a)3700 b) 3300 c) 1200 d) None of these
4) ¢ (31 equals
(a) 31 (b) 3%° (c) 2.3% (d) None of these
(5) If nis an positive integer then of ¢ (2n) =2 (n) is
(a) always true  (b) Never true (c) truelf nis odd (d)trueif nis even

6) Which of the following is false:
(@) ¢ (x) = 12 has no solution (b) ¢ (x) =13 has no solution

(c) ¢ (x) = 14 has no solution (d) ¢ (x) =15 has no solution
7)The number of distinct solutions of congruence 24x =6 (mod 108) is
a) 0 b) 2 c)6 d)12
8) If f(x) =0 mod p has exactly n solutions and g(x) = 0 mod p has no solutions
Then f(x)g(x) = 0 mod p has
(a) exactly n solutions (b) more than n solutions  (c) less than n solutions
(a) Nothing can be said

9)The solution set of the congruence 20x = 4 mod 30 is

(a) empty  (b)singleton  (c) infinite (d) None of these



10) Simultaneous solution of 17x = 9( mod 3) and 17x= 9 (mod 4) are

(@)9mod12 (b)7mod12 (c)5mod12 (d)None of these
11) A common solution to the pair of congruence x=1 (mod 4); x=2 (mod 5)is
a) x=13(mod 20) b)x=12(mod 20) c)x=17 (mod 20) d) None of these.

12) If f(x) = 0O(mod 9) has 3 distinct solutions and f(x) = 0(mod 8) has 2 distinct solutions
then f(x) = 0(mod 72) has

(a) 5 solutions (b) 6 solutions  (c) I solution  d)Nothing can be said

Practical No.2
Congruences i
Descriptive

(1) Find ¢(1001), ¢ (5040)
(2) Solve ¢ (x) =24

. . . . n
(3) If for an integer n > 1 has r distinct prime factors then prove that ¢ (n) ZF

(4) If n > 1 is a composite number then show that ¢(n) <n - Vn
(5) If the integer n has r distinct odd prime factors then prove that 2" / ¢ (n)
(6) If every prime factor that divide n also divide m then prove that ¢ (nm) = n ¢(m)

7) Find all incongruent solutions of the following congruences
1) 15x =25 (mod 85) 2) 30x=7 (mod 23) 3) 353 x =254 (mod 400)
8) Solve each of the following sets of simultaneous congruences:
1) x=5(mod 11) ; x=14 (mod 29) ; x=15 (mod 31)
2)x=5(mod6) ; x=4(mod 11) ; x=3 (mod 17)
3)x=1(mod4) ;x=0(mod 3) ; x=5(mod 7)

4)2x=1(mod5); 4x=1(mod7) ; 3x=9(mod6) ; 5x=9 (mod 11)



9) Find the smallest positive integer having the remainder 3,11,15 when divided by 10,13,17
respectively.

10) A band of 17 pirates stole a sack of gold coins. When they tried to divide equally among
them 3 coins remain. In the ensuing fight one of the pirates died. Again it was divided equally to
find 10 coins were left . Again a fight resulted in killing one more pirate. This time they were
able to divide the gold equally among themselves . What was the least number of gold coins
they could have stolen?

11) Solve :
a) 5x*-6x+2 =0(mod13) b) x* +7x+10 =0 (mod 11) ¢)3x*+9x+7 =0 (mod 13)
d) 5x° +6x + 1 =0 (mod 23)

12) Solve the Congruences:

a) x> +2x—-3=0(mod 45) b)x>—9x*+23x—15=0 (mod 143) c) x> +4x + 8 =0 (mod 15)



PRACTICAL NO. 3 (Diophantine Equations)
OBJECTIVE QUESTIONS:

1. Let (a,b)=g; (a,c)=d; (b,c)=e, then the equation ax+by=c has a solution if

(i) gl (i) d|b (iii) e]a (iv) None of the above
2. The equation ax+by=c has a solution if and only if
(i) (a,b)=(a,b,c) (i) (a,c)=(a b,c)
(iii) (b, c)=(a, b, c) (iv) None of the above
3. If ax+by=c hastwo solutions (x;,¥;) and (x;,¥;) with x,=1+2x, and y,=1+y,; and
(a, b)=1 then
(i) b=0 or b=1 (ii) b=-1 or b=0
(iii) b=-1 or b=1 (iv) None of the above
4, Let A be the statement ‘ The equation ax + by=c is solvable’ and B be the statement  ‘

The equation ax + by = a + ¢ is solvable’, then

(i) A'is true whenever B is true but converse may not be true
(ii) B is true whenever A is true but converse may not be true
(iii)A is true if and only if B is true

(iv) None of the above

5. If (a, b)=1 and a and b are of opposite signs then the equation ax + by = ¢ has
(i) Infinitely many solutions for c>0
(i) Infinitely many solutions for any value of c
(iii) Has no integral solution whatever the value of ¢
(iv) None of the above

6. Which of the statements is false?
(i) The equation ax + by =c is solvable in integers iff (a, b, ¢) =(a, b)
(ii) The equation ax + by =c is solvable in positive integers where a, b, c are positive then
a+bs<c
(iii) The equation ax + by =c has a solution in integers then the equation ax + by =a + c has a
solution in integers.
(iv) 101 x+ 37y =3819 has two solutions in set of positive integers.

7. The equation ax + by = ¢ has a solution in positive integers where a, b, c are positive then
(la+bs<c (iiJatb=c
(iii) Cannot have any solutions whatever the values of a, b, c (iv) None of the above
8. Let a, b, c be positive integers and (a, b) =1 with ;—h is not an integer buti is an integer,

then the number of solutions of ax + by = c in the set of positive integers is

(i) [#] (ii) [E] (iii) [i] (iv) None of the above



9.

10.

11.

3.a)

b)

6.

The equation 3x + 6y =100 has

(i) 0 integral solutions (i) 1 integral solution

(iii) 2 integral solutions (iv) Infinitely many integral solutions
@y, 02,85, . o ... ... ll; Are non- zero positive integers and the equation

Qi + daXs + dgXs+ oo X%, = chas an integral solution. Also
d=(ay,as, a5, «e cen vee o ly) . Then

(i) c|d (iiyd|c (iii ) d=c (iv) None of the above

Let (a, b) =g, (a, c) =d, (b, c) =e then the equation ax + by =c has
(i) g number of integral solutions

(ii) d number of integral solutions

(iii) e number of integral solutions

(iv) None of the above

DESCRIPTIVE QUESTIONS:

A farmer sold chickens at Rs. 5/ each and geese at Rs 8/ each. He collected a total of Rs 99/-.
Assuming that he sold at least one bird of each kind, how many of each kind did he sell?

Show that if a and b are co-prime positive integers, then every integer c = ab has the form
ax+by where x and y are non-negative integers. Also show that the integer ab-a-b does
not have this form.

Determine all the solutions in positive integers of the following Diophantine equations.
i) 5x+3y=52
ii) 15x+7y=111
iii) 12x+510y =274

Determine all the integral solutions of the following Diophantine equations.
i) 903 x+ 731y =2107
ii) 101 x+99y =437

A certain number of sixes and nines is added to give a sum of 126. If the number of sixes and
nines is interchanged, the new sum is 114. How many of each were there originally?

When Mr. X cashed a cheque at his bank, the teller mistook the number of paise for the
number of rupees and vice versa. Unaware of this, X spent 68 paise and then noticed to his
surprise that he had twice the amount of the original cheque. Determine the smallest value
for which the cheque could have been written.

There were 63 equal piles of fruits put together and 7 single fruits. They were divided evenly



10.

among 23 travellers. What is the number of fruits in each pile?

Find the number of men, women and children in a company of 20 persons if together they
pay 20 coins, each man paying 3, each woman 2 and each child % .

We have an unknown number of coins. If you make 77 strings then you are 50 coins short;
but if you make 78 strings then it is exact. How many coins are there?

A father’s age is 1 less than twice that of his son, and the digits AB making up the father’s
age are reversed in the son’s age(ie. BA). Find their ages.

Clara wants to buy pizza and cola for her family She has 400 Rs. If we know that each pizza
costs 57/- and each bottle of cola 22/-. How many of each can she buy?

Assume that there is discount for some stuff in the restaurant and pizza price is changed
from 57 to 55. Then how many of each can she buy?



PRACTICAL NO. 4

OBJECTIVE QUESTIONS:

The equation x? - y?=n has solutions

(a) for every integer n

(b) only for integers of the form 4k+1

(c) only for 2 and all integers of the form 4k+1

(d) for all integers which are not of the form 4k+2

The equation x2+ y2+ 1 = z?has
(a) no solution in integers

(b) finitely many solutions in integers
(c) infinitely many solutions

(d) only two solutions

The equation 15x% - 7y#=9 has

(a) two solutions in integers

(b) no solution in integers

(c) four solutions in integers

(d) infinitely many solutions in integers.

For a given integer n the number of Pythagorean triples having the same first
member is

(a) less than n

(b) equal to ¢¢(n)

(c) greater than n

(d) none of the above

The number of Pythagorean triples (x, y, z) for which
(a) x,y, zare consecutive integers are infinitely many
(b) x,y are consecutive integers are infinitely many

(c) x, y, zare odd are infinitely many

(d) none of the above



10.

11.

The equation x* - y*=2z2 has

(a) no solution in positive integers

(b) infinitely many solutions in positive integers
(c) finitely many solutions in positive integers
(d) none of the above

If p=g,® + g.°+ g3° where p, g, (2 qs are primes then
(a) each g; is of the form 4k+1

(b) each g; is of the form 4k+3

(c) atleastoneg; = 3

(d) no g;is even

Let n be a positive integer.

(a) If niis sum of three squares then 2nis also a sum of three squares
(b) If nis sum of three squares then 2n cannot be a sum of three squares
(c) If nis sum of three squares then 2n is a perfect square.

(d) n or 2n is sum of three squares.

Which of the following statements is false?

(a) 2™is sum of two squares for all natural numbers n.

(b) Any prime of the form 4k+1 can be expressed as a sum of two squares.
(c) Any odd prime can be expressed as sum of two squares.

(d) Ifn= p;%p,% ....p%q,P1q.P2 ... .... g, Prwhere p,’s are primes of the
form 4t+1 and q;’s are primes of the form 4t+3 then f3;’s are even.

An integer of the form 8m + 7

(a) can be expressed as sum of two squares

(b) can be expressed as sum of three squares.

(c) cannot be expressed as sum of three squares.
(d) may be a square.

If nis a sum of two squares then

(a) 2nis also a sum of two squares

(b) 2nis not a sum of two squares.

(c) 2nis sum of two squares if and only if n is odd.
(d) none of the above.



DESCRIPTIVE QUESTIONS:

1)Show that the area of a Pythagorean triangle can never be equal to a perfect
square.

2) If x,y, z is a primitive Pythagorean triple , prove that x +y and x -y are
congruent modulo 8 to either 1 or 7.

3) Prove that in a primitive Pythagorean triple x,y, z the product xy is divisible
by 12, hence 60| xyz.

4) Show that 3n, 4n, 5n where n=1, 2,......... are the only Pythagorean triples
whose terms are in Arithmetic Progression.

5)Show that the radius of the inscribed circle of a Pythagorean triangle is always
an integer.

6) Show that a positive integer can be represented as the difference of two
squares if and only if nis not of the form 4k+2.

7)  Establish each of the following:
i) Each of the integers 2", where n=1,2,...... is a sum of two squares.
i) f n=3 or6 (mod9), then n cannot be represented as a sum of two squares.

iii) If nis the sum of two triangular numbers, then 4n+1 is the sum of two
squares.

8) If the positive integer n is not the sum of squares of two integers, show that
n cannot be represented as sum of two squares of rational numbers.

9) Letpbeanoddprime. If pla®+ b? wheregcd (a, b)=1, prove that the
prime p = 1(mod 4).

10) Prove that a positive integer is representable as the difference of two
squares if and only if it is the product of two factors that are both even or both
odd.



11) Prove that a positive even integer can be written as the difference of two
squares if and only if it is divisible by 4.

12) Prove that any positive integer can be written as the sum of four squares,
some of which may be zero.

13) Let q be a prime factor of a® + b?. If g = 3(mod 4 ), then show that q|a
and q|b.

14) Prove that every integer n = 170 is a sum of five squares, none of which is
equal to zero.

15) Show that the following equations have no solutions in integers.
i) 15x% - 7y?=9

i) y?=x*+7

i) y*= 41x+ 3
iv)x?+ y?=9z+ 3



Number Theory 5

Order of an integer & primitive roots, Cryptography

1) The order of integer 2 modulo 17 is
a) 16 b) 8 c) 17 d) None

2) Ifahasordern-1thennis
a) Prime b) Composite c) Power of 2 d) None

3) The odd prime divisor of n* + 1 is of the form
a) 4k+3 b)dk - 1 c)4k+1 d) None

4) The order of a is h modulo n then
a) h/®(n) b) ®(n)/h c) h#®(n) d) None

5) If a has order 8 modulo n then a* has order
a) 4 b) 2 c)8 d) None

6) 2 is not primitive root of
a) 17 b) 19 c)9 d) None

7) 3is a primitive root of
a) 17 b) 19 c)9 d) None

8) Number of primitive roots of 10 is
a) 4 b) 2 c)5 d) None

9) With Caesar cipher, f ¥ = x+ 3(mad 26),”YES” is enciphered as,
a) NO b) BHV ¢) XYZ d) YES

10) With Caesar cipher, encrypted message “ZKB” is deciphered as,
a) CNE b) BKZ ¢) WHY d) YES

11) The decryption function f ~*for the shift cipher f ¥ = x + 5(mod 26) is
a)f ' x = x+ 21(mod 26) b) f~' x = x- 5(mod 26)

¢ f ' x = x- 21(mod 26) d) None

12) In an affine cryptosystem, f x = 7x + 12(mad 26) “PAYMENOW” is encrypted as
a) NOWPAYME b) NMYSOZGK c) AYPNEMWO d) None

13) The decryption function f “*for f x = 7x + 12(maod 26) is given by
a)f ' x = 15x+ 2(mod 26) b) f~' x = 12x+ 7(mod 26)

of ' x = (x/2)- 12(maod 26) d) None



14) The number of distinct shift cipher mod26is

a)

26  b)25 ¢)3  d)676

15) The number of distinct shift cipher mod26is

a)

1)

2)
a)
b)

3)

4)

5)

6)

9)

676 b)26 )12 d)312

Descriptive Questions

In a 27-letter alphabet (A=0,B=1, ................ , Z =125, blank = 26) use affine encryption
system f ¥ = ax+ b(mad 27) with a =13, b =9 to encipher the message “HELP ME”". Also
find the decryption function.

Encipher “JACK AND JILL” with
f x = 5x+ 8(mod 26) (blanks are not taken into account)
f x = 5x+ 8(mad 27) (blank = 26)

If VYKAR VAKEC is obtained using encryption function f x = 17x + 10(mod 26), then
decipher it.

Iff x

ax + b(mod 26) interchanges N & S, then find a, b.

If f x

ax + b mod 26 leaves N fixed, then find possible values of b.

Encipher “WHATASURPRISE” twice with ff x = 3x+ 2 mod 26 .

Find the number of distinct shift encryption systems givenby f x = x+ a maodn with
n=27

n=29

n=30

ax + b modn with

Find the number of distinct affine encryption systems given by f x
a) n=27
b) n=29
c) n=30

ax + h modn?

Find the number of distinct affine encryption systems given by f x
where x is a diagraph with

a) n=26

b) n=27

c) n=29

d) n=30

10) Find the order of the integers 2, 3 and 5.

a) modulo 17
b) modulo 19



c¢) modulo 23

11) Establish each of the statements below.

a) If a has an order hk modulo n, then a” has order k modulo n.

b) If a has an order 2k modulo the odd prime p, then a* = - 1 (mad p).
c) Ifahasanorder n-1 modulo n, then nis a prime.

12) Prove that @(2" - 1) is multiple of n for any n > 1.

13) Assume that the order of n modulo h and the order of b modulo n is k. Show that the order
of ab modulo n divides hk; in particular, if gcd (h, k) = 1, then ab has order of hk.

14) Given that a has order 3 modulo p where p is an odd prime show that a + 1 must have order
6 modulo p.

15) Verify the following assertion:

The odd prime divisors of integer n* + 1 are of the form 4k + 1.

16) Establish that there are infinitely many primes of each of the forms 4k + 1.

17) Prove that if p and q are odd primes and gl a” — 1, then eitherql @ — 1 orelse g=2kp +1
for some integer k.

18) a) Verify that 2 is a primitive root of 19, but not of 17.
b)Show that if 15 has no primitive root by calculating the orders of 2, 4, 7, 8, 11, 13 and 14
modulo 15.

19) Let r be a primitive root of the integer n. Prove that #* is a primitive root of n if and only if
ged (k, D(n)) = 1.

20) Find 2 primitive roots of 10.

21) Assuming that r is a primitive root of odd prime p, establish the following facts:

a) The congruence »(P~1/% = — 1 (mod p) holds.

b) If r’" is any other primitive root of p then rr’ is not a primitive root of p.

c) If the integer r’ is such that rr’ = 1 (mod p)then r’ is a primitive root of p.

22) Let r be a primitive root of the odd prime p, prove the following:

a)lfp=1 mad4 ,then -r also has a primitive root of p.

b) If p=3 mad4 then -r has order (p-1)/2 modulo p.

23) For a prime p >3, prove that primitive roots of p occur in incongruent pairs r, r’ where rr’
=1 modp .

24) a) Find the four primitive roots of 26 and the eight primitive roots of 25.

b) Determine all the primitive roots of 3%, 3% and 3*.



25) For an odd prime p, establish the following facts:
a) There are as many primitive roots of 2p™as that of p™.
b) Any primitive root r of p™ is also a primitive root of p.

c) A primitive root of p* is also a primitive root of p™ forn > 2.



Practical No. 6
Cryptography
Objective Questions
1) Adigraph xy has value 26x+y Then “NO” has value
(a) O (b) 260 (c) 352 (d) none

2) For a diagraph x, if f(x)= 159x+580(mod26) is

(a) 26 (b) 676 (c) 26! (d) none
3) The matrix A= 2 2 € Mi(25:) s
21 8 "
(a) Invertible (b) singular (c)non-singular (d) none
. 2 0 .
4) The matrixA= 0 1 € M.(Z25:) s
(a) Invertible (b) singular (c)identity (d) none
5) The inverse of A= g g € M,(Z5:) is
-2 -3 1 0. 14 11
@_5 T3 0 4 ; © 15 10 (d) none

6) Let f(x)=Ax where A € M.(Z.;) and x is block of two letters, then for x="NO” and A=

; g ciphertext f(x) is given by
(a) Qv (b)YES (c)ON (d) none

7) Let f(x)=Ax where A € M.(Z.;) and x is block of two letters, then for f( x)="FW” and A=
2 3

7 8
(a)FW (b)WF (c)AT (d)NO

, Xis

8) Let A,BE M. (Z;) with invertible A and x be block of 2 letters .For f(x)=Ax+B the decryption
Function f~*(x) is given by

(a) Bx+A (b)Ax-B ()4 'x-A7'B (d) none

9)The number of distinct Hill ciphers is
(a)157248 (b)26* (c)26! (d) none
10) Given n=19939,ip(n)=19656 .If n is product of primes p and q ,then p and q are
(@)151,129 (b) 157, 127 (c) 199,31 (d)none

11) If n=pqg where p, g are distinct odd primes. if e= &:!) +1, then g. c. d. (e, g(mn)) is

(a)e (b) go(m) ()1 (d) 2
12) If f(x)= 2" (mod187) then f (3) is



(a) 130 (b) 3 (c) 21 (d) none

13) If (n,e)=(3233,37) is enciphering key in RSA cryptosystem then deciphering exponent is

(a) 253 (b) 273 (c) 453 (d) none

14) In ElGamal cryptosystem k=15 is secret key of public encryption key

(a)(37,2,18) (b) (113,3,24) (€)31,2,22) (d)none

15)Using Vigenereautokey cipher with seed Q message HAPPY is enciphered as follows

3)

4)

5)
A)
B)

6)

7)

(a)XHPEN (b)HPXEN (c)PEXHN (d)none

Descriptive Questions

Find inverse of a matrix mod n, if it exists
= i g mod 5
= 41} 3 mod 29
A= 145 197 mod 26
A= 400 201 mod 841
Encipher “SEND” by taking 2 blocks SE & ND, first applying i 1; mod 26& then

10 15

5 9 mod 29. Explain how to decipher it.

8 mod 26, show that “AA” is always fixed. Find condition such that it is

I
For any matrix
y c

the only fixed block.

Let n = pq, product of 2 distinct primes. If n =63083 & ®(n) = 62568, find p, g.

Encipher the message HAVE A NICE TRIP using a Vigenere cipher with the keyword MATH.
The ciphertext BS FMX KFSGR JAPWL is known to have resulted from a Vigenere cipher
whose keyword is YES. Obtain the deciphering congruences and read the message.

The message REPLY TODAY is to be encrypted in the EIGamal cryptosystem and forwarded to
a user with public key (47,5,10) and private key k=19,if the random integer chosen for
encryption is =15, determine the ciphertext.

Suppose that the following ciphertext is received by a person having ElGamal public key
(71,7,32) and private key k=30:



(56, 45) (56,38) (56,29) (56,03) (56,67)
(56,05) (56,27) (56,31) (56,38) (56,29)
Obtain the plain text message.

8)

A) Encipher the message HAPPY DAYS ARE HERE using the autokey cipher with seed Q.

B) Decipher the message BBOT XWBZ AWUVGK, which was produced by the autokey cipher
with seed RX.

9) When the RSA algorithm is based on the key (n, k) = (3233,37), what is the recovery
exponent for the cryptosystem?

10) Encipher “MATH” using RSA with n= 33 and e=5.

11) Decrypt the cipher text 00 41 46 04 01 43 00 that was encrypted with RSA algorithm with
key (n, e) = (65, 7).



1)
2)
3)
4)
5)

6)

7)
8)
9)

Miscellaneous Unit |

State & Prove Fermat’s Theorem.

State & Prove Euler’s generalization of Fermat’s Theorem.

State & Prove Wilson’s Theorem.

Let p be a prime. Show that x* = -1 (mod p) has solutions if and only if p=2 or p = 1 (mod 4)
State & Prove Chinese Remainder Theorem.

Prove that ax = ay(mod m) iff x=vy (mod = )

(a,m)
P-T x =y(modmi) for i=1 to n iff x=y (mod [m4, m,,.....,m,]).
If x=y (mod m) them (x,m) = (y,m).
Let (a,m) =1 and {ry, ry, ...., rym)} be a reduced residue system mod m then { ary, ar, ...., arym)) is
also a reduced residue system mod m.

10) Let m and n denote any two positive, relatively prime integers. Then ¢(nm) =d(n) ¢ (m).

11) If n> 1 then ¢(n) = n [I;;/n(1 - 1/p). Al so ¢(1)=1.

12) For n >1 we have Z4/, ¢(d) = n.

13) The linear congruence ax = b (mod n) has a solution if and only if d/b where d =(a,n) .If d/b then

it has d mutually incongruent solutions modulo n.

14) Explain the method for solving congruence ax’ +bx +c =0 (mod p) of degree 2 where p is an

odd prime.

15) Let N(m) denote the number of solutions of the congruence f(x) =0 (mod m) . Then N(m)

-ET

= [1%.; N(pi®') where m = p1#" p2%% ......pr" is the canonical factorization of m

MISCELLANEOUS QUESTIONS: Unit I

1) | Show that the linear Diophantine equation a x + b y =c has a solution if and
only if d| c, where d=gcd (a, b). If xy, ¥4 is any particular solution of this
equation, then all other solutions are given by

b ]
X=2Xo+ S t; ¥y= Yo- 7 t,wheretel

2) If a and b are relatively prime positive integers, prove that the
Diophantine equation ax-by=c has infinitely many solutions in positive
integers.

3) | Leta, b, c be positive integers. Prove that there is no solution of ax+by=c
in positive integers if a+b>c.

4) | Provethat ax+by=a+c issolvableifandonlyif ax+by=cis
solvable.

5) | Show that all the solutions of the Pythagoras equation x? + y? = z?2




satisfying the conditions gcd(x, y, z)=1, 2|x; x>0, y>0,z>0 are given by
the formulae  x= 2st y=5% - t? z=5%+ t* for integers
s>t>0 such that ged (s, t)=1 and s # t(mod 2)

6) Prove that the Diophantine equationx® + y* = z? has no solution in
positive integers.

7) | Prove that the equation xt+ y_’i = z* has no solution in positive integers.

8) | Prove that the Diophantine equation x* - y* = z? has no solution in
positive integers.

9) Prove that a positive integer n is representable as the sum of two squares
if and only if each of it’s prime factors of the form 4k+3 occurs to an even
power.

10) | An odd prime p is expressable as a sum of two squares if and only if
p=1(mod 4).

11) | No positive integer of the form 4™(8m + 7) can be represented as the
sum of three squares.

12) | Any prime p can be written as sum of four squares.

Miscellaneous Questions : Unit lll

1) Letn = pq, product of 2 distinct primes. If then prove x*% = x(mod n) with e and d, the
enciphering & deciphering exponents of RSA system.

2) Ife= ? + 1in RSA system, then prove for any x, x® = x(mod n)

3) Innis prime, then show that f(x) = ax + b(mod n) that @ # 1, has a unique fixed point, i.e. f(x) =
X.

4) Explain “shift” cryptosystem modulo n.
5)
A) Explain “affine” cryptosystem modulo n.

B) Find number of affine transformations ax + b(mod n), for given 1t € .

6) If affine transformation is given by f(x) = ax + b(mod n) where b = 0 then prove f has at least 1
fixed point.

7) Explain hill Cipher with blocks of 2 letters.



8) Let A= S 3 € M, (Z,).Prove, Ais invertible iff g.c.d. (D, n) = 1 where D = detA modulo n

9) Explain RSA cryptosystem.

10)
A) Define order of an integer modulo n. If the integer a have order k modulo n prove that
a® =1 (medn)iff k/h.
B) If the a has order k modulo n, prove that a* = a’(modn) iff i = j(modk).
C) If the integer a has order k modulo n & h > 0 then show that a"has order k/g.c.d.(h,k)modulo n.

11)
A) Define primitive root of integer n. If (a,n) = 1. If (a,n) = 1 & if @y, ... ...... dp () are positive
integers less than n relatively prime to n. If a is primitive root of n then a,a“,........ a®™ are
congruent modn to @y, ... ...... g (y) iN Same order.

B) If a has primitive root. Show that it has exactly ®(®(n)) primitive roots.

C) Fork 2 3 prove that 2¥ has no primitive.

D) Ifg.c.d. (m,n) =1 where m>2 & n> 2 then prove that the integer mn has no primitive roots.

E) If pisan odd prime, prove that there exists a primitive root of p such that ¥#~! X 1(mod
pe).

F) Letp be an odd prime and r be a primitive root of p with the property that TS| (mod
p?) Prove that for each positive integer k > 2, ¥P* % = 1(myd p*).

G) If pisanodd prime no. & k> 1 then prove that there belongs a primitive root for p‘l‘.

H) Prove that an integer n > 1 has a primitive root if and only if n = 2, 4,p* or 2p*.



T.Y.B.Sc- Mathematics Semester VI (2018-19)
Paper 1 Practical 1
Limits, Continuity and Derivatives of functions of a Complex variable

Objective Questions

im
Z-0 z
(a) 1 (b) i (¢)-i  (d) does not exist
2. limZ
Z-02
(a) 1 (b) i (¢)-i  (d) does not exist
zZ3 ifz#0
3. If f(z) = {Z ifz=0 then
(a) f is not continuously only at 0 (b) f is continuous on C
(c) f is discontinuous at 0 (d) None of the above
z%+1
4. f (2) = z3+9
(a) Continuous and bounded in |z| < 2 (b) Continuous but not bounded in |z| < 2
(¢) Neither continuous nor bounded in |z| < 2 (d) Continuous and bounded everywhere
f@ =is
(a) Continuous and bounded in |z| > 0 (b) Continuous but not bounded in |z] < 0
(¢) Neither continuous nor bounded in |z| > 0 (d) Continuous and bounded everywhere
6. limni" is
X—00
(a) Does not exist (b) 1 ©0 (d) None of these
_i\23
7. (%_?)13 in the polar from equals
(a) 272 /12 (b) e>i™/12 (c) 273/2 (d) None of these

8. 5¢ ™4 + 2¢ ™6 equals
@ (225 + (222 mo @1 @i

2
9. z=a+ib, z" = 1. Then z"" ! expressed in the form A + iB is

(@) a® 1 +ip"? (b) a® 1 — ip"1 (©0 (d) None of these
10. z; = 1/2 +i,2, =2+ i(\/f+ 1),23 =2+3i, z,= _71 + i+/3, which of the points lie inside the

circle |z—i| =2

(a) 21,2y, 23 (b) 21,25, 24 (©) 25,23,24 (d) None of these
11. Non- zero vectors z; & z, are perpendicular iff
(a) Re(zy2,) =0 (b)Rez; xImz, =0 (¢)Re(z,z,) =0 (d) Im(z1,z,) =0

12.Let |z| =1 or |w| =1.Then |z — w| =

(@) |1 —zw]| b) |1 —zw| ©) |1 —-zw| (d) None of these

13.G) Z=2z (i) Re(z) = 27” (iii) Im(z) = % (iv) Re (iz) = —Im(2) (v) Im(iz) = R,(2)
a) Only (i), (i1), (iii) are true. b) Only (iv) (v) are true
¢) All statements (i) (v) are true d) None of the above.

14. (—v3-i)" =

(a) 230 (b) —230 (c) =230 —i (d) 230 + i



15. f(z) = 4x? + i 4y% =
(@) z+2 (b) zZ ©(1-0Dz2+@2+2)zz+ (1 —-10)z%? (d) None of these
16. If an ellipse s(t) = 2 cost + isint,0 < t < 2z is rotated by #/¢ and centre shifted to 2 + i, then

17. The image of a circle under a linear transformation is

(a) straight line (b) circle (c) can be a straight line or a circle (d) any curve
18. P(z) =ay+a,z+ -+ a,z" is a polynomial of degree n > 1

Then for k = 0ton,q, =

k P¥(0) Pk (0)

(a) k!p™(0) (b) o (©) KD (d) None of these
19. 2" = nZ"is valid if

(@ne€eZ zeC (c)n€N, z € C\{0}

(b)y neZ\{0},zeC (d)n € Z\{0},z € C\{0}
20. f'(20), g'(zy) exists g'(zy) # 0 f(z,) = 0 = g(z;). Then lim % =

Z-2Zg

(a) does not exist (b)0 (©) % @) [f'(z0) — 9'(2o)]lg' (20)]?
20.f(2)=1/,, z#0, f'(z) =

(a) does not exist (b) — ziZ ©0 (d) None of these
22. f(z) = Rez. f'(2) exists

(avz eC (b)onlyatz =10 (c) no where on C (d) exist only on real axis
23.f(z) =ImZ, f'(2) exists

(a) v z €eC (b)onlyatz=10 (c) no where on C (d) exists only on imaginary axix
24. f(z) =z—Z, f'(2) exists

(a) only at 0 (b) only at i (c)on C (d) nowhere on C
25. f(2) = e ¥e™W

(a) f'(z) exists no where on C (b) f'(z) exists on C

(¢) f'(2) exists only at i (d) None of these
26. f(z) = x* +i(1 — y)3. Then

(a) f is differentiable only at z = f'(z) = 3x?

(b) f is differentiable only at z = i, f'(z) = 3z

(c) f is differentiable only on C & f'(z) = 3x? — i 3(1 — y)?

(d) f is differentiable onlyat z =0 & f'(z) = 0

Z—Z
27.f(z)={? z#0
0

parametric equation r(t) of the resulting ellipse is
(a) () = (V3 cost, V2 sint)
(b) r(t) = (x/?cost —%sint + 2, cost + ?sint + 1);0 <t<?2m

(©) r(t) = (\/7 cost, \/§Sint)
(d) None of these

otherwise
(a) Cauchy Riemann equations are not satisfied at (0,0)
(b) Cauchy Riemann equations are satisfied at (0,0) but f is not differentiable at (0,0)

(c) Cauchy Riemann equations are not satisfied at (0,0) but f is differentiable at (0, 0)
(d) None of the above



28. f(z) = Re(z),g(z) = Im (2), h(z) = Z Then which of the following statements hold
(a) f, g, h satisfies Cauchy Riemann equations at every pt
(b) f,g,h does not satisfies Cauchy Riemann equations at any pt.
(c) f, g satisfies Cauchy Riemann equations but h does not satisfy Cauchy Riemann equations.
(d) f, g does not satisfy Cauchy Riemann equations but h does satisfy Cauchy Riemann equations.



1)

2)
3)

4)

5)

6)

7

8)

9)

DESCRIPTIVE QUESTIONS

Use € — § definition of limit to show that

imZ =0 lim [x+iQ2x+y)]=1+i lim (72 +2) = 2i +2

z-0 Z z—-1-1i

2
Use € — § definition of limit to show that that lim (E) does not exist

z-0

Compute following limits

o oys Z2416 0 ... z%-1 ooy qs . 1231
@ lim = D lm>= G lim =2
Show that
o1 472 ey 7. Z2+1 ooy s
Olimem=4 (mST=e 6 lines
Test for the continuity of the function
z2+9 ,
() f(2) = {_3 s
z—3i if z=3i
. 0
(ii) f(Z) = {zRez lf z#
0 ifz=0

Represent the following subsets of C in the plane
@ |z—1+3i|=2, |z+2|=z—-1],

|z — zy| = |z — Z,| where Im z, # 0,
|z —zy| = |z + Z,| where Re z, # 0,
o |z- R
|z — 2| = 2|z — 2i], z zo =c,c# 1,2y #2,0<Imz<2m, lzefl>1,lmz<3
—Z Z

) |z+1-2i|=2, Re(z+1) =0, |z=2i| <1, Im(z — 2i) > 6
(c) Re(z) = 2,Re (z%) <x, Im(z?) < «,

z—1 <1
z+ 11—

1
|z2 — 2| <1, |—|<1,
z
@ lz+1-l|z-1] =42
f:Q € C — C Define differentiability (or complex differentiability) of f at z, € Q

Using the definition above, discuss differentiability of the following function f at the point s
mentioned.

(@) f(z) = z? forany z € C (b) f(z) =2z foranyz €C
=2
© f(2) = |z|? forany z € C ) f(z) = {Zo/z Zzzg at (0,0)

Write the function f(z) = |z| in the form u(x,y) + i v(x,y) .Using Cauchy Riemann equations,
decide whether they are any points in C at which f is differentiable
Use (1) Definition of differentiability
(i1) Cauchy Riemann equations
to check differentiability of f(z) = Re z,f(z) =Im z

10) Test differentiability of the following function at (0,0).f(z) =z Re z,f(z) = zIm z,f(z) = z|z|
11) Use polar co-ordinates to show that f(z) = |z|? is complex differentiable at 0. what can you say

about f(z) = |z|? Justify your answer.



12) Show that f(z) = |z| is differentiable everywhere except at z = 0, when f is considered as a
function from R? - R2.Is f C differentiable? Justify your answer.

13) Show that f(z) = z |z| is differentiable everywhere when f is treated as a function from R? — R?
but C differentiable only at z = 0.

14) Show that f(x,y) = ./ |xy| satisfies Cauchy Riemann equations at (0, 0) but f is not C
differentiable at (0,0).

15)f(2) = f(x,y) = (%10) for (x,y) # (0,0)

(0,0) otherwise
Show that f satisfies Cauchy Riemann equation at (0, 0) but not C- differentiable at (0, 0)
16) f(z) = ze™1?1*. Determine the points at which f'(z) exist and find f’(z) at these points.
17) f is C-differentiable on an open disk such that its image id contained in a line, a circle, a parabola or
a hyperbola. Show that f is a constant.
18) (a) f(z) = z3. f is differentiable at z; = 1 and z, = i. Show that there does not exist a point ¢ on
f(z2)-f(z1) f’(C)

Zy—2Zq =
(b) Does mean Value Theorem for derivatives of real valued functions hold for complex functions?
Justify your answer.

the line y = 1 — x between 1 & i such that

19) Does mean value theorem for integrals hold for complex valued functions justify?
(Consider the function w : [0,21] = C,w(t) = e Note- can this function also be used to show
Mean value theorem is not true for derivatives for complex valued functions.)



PRACTICAL NO. 2
Stereographic Projection, Analytic functions, Finding Harmonic Conjugates

(1) F(z) = x3 + 3xy? + i(y® + 3x%y) is analytic
a) only at 1,1 b) only at 0 c)onlyat0,1,i d)nowhere on *
(2) f(z) = (2x — y) + i(Ax + By) is an entire function then
ay A= ,B= b) c) d)
3) f(z) =eYcosx +ieYsinx, g(z) =z+ z Then
a) Both f, g are analytic on C b) f analytic on C but g is not analytic on C
c) f notanalytic on C but g is not analytic on C d) Both f, g are not analytic on C
@4 f(2) = (2> =2)e™ e ,g(2) =xy + iy
h(z) = 2xy + i(x? — y?)
a) f is an entire function, g and h are no where analytic
b) g is an entire function, f and h are no where analytic
c) his an entire function, f and g are no where analytic
d) f,g,hall of them are analytic on C
5) f(z2) =x3+3xy? +i(y3 + 3x2%y) is
a) an entire function b) analytic on the unit disk

c) differentiable an x-axis  d) differentiable on x & y axes but analytic nowhere

2z+1 are
z(z2+1)

(6) The singular point of f(z) =

a) onlyat 0 b)0,+ i c)onlyat + i  d) None of these
(D flx+iy)=x>—=3xy?+i(Bx*y —y3)
a) f is analytic on C b) f is analytic only on the unit disk
¢) f is analytic only on C \ {0} ¢) None of these
z2+1

(8) The singular point of f(z) = e

Z+2)(22+2242) F
a) +i b)—-2,—-1+ i c)0 d) None of these
) ulx,y) = x?—y%v=2xy

a) v & u are harmonic conjugates of each other

. . . v .
b) u is a harmonic conjugate of U but v is not

. . . u .
¢) v is a harmonic conjugate of v but u is not

d) None of these



(10)u = ax® + bxy. For u to be harmonic, the value of a and b are
a) a= b= b) c) d)
(I f(2) = i,z # 0. level sets of level sets of f real and imaginary parts of f are

a) Not orthogonal b) orthogonal ¢) equal ¢) None of these
(12) The image of a line under a fractional linear transformation is

a) aline b) a circle ¢) a line or a circle d) None of these
(13) The image of a circle under a Mobius transformation is

a) apoint b) a line ¢) a circle d) a line or a circle
(14) f(z) =i g The image of the unit circle under is

a) b) unit circle ¢) the imaginary axis d) the real axis

DISCRIPTIVE QUESTION

(1) Determine where the following functions are differentiable and where they are
analytic
a) f(z) =x3+3xy?+i(y3+ 3x%y)
b) f(z) =8x—x3—xy?+i(x*y +y>—8y)
o f(2) =x*—y*+i2lxyl

(2) Does there exist a complex differentiable function f = u + iv with real part
u(x,y) = xe¥? Justify your answer.

(3) Show that u(x, y) is harmonic in some domain and find a harmonic conjugate

v(x,y) when

a) u(x,y)=2x(1-y) b) u(x,y) = x> — 3xy?

o ulx,y) =xy3—x3y d)u(x,y) = 2x — x3 + 3y?
e)u(x,y) =sinh x siny Hulx,y) = 1y

(4) Show that if u & v are harmonic conjugates of u(x,y) in a domain D then
v(x,y) & V(x,y) can different at most by an addictive constant.

(5) Prove the following functions harmonic? If so, function is corresponding
analytic function
f(z) = u(x,y) +iv(x,y) where
a) u—x3+y? b) v = e*sin2y ov=_02x+ 1)y



6) Describe stereographic projection and show that it is given by the map o :
SEN{(0,0, D} > C  0lxy,xp,x3) = 2522
]
(6) Interpret the transformation
fiC->C, f(z) = (1+V3i)z Geometrically
(7) Show that z(t) = z, + tv and Re((z — Zy)i 17) = 0 represents the same line in

C



T.Y.B.Se- Mathematies— Semester VI (2018-19)
Paper 1 Practienl 3
Contour Integral, Cauchy Integral formula, Mobius transformation

Objective Questions

y

T L v . v " " o e

(1) The value ol integral f(. — , where C is the circle |z] = 3, described in positive sense is
g g

2 ]
a) 2mi e? (b) 2ri (¢) e* (d) None of these
(2) If f is analytic in a simply connected domain D, then for every closed path € in D we
have
@ [, f@dz=1 () [, [(xdz=0 (©) J. [(z)dz# 0 (d)Noncof
these

z| = 1, described in positive

g " z . .
(3) The value of integral fc Prory dz, where C is the circle

sense is

i - .
(a) - (b) < (c)0 (d) None ol these

(4) Let C be the circle centered at 0 and radius 3 traversed once in the anti-clockwise sense,
F 3
. F4 v
then value of the integral 22 _dz is
0 1eg _fc @)

4mi 8mi _ —ami _ =

(a) % e~? (b) % g2 (c) %e 2 (d) None ol these

(5) The value of the integral fl z%dz, where =13 U T, is given by I} & y,(t) =e*,0 <
t<mandlp: yy(t) =e ™08t <m is
(a) _T4 (b)g (c) 4 (d) None of these

(6) Let C denotes the positively oriented boundary of the square whose sides lic on the lines

x=22andy = %2, then [, % equals
(a) = (b= (c) —2mi (d) None of these

s . . dz
(7) The value of integral |, sy

counterclockwise direction equals
(a) 2mi (b) 0 (¢) mi (d) None of these
(8) If f(2) is analytic in domain D, then
(@) f™(z) exists in D (b) £ (z) does not exists in D
) [™M(z) =0, YVneENinD (d) None of these

, Where € is the circle |z+ 2| =3, taken in

@,
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Descriptive Questions

(1) [Zv'ﬂu'tlc,f ‘e —y +ix?)dz

i) Along the line from z = Ooz=1+I

i) Along the real axis from z = 0to
imaginary axis from z = 1toz=1+I

iii) Along the imaginary z = 0to

iv)  Along the parabola y* = x.

1 i ;
(2) Evaluate jc Wdz where C is the circle |z — zp| =T
—<0

2243 ;
(3) Evaluate |, -zz— dz, where C is the

i) Upper half of the circle |z]| = 2

i) Lower half of the circle |z| = 2
iii) The whole circle |z| = 2 in anti-clockwise direction

4) Evalualc fo]lowing

i) fc zz 2245 dz, whereC: |z—1| =1
i) /. €% dz, where C : 9x* +4y? =1
m)flc (3 d?, whereC: |z—1| =1

w)f ANE - dz, where C: |z| =1

(= )

V) fc (7_:— dz, where C : |z]| = 2
z
vi) [, Z’;p{:) dz, C:|z| =3

vii) [, S dz C:lzl=1
viii) fc seczdz C: |z|=1
ix) fc 7dz C: |zl=1

e* ; :
X) [. — dz where C is any simple, closed curve,
C z-2

3

. Z° =6 . .
xi)  J. =— where C is any simple, closed curve.
C 2z-i

z = 1 then along the linc parallel to the

y=ithenfromz=itoz=1+1i

. 42
xi) . EZ2 where ()C: |z—1=1(i)C: |z+1] =1 (i) C: [z—1] =1

€ z%2-1

&
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(5) Lety " |0,m] = € with y(t) = 2e'* be the positively semicirele in the upper half
plane with center at the origin and radius 2. Prove that
e* | 2me?
z| <
|f}' 7241 dz| < 3
(Do not try to evaluate the integral exactly, use ML inequality)

6) TFind the image of the given set under the reciprocal map w = -:- on the extended
complex plane

(a) |z| =8

) |zl =6, ~7/g <arg(z) < 37/,

© |zl =3, T/ <argz) <

dz<lzl<2

(¢) arg(z) =/,

0 x=;fx=2

(@) lz—-2]=2

7 (a) Construal a linear fractional transformation that maps 0to —1 ito0&owoto 1
respectively.
(b) Construal a linear fractional transformation that maps the points i, o, 3 to = -1,3
2’ ?

respectively.

8) Determine whether each of the following sets of points lies on a circle
(@) 0,—4,-2i,—1 -3
(b) =1,=i,i,2 —i (
' ~2L =8
e hz 4z mhere. C L |2 | ’
(1) Eralotte = o poeitively orerled
[z~ #)
C
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T.Y.B.Se- Mathematics— Semester VI

Paper | Practical 4

Taylor's serics, Expmwminl. 'l'rigunmnclric, Hypcrhnlic functions

Objective Questions

(1) If £(2) is analytic at zg then following is the Taylor series ol [ al Zg,

(f® represents k" derivative of [.)
*
() TR Ll o () SRl - w) @ Tk [E60) (7 4 20)* (d)

k=0
None of tlu.m.
@) [ (0) for f(z) = Efeg 3+ D" iS
(a) 2 (b)8 {c) —2 (d) None of these
(3) g (0) for g(z) = T2 0““’
@2G-1) -1
(4) If f(2) is analytic in domain D, then
(@) fM(z) exists in D

"is
(c) %(1 — i) (d) None of these

(b) £ (z) does not existsin D

(€ f™(z) =0 vneNinD (d) None of these
(53 l-'Z—}-'Z_,,,___.__ _./,F\-rr [2-[(’:.{ o |
' L) — et D =

a.') .
l—Z ‘A "L.-{-'Z-
T e ekt

(6) foc |¢|{_r)
. Wi g ™ C’jr
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2)

b
oF

H

s
—

6)
7

8)

t))

Deseriptive Questions

Lxtablish the tollowing properties ol exponential fanetion @ ¢*,
W eEVHEY e )y pde (h) AV Ed o t.‘“/l.'“":

Prove that e = 0 Vi € €

Prove that ¢ is periodic function with period 2a

Show that

(@) exp (2 ik 3in) = =e®  (bexp ("—*:ﬂ) = J';(I A d)  (e)exp (24 mi) = —exp 2.

exp(2: -+ O] and Jexp(z)] interms of x & y. Then show that lexp (22 -+ 1) -+

=dxN
.

Write
exp(ia®)| L o™ e
Prove that Jexp(=22) <[ ilT Rez > 0

Find all values of'z such that

@ef==2  Mef=14+V3i (©expRe—1)=1
Prove the following identities

() Sin(zy b #a) = sinz, cos 2y - cos 7y sinzy .

(1) cos(iey 1 2y) = CO8 %, COS 3 = sinz, sinz,

(©) sin¥z b cos®z = 1

() sin2z=2sinzcosz

(©) cos 22 = cos*z — sin*z

n =z

(@) 1+ tan®z = sec?z

(W) 1+ cot*z = cosec?z

Show that (1) cos(t) = cos(i D) V z € C

10)sm(z) = sin(i @) itz =i (n=0,%1,£2,..)

1 1) Find all roots of the equation sin z = cosh 4

12) Find all roots of the equation cos z = 2,

13) Give delinition of hyperbolic sin # (i, ¢ sin hz) & hyperbolic cos z (i.¢ cos h z)

! ,
1) Prove that -;—-sin hz =coshz& —cosh z=sinhz
o

x

15) Prove the lollowing identities about sin it 2z & cos vz, where 2 = x4y

W) cos hfz=sinh *z=1

(L) sinh(ay & 29) = sinh 2z cosh 2y & cos h oy sinh 2,
(©) cos (g - #a) = cos h 2z, cos hzy - sinh z, sinh z,
(d) sinh z = sinhcos y - i cos h xsiny

(¢) cos hz = coshzcosy -1 i sin h x siny,

() Isinhz]* = sinh*x 4 sin®y

() lcos h z]* = sin h*x - cos®y

16) Show that (@) sinh(z - wi) = —=sinhz () cosh (z i) = —=coshz (¢)

tnh (2w i) = tanhz

(4)

e
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17) Find all terms of'sin bz & cas bz Justily your answer
18) Find all reots ot the equation
(@ sinkhz=1 (Meoshz=1/2 (¢)cos hz=-2

19)Find Taylor series expansion of following f(z) at z =0

0 e* i)sinz 1) cos #

- - 1 . . . . y
(20)Expand f(z) = —ina Paylor series with centre 2y = 2i.

21) Expand f(2) = {_—z in a Taylor series around z=0.

Scanned by barhScanner

T

e



(a) lim,_,,, f(z) = oo if and only if lim

(c) lim,_,,, f(z) = wif and only if lim,_,

T.Y.B.Sc- Mathematics — Semester VI

Paper 1

Unit-1

. If zy and wy are points in z and w plans respectively then show that

1
7720 f(z)

(b) lim, .. £(z) = wp if and only if lim, o f (5) = wy

1
fQ/z) 0

Suppose w = f(z) is continuous at z, and z = g({) is continuous at {,. If zy = g({y), then show that
function fog is continuous at (.

If a function f: Q — C is continuous at zy € Q and f(z;) # 0 then show that f(z) # 0 throughout some
neighbourhood of z,.

If a function f is continuous throughout region R that is closed and bounded then show that exist a non-
negative integer M such that |f(z)| <M Vz € R.

5. f:A € C - C is differentiable at z, € A. Show that f is continuous at z.

6. Using definition of differentiability, show that if f'(z,), g'(f(zo)) exist then prove that the function

F(z) = g( f (Z)) has a derivative at zy and F'(zy) = g'( f (ZO)) f'(z).

7.Let f: Q c C — C such that f is differentiable at z, € Q. Show that 3 a function 7(z) such that

10.
11.

12.

13.

f(@ = f(20) + f (20)(z — 20) + n(2)(z — 2p) where n(z) > 0 as z - z.

f(2) =ulx,y) + iv(x,y).f'(z) exists at a point zy = xy + iyy. Then prove that the first order partial

derivatives of u & v exist at (x;, yy) and they satisfy Cauchy- Riemann equations u,, = v, , U, = —v,.

y
Also show that f (2) = (Uy) 7=z, + 1(Vy),=;,. Show that the converse is not true.

Q c Cisadomain. If u, v : Q — R are such that

1) Uy, Uy, Uy, v, existand satisfy Cauchy Riemann equations

yr y
i) Uy, Uy, Uy, 1), are continuous on €,

then prove that f(z) = u(x,y) + iv (x,y) is analytic in Q.

If f'(z) = 0 everywhere on a domain D then show that f(z) must be constant through out D.

Suppose that function f(z) and f(z) are both analytic in a given domain D then show that f(z) must be
constant throughout D.

f is analytic throughout on a given domain D. If |f(z)]| is constant on D, show that f(z) must be constant
on D.

If a function f(z) = u(x,y) + iv(x,y) is analytic in a domain D, then show that its component function
u and v are harmonic in D.



1.

14. Show that f(z) = u(x,y) + iv(x,y) is analytic in a domain D if and only if v is a harmonic conjugate
of u.

15. Suppose that v is a harmonic conjugate of u in a domain D and also that u is a harmonic conjugate of v
in D. Show that both u(x, y) and v(x, y) must be constant through out D.

16. Show that v is a harmonic conjugate of u in a domain D, iff —u is a harmonic conjugate of v in D.

17. Let f(z) = u(x,y) + iv(x,y) be analytic in a domainD and consider the family of level curves
u(x,y) = ¢; and v(x,y) = ¢, where ¢y, c; € R. Prove that these families are orthogonal.

Unit-I1

State and Prove Cauchy Goursat theorem. (weaker form ie with the hypothesis of f’(z) being continuous)
(along with a problem)
Let A be an open connected subset of C and f: A — C be an analytic function in A. Let z, € A and r > 0 such

that B(zg,r) € A. Then for any w € (z,7) prove that f(w) = ! fa 1@ 4y (Cauchy Integral

2mi JOB (29 1) z—w
Theorem)
State and Prove extension of Cauchy’s Integral formula. f is a analytic inside and on a simple, closed curve
f(s)ds
(s—2)%°

. o ' 1 .
C, taken in the positive sense. Prove that f (z) = P ) c Further state the result generalizing the

formula to f"(z).

State and prove Taylor’s theorem.
Suppose that a function f is analytic throughout a disk |z — z,| < R, centered at z, and with radius R,. Then
prove that f(z) has the power series representation f(z) = Y., _,a,(z —zy)", |z — zy| < Ry where a, =
[ (z0)

n!

6. w(t):[a,b] = Cis a piecewise continuous function, then show that | fab W(t)dt| < fflw(t)dtl. Use this

ie the series converges to f(z) when z lies in the stated open disk. (Taylor’s theorem).

to prove ML Inequality.
7. Let C denote a contour of length L and suppose that a function f(z) is piecewise continuous on C. If M is

a non negative constant such that |f(z)| < M V z € C at which f(z) is defined then | I c f (2) dz| < ML.

(ML Inequality)

8. State and Prove Cauchy Goursat theorem. (weaker form ie with the hypothesis of f(z) being continuous)
9. State Cauchy Integral formula (extension). Hence, prove that
(i) If a function f is analytic at a given point then its derivatives of all orders are analytic at that point too.
(ii) If a function f(z) = u(x,y) + iv(x,y) is analytic at a point z = (x, y), then the componenet functions u
and v have continuous partial derivatives of all orders at that point.

(iii) (Cauchy’s Inequality) Suppose that a function f is analytic inside and on a positively oriented circle
Cg, centered at z, and with radius R. If My denotes the maximum value of |f(z)| on Cg then |f™(zy)| <

PMR n =123, ...

Rn '’




Unit-111

1. If the power series Yo @, (z — o)™ converges for z = z;(# z;), then it is absolutely convergent for
each z € B(zy, Ry) where Ry = |z; — z;|

2. If z; is a point inside the circle of convergence |z — z,| = R of a power series Yoo @, (z — zy)™ then
show that the series must be uniformly convergent in the closed disk |z — zy| < Ry, where Ry = |z —
Zg|-

3. A power series ). —o @, (z — zy)" represents a continuous function S(z) at each point inside its circle

of convergence |z — zy| =71

4. Let C be a simple closed curve in the interior of the disc of convergence of the power series S(z) =
YoroQn (z—29)" and let g(z) be any function which is continuous on C. Then the series
Ym=09(2)a,(z — zy)™ can be integrated term by term over C and

j 9(2)S(z)dz = i jog(z)an(z — z)"dz.

c n=0n=0
5. Let C be a simple closed curve in the interior of the disc of convergence of the power series
S(2) =Y2 pa,(z—z)" S (z) = ¥*_na,(z — z,)" Y (Term by term differentiation of Power Series in

the interior of its disk of convergence)
6. If a series ), a, (z — zy)"™ converges to f(z) at all ponts within the disc of convergence |z — zy| < R then
it is the Taylor series expansion for f centered at z,y. (Uniqueness of Taylor series expansion)
7. State Laurent’s Theorem. (with problems on Laurent’s expansion in different domains)
8. State Cauchy’s Residue Theorem (with problems)

9. Define
(a) An isolated singular point (b) a removable singularity
(c) apole (d) an essential singularity

with problems

Note :2 results may be combined for appropriate weightage

Problems may get added or theory bits may get combined /shuffled depending on the weightage



US/AMTP602 Algebra Sem VI Revised syllabus 2016-17

Practical no 1. Normal subgroups and Quotient groups

1. Let Hy ={I,(12)} and Hy = {I,(123),(132)}. Then
(a) Hi, Hy are normal subgroups of Ss.
(b) H; is a normal subgroup of S5 but H, is not a normal subgroup of Ss.
(¢) Hi, Hy are not normal subgroups of S3
(d) H; is a normal subgroup of S3 but H; is not a normal subgroup of Ss.
2. Let Hy ={oc €S, :0(n) =n},Hy={0c €S, :0(k)=k, forsomek, 1 <k <n}.
Then
a) Hy, Hy are normal subgroups of .S,,.

(a)
(b) H; is a normal subgroup of S,, but H; is not a normal subgroup of S,,.
(¢) Hi, Hy are not normal subgroups of S,

)

(d) Hs is a normal subgroup of S,, but H; is not a normal subgroup of S,,.

3. Let G = ——  H = =

507 2 = 207 (under addition). Then order of quotient group o

@) 4 (b) oo (¢) 5 (d) 20

4. Let H be a normal subgroup of G. Let |aH| =3 in & and o(H) = 10, then order of
a is
(a) 1 (b) 30
(c) one of 3,6, 15 0or 30  (d) none of these.

5. Let G be a group of order 5. If ® : Z3y — G is a group homomorphism, then ker &
has order
(a) 5 (b) 30or6 (c) 30or5 (d) 1

6. Let G be a finite group. If f; : G — Z19 and fy : G — Z;5 are onto group homomor-
phisms, then order of G is
(a) 30k, where k € N (b) 5% where k€ N (¢) 10or 15 (d) 5

ZlS
<6 >

7. In the quotient group (under addition), the order of the element 5+ < 6 > is

(@) 5 (b) 6 ()2 (d)3

8. Let H be a subgroup of order 29 of a group G. If K is a subgroup of H, then

(a) K is abelian and normal subgroup of G.
(b

) K is normal subgroup of H.
(c¢) K is cyclic but may not be a normal subgroup of H .
)

(d) H is normal subgroup of G and K is normal subgroup G.

9. Let G = GLy(R), K — {(g 2) :a,b,deR,ad#O},H - {(é Zl’) :beR}.



10.

11.

12.

13.

14.

15.

16.

(a) H is a normal subgroup of K and K is a normal subgroup of G.
(b)

(©)

(d) None of these.

H is a normal subgroup of K but K is not a normal subgroup of G.

H is a not normal subgroup of K but K is a normal subgroup of G.

Let H be a normal subgroup of a finite group G. If |H| = 2 and G has an element of
order 3 then

(a) G has a cyclic subgroup of order 6.

(b) G has a non-abelian subgroup of order 6.
(c¢) G has subgroup of order 4.

(d) None of these.

Let G be a group of order 30. If Z(G) has order 5, then

(a) Z(GG) is cyclic.  (b) 7(G) is abelian but not cyclic.
G
(c) 7(G) is non-abelian.  (d) None of these.

Let G = GLy(R), H ={A € G : detA € Q}, then
(a) H is a normal subgroup of G.  (b) H is not a subgroup of G.
(c) H is a subgroup which is not normal in G. (d) H C Z(G).

Let G = GLy(R), H={A € G : detA =2"3", for some m,n € Z}, then
(a) H is a normal subgroup of G.  (b) H is not a subgroup of G.
(c) H is a subgroup which is not normal in G. (d) H C Z(G).

Let G = U(16), H = {1,15}, K = {1,9}, then

(a) H, K are isomorphic groups and T e isomorphic groups.

(b) H, K are not isomorphic groups but —, 7 are isomorphic groups.

H

(c) H is not isomorphic to K.
G G

(d) i not isomorphic groups.

Let H = {(Z 2) ca,b,e.de QZ} ,G = My(Z), under addition of 2 x 2 matrices.

The quotient group T has
(a) 4 elements (b) 16 elements (c) 12 elements (d) 8 elements

Let G = Dy = {e,a,a? a3 b,ab,ab, a®b}, a* = e = b%, aba = b, H = {e, b, a*b,a*}, K =
{e,b}

(a) K is normal in H and H is normal in G. (b) K is not normal in H.
(c) K isnormal in G. (d) H is not normal in G.

Sem VI Algebra Page 2 of 5



17. The quotient group <%,+> is

(a) an infinite group in which only identity is of finite order.
(b) is an infinite cyclic group of finite index.

(c) an infinite group in which every element is of finite order.
(d) None of these.

Practical 1 Descriptive Question

a b

1. Let G = GLy(R),K = {(0 y

normal subgroup of G.

2. LetG—{(g Z) :a,b,deR,ad#O},H—{(é l;) :bER}. Prove that (i) H

is a normal subgroup of G. (ii) T is abelian.

) ca,b,d € R, ad # 0}. Prove or disprove: K is

- - Z
3. Find the order of 5 4 (14) in ——.

(14)

— o . L
4. Find the order of 14 + (8) in ——.

(8)
5. In the following examples show that K is a normal subgroup of H and H is a normal
subgroup of GG, but K is not a normal subgroup of G.
(i) G =D, ={e,a,a? a b,ab,a®b,a®b},a* = e = b* aba = b, H = {e, b, a®b, a*},
K = {e, b}.
(ii) G = Ay, K ={1,(12)(34), (13)(24), (14)(23)}, H = {1, (12)(34)}.

6. Let Qg = {+1,+i,4j, £k},i2 = j2 = k2 = —1 = ijk. Show that

(i) Z(Qs) = {1, -1}.

(ii) Every subgroup of Qg is normal in Qs.

7. Let H = {(Z Z) ca,b,c,de QZ} ,G = My(Z), under addition of 2 x 2 matrices.

Find order of the quotient group 7 and describe T

8. LetG:{(g 2) :a,b,dER,ad#O},H:{((l) 11)) :beR}. Prove that H is a

~Y

normal subgroup of G and 7= (R, ) (the group of positive real numbers under
multiplication).

*

9. Show that
Ty

>~ R*, for the multiplicative groups R* =R — {0}, R™ of positive

reals.

10. Show that A4 has no subgroup of order 6.

Sem VI Algebra Page 3 of 5



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Show that order of each element of the quotient group % is finite.

Let G be a cyclic group of order 36 generated by a. Let H = (a®). Describe the

quotient group T

G = A, K = {1,(12)(34), (13)(24), (14)(23)}, H = {I,(12)(34)}. Show that % =
Ag.

S
Let H be a normal subgroup of Sy, o(H) = 4. Prove that ﬁ = Ss.

Show that % has a unique subgroup of order n for each positive integer n.

Let G be a finite abelian group of order n. If 23 = e Vo € G, show inductively that
the order of G is 3* for some k € NU {0}.

Let K be a cyclic subgroup of a group GG which is normal in G. Show that any
subgroup H of K is a normal subgroup of G.

Let G be a subgroup s.t. (ab)® = a"b" for some position integer n. Show that
G(n) = {z" /x € G} is a normal subgroup of G.

Let H and K be subgroup of a group G such that H N K = {e} then show that
hk =kh, he H , k € K.

Suppose G/Z(G) is cyclic then prove that G is Abelian. Further if G is a group of
order 30 and Z(G) has order 5 Show that G/Z(G) is cyclic.

Let H be a normal subgroup of G of order 2. Show that H C Z(G). Further if G is
of order 10 show that G is Abelian.

If H is a subgroup of G such that 22 € H for each x € G then show that H is a
subgroup of G and G/H is Abelian.

Prove that the map 6 : GLy(R) — (R*,-) given by (A) = det A is an onto homomor-
phism. Prove SLy(R) is a normal subgroup of GLs(R).

Let G be a subgroup and H = {g? / g € G} is a subgroup of G. Show H is normal in
G.

Let H be a normal subgroup of a finite group G. If G/H has an elements of order n
show that G has an element of order n.

Let G =< a > be a cyclic group of order 21. LetH =< a” >. Find the order of
element a®H in the quotient group G/H.

Let G =< a > be a cyclic group of order 24. Let H =< a'? > and K =< a5 >.

(i) In G/H, find orders of a*H,a*H,a*H,a°H.
(ii) In G/K, find orders of a’K,a*K,a*K,a’ K.
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28. Show that the map ¢ : Q — S; defined by ¢(m/n) = e*™™/" where m/n €
Q,(m,n) = 1 and S*' = {2z € C |z|*> < 1} is a homomorphism of groups (Q,+)
and (S!,-). Find ker ¢ ,Im ¢.
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Practical no 2. Cayley’s theorem and external direct product of

10.

groups

.Z2><Z2><Zghas

(a) 3 subgroups of order 2. (b) 7 subgroup of order 2 (c¢) 6 subgroups of order
2. (d) 9 subgroups of order 2.

The order of any non-identity element in Zs x Zg is
(a) 3 (b) 9 (c) 6 (d) none of these.

. Which of the following statements is false?

(a) Zs X Zs is isomorphic to Zy5  (b) Zs X Zs is isomorphic to Zg
(¢) Zg X Zg is isomorphic to Zy;  (d) Z4 X Z3 is isomorphic to Zio

The group S5 X Zs is isomorphic to

(a) Z1s (b) Ay (¢) Dg (d) Zg x Zs

Let Gy = Z4 X Z15 and Gy = Zg X Z1g, then
(a) G and G3 are cyclic groups of order 60.
(b) G7 and G5 are not cyclic groups.
(c¢) Gy is cyclic but Gy is not cyclic group.
(d) Gy is not cyclic but Gy is a cyclic group.

. Which is true about groups?

(a) Zy X Zsy is isomorphic to V; X Zs.

(b) Zy X Zy X Zs is isomorphic to Vy X Zs.
(¢) Vi X Zs is not isomorphic to Zy X Zs.
)

(d) Dy (the dihedral group of order 8) is isomorphic to Quaternion group Qg of
order 8.

. A group of order n is isomorphic to

(a) a subgroup of Z, x Z,. (b) a subgroup of A,.
(c¢) a subgroup of D,,.  (d) a subgroup of Zs,

. Zs is isomorphic to the following subgroup of S3

(a) < (12) >. (b) <(13) > (c) A3 (d) Sj itself.

. A group of order 4 in which every element satisfies the equation 2> = e is isomorphic

to

(a) Zy X Zy.  (b) pa, the group of forth roots of unity under multiplication.
(c) (Zs,+) (d) {1,3,7,9}.

The smallest positive integer n for which there are two non-isomorphic groups of order
n equals.

(@) 2 (b)4 ()6 (d)8



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

For each positive integer n,

(a) There is a cyclic group of order n.  (b) There are two non-isomorphic groups
of order n.
(c) There is a non-abelian group of order n. ~ (d) The number of non-isomorphic

groups of order n is equal to n

A non-cyclic group of order 6 is isomorphic to
(a) Z3 X Zy  (b) ug, the group of sixth roots of unity under multiplication.

(c) U(14) = {1,3,5,9,11,13}. (d) Ss

Let G = Zs X Z5,Go = Z3 X Zg. Then
(a) Gy is isomorphic to Zi5 and Gy is isomorphic to Zsy.
(b) G; and G5 are not isomorphic to Zis, Zyr respectively.
(¢) Gy is not isomorphic to Zs5 but Gg is isomorphic to Zgy
(d) Gy is isomorphic to Z;5 but G5 is not isomorphic to Zg;

The number of elements of order 4 in Zg X Z4 is
(a) 4 (b) 8 (c) 20 (d) 16

Consider the following groups i) Z4 ii) U(10) ii) U(8) iv) U(5). The only non-
isomorphic group among them is
(a) U) (b) U(10) (c) Z4 (d) All are isomorphic.

Consider the following groups i) Ss ii) pg ii) Zg iv) Zo x Z3 v) U(9). The only non-
isomorphic group among them is
(a) Sz (b) we (¢) ZaxZs (d) S3=~U(9) and pg,Ze, Zo X Z3 are isomorphic. .
If for positive integers m,n have Z,, X Z, is isomorphic to(Z,,,, +) then which is not
true,
(a) m,n are relatively prime.
(b) m,n are odd.
(c) m,n are prime.
(d) m =p",n = ¢° for primes p,q and r, s € N.
Let G =74 x Zy and H = Z4 x {0,1}, K =< (1,2) > be subgroups of G Then
(a) G/H is isomorphic to G/K (b) G/H is isomorphic to Zy X Zs
(¢c) H and K are isomorphic.  (d) none of these.

From the given list of pairs group, pick the pair of non-isomorphic groups
(a) 3Z/127Z and Z, (b) 8Z/A8Z and Zg
(¢) Zyand Vy (d) (Z x Z)/(2Z x 27) and Zs X Zy

From the given list of pairs of groups, pick the pairs of isomorphic groups
(a) ZQ X ZQ X ZQ and Z4 X ZQ (b) Zg and Z4 X ZQ
(C) D4 and Z4 X Zg (d) ZQ X ZQ X Zg and ‘/4 X ZQ

Practical 2 Descriptive Question
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ro

10.
11.

12.

(a) Find all subgroup of order 2 in the group Zs X Zg X Zs
(b) Find all subgroups of order 4 in the group Z4 X Zj.

(c) Prove or disprove: Z x Z is a cyclic group.

(a) Find a subgroup of Sy isomorphic to i) Z, ii) V.
(b) Find a subgroup of Sy isomorphic to Z.

Find the left Cayley representation of S35 in Sg.
Find the Cayley representation of Zs in Sj.
Check whether ,

(a) Z3 X Zg and Zo; are isomorphic groups.

(b) Zs x Zs5 and Z;5 are isomorphic groups.

Show that ¢ : Z x Z — 7 defined by ¢(a,b) = a — b is a group homomorphism. Find
Ker ¢ and describe the set ¢(3).

Let Gy x Gy, where Gy = (Z4,+), Gy = {1,3} modulo 4 under multiplication. Let
H =< (2,3) > K =< (2,1) > be subgroups of G. List elements in H and K,G/H
and G/K. Show that H is isomorphic to K but G/H is not isomorphic to G/K.

Show that Zg x Z4 and Zs 0,000 X Z4,00,000 have same number of elements of order 4.
Find all subgroups of order 4 in Z, X Zj.

Find the number of elements of order 2 in Zs 99,000 X Z4,00,000-

Find a subgroup of Zy X Z4 X Z15 of order 9.

Let m, n be fixed positive integers. Consider the map ¢y, ,, : Z — Z,, X Z,, defined by
Omn(z) = (x mod m,x mod n). Show that ¢,,, is a group homomorphism. Find ker

D
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NES RATNAM COLLEGE OF ARTS, SCIENCE & COMMERCE, BHANDUP-78
)
Paper I1 Practical No.3 Semester VI
Rings, Subrings, Integral Domains
Objective Questions

. Let R be aring and a, b be non-zero elements of R. The equation ax = b has
a) a unique solution in R

b) at most one solution in R

¢) may have more than one solution in R

d) None of the above

. The group of units of the ring Z,5 is
a){1,3,5,7,23}mod 25

. The group of units of a ring is
a) abelian but may not be cyclic (b) Cyclic (c) may not be abelian (d) finite

. Consider the ring M,(Z) = {(Ccl Z

Then A € M, (Z) is a unit iff

(a)detA #0 (b)detA=1 (c)detA >0 (d)detA = +1

. Consider the following rings

(1) (ZSI +,) (i1) (ZISi +,)

(i11) Z X Z under component wise addition and multiplication (iv) R[x]

Then

(a) (1), (iv) have no proper zero divisors. (b) (1), (ii1) have no proper zero divisors
(¢c) (1), (i1) have no proper zero divisors (d) (), (ii1), (iv) have no proper zero divisors
. The number of units in the ring Z, is

(a5 (b) 6 ()7 (d) 8

. Which of the following is a subring of Q(+,")

AR = {% ;a,b €7Z(a,b) =1, bisnot divisible by 3}

) =a,b,c,d € Z} under addition and multiplication of 2 X 2 matrices.

(ii) R = {% sa,b €Z(a,b) =1, b % 0,b is divisible by 3}

(i) R = {x? : x € Q}

(v)R = {% =a,b €Zb+0 (a,b) =1 aisdivisible by 3}

(a) (1) and (iv)  (b) (i1) and (iv)  (c) (i) and (ii))  (d) only (i)

. Let R and S be rings. Consider R X S under componentwise addition and multiplication
(1) If R and S are integral domains then R X S is an integral domain.

(i1) R X § is an integral domain iff R and S are integral domains.

(iii) R X S is not an integral domain whatever R, S may be.
(iv) R X S is not commutative even if R, S are commutative.



9. Let R be an integral domain, then the equation x?> =1 has
(a) exactly two solutions (b) may not have any solution
(c) may have more than two solutions (d) None of these
10. Consider the following rings
() Zyg (1) Zyp (D) Zygg (iv) Z14 Then
(a) (1), (i1), (ii1) ,(iv) have nilpotent elements (b) (i), (ii) have nilpotent elements
(c) (iii), (iv) have nilpotent elements (d) None of these
11. In an integral domain the number of elements which are their own inverses is
(a) 1 (b)lor2 (c) infinitely way (d) cannot say

12. In aring (Z,, +, *) where n is a positive integer > 1
(a’?=a=a=0ora=1fora € 7Z,.
(i)a-b=0=a=0orb=0forab €Z,.
(iia-b=a-¢,a #=0= b = cforb,¢ € Z,. Then,

(a) the statements (i), (ii), (iii) are true.
(b) the statements (i) is true but (ii), (ii1) may not be true.
(c) the statements (1), (i1), (ii1) are true if n is prime.

(d) None of the above
13. If R is aring and a, b are zero divisors in R, then
(a) a + b is always a zero divisor (b) a + b is not a unit in R
(c) a + b may not be a zero divisor (d) None of these
14. In the ring R = {(g Z) :a,b,d € ZZ}, the number of non-zero divisors is
(a) 6 (b) 7 ©3 (d) None of these
15. If x is an idempotent element in Z,,(x? = x), then
(a) 1 — x is a unit (b) 1 4+ x is a unit (¢) 1 — x 1s a idempotent (d) None
of these

16. Let R be a commutative ring such that a?> = 0 = a = 0 V a € R. then
(a) R has no proper zero divisors (b) R has no nilpotent elements
(¢) R is an integral domain but not a field (d) None of these

17. Consider the rings Ry = (Z1y, +,"), R, = (Z3,+,"),R3 = M,(Z),R, = Z X Z under
component wise addition and multiplication.
(a) Ry, R, R3, R, are all integral domains (b) Only R,, R3, R, are integral domains
(¢) R, is an integral domain (d) Ry, R, are integral doamins

18. Let R be an integral domain of characteristic p. Then,
@ x+y)m=xm+y™ Vx,y € Rifand only if m = p.
b)) (x+y)"=x"+y™ Vx,y €Rifand m = kp.
©) (x+y)P" =xP" +y?" Vx,y €R and foralln € N.
(d) None of the above

19. Consider the subset S = {0, 2,4, 6, 8} of Z,.
(a) S is a subring of Z;



(b) S is not a subrings of Z. ~
(¢) S is a subrings with multiplicative identity 6.
(d) S is a ring with multiplicative identity 6.

20. Let R be a commutative ring such that a’? =0 = a = 0 for a € R. then,
(a) R has no proper zero divisors (b) R has no nilpotent elements
(c) R is a an integral domain but not a field (d) None of these

21. Let R be a ring in which x? = x for all x € R. Then,
(a) R is an integral domain with characteristic 3.
(b) R is field with characteristic 3.
(c) Characteristic of R is 2.
(d) None of these

22.InaringR = {(g Z

(a) 6 (b)7 (©)3 (d) None of these

) ta,b,d € ZZ}, the number of zero divisors are

23. The characteristics of the ring Z, X Z,5 under component wise addition and
multiplication is
a) 180 b) 3 c) 60 d) 5.

DESCRIPTIVE QUESTIONS

1) Let R(+,") be aring. Show that R(,() is a ring where
a@b=a+b—1, a®Ob=a+b—ab
2) a)LetR bearing. If x> = x Vx € R, show that R is commutative .
b)Let R be aring. If x* = x Vx € R, show that R is commutative.
c)Let R be aring in whichab = ca = b = cfora,b,c € R, a # 0. Show that R is
commutative.
d) If R is ring with more than one element. If ax = b has a solution for all non-zero
a € R and for all b € R, then show that R is a division ring.

3) Show that Z X Z under componentwise addition and multiplication is a ring. Is it an
integral domain? Justify your answer.
4) Show that R, = {m/n:m,n € Z; (m,n) = 1;p t n} for a fixed prime p is a ring.
5) Show that Z[i] + {a + bi : a,b € Z} is a integral domain.
6) a) Show that a ring that is cyclic under addition is commutative.
b)Let R be a ring having 6 elements. Show that R is commutative. Is R an integral
domain? Justify your answer
7) Show that every non-zero element in Z, is either a unit or a zero divisor.
8) Let R be an integral domain and a,b € R
() Ifa” = b7,a'? = b*? show thata = b
) Ifa™ =b™, a™ =b™, m,n €N (m,n) =1,thena=>b

9) LetH = {(—iw 1;_/) ,Z,Ww €C } Show that H is a non-commutative subring of M, (C)

which is a division ring.



a
b
multiplication and modulo 7 addition and multiplication of entries is commutative

ring. Is R an integral domain? Justify your answer.

What happens If R = {(—ab Z) ta,b € ZS}.

10) Show that R = {( _ab) ra,b € Z7} under usual matrix addition and

11)a)Let R be a commutative ring. If u is a unit and a is nilpotent in R. Show that u + a
is unit.
b)If a, b are nilpotent elements of a commutative ring, show that a + b is also nilpotent.
Give an example to show that this may fail if the ring is not commutative.
c)Let x be a non-zero element of a ring R. If there exists a unique y € R such that xyx =
x, then show that x is invertible in R.
d)Determine all zero divisors, units and idempotent and nilpotent elements of the
following rings-
1) (Zqg,+,) (i1) Z3 X Z¢ under component wise addition and multiplication.
(iii) F X F where F is a field (iv) (P(X),+,n)
e) Find zero divisors, idempotent, nilpotent elements in Z3 @ Zg.
f) Find two elements a and b in a ring such that both a and b are zero-divisors,a +
b # 0, and a + b is not a zero-divisor.

12) a) Let a belong to a ring R with unity and a™ = 0 for some positive integer n. (Such
an element is called nilpotent.) Prove that 1 — a has a multiplicative inverse in R.
(Hint: Consider (1 —a)(1+a +a?+ -+ a™1).]
b)Show that the nilpotent elements of a commutative ring form a subring.
¢) Show that O is the only nilpotent element in an integral domain.

d) Aring element a is called an idempotent if a?> = a. Prove that the only
idempotents in an integral domain are O and 1.

e) Find a zero-divisor and a nonzero idempotent other than 1 in

Z5[l] = {a + bi |a,b € Z5,i2 = —1}

f) If a is an idempotent in Z,,, show that 1 — a is also an idempotent.
14. Let R be an integral domain with characteristic 2. Show that-
(@) (a + b)?> =a? +b?Va,b €R.
(b) S = {a € R a? = a} is a subrings of R.

15. Determine all subrings of the following rings
(a) (le, +!) (b) (Z7) +)) (C) (ZI +1)

16. In the following examples, show that S is a subring of given ring R

(i) S = {(a b):a,b,c,d E]Rs.t.a+c=b+d},R = M,(R).

c d
(ii)Sz{(Z 2):a,b € R} R = My(R)

i s ={(¢ *"):abeq} R=Mm@



(iV)S={%:a,b €7 (ab) =1, bodd}Rz@
(V)S={%:a,b EZ,biO(a,b)=1,beven}R=Q

17. Show that Z[\/f] has infinitely many units. every (3 + Zx/i)nis a unit where n is a
positive integer.
18. a) Prove or disprove: If R is a ring with characteristic P, R is finite.
b)Consider the ring R = {0,2,4,6,8,10} under addition and multiplication modulo
12. What is the characteristic of R.
c)Let R be aring in which x* = x V € RFind characteristic of R.
19. Give example —
(a) of a finite ring which is non-commutative
(b) of aring R such that a?> = a forall a € R.
(c) of a commutative ring without zero-divisors that is not an integral domain.
20. Let x and y belong to an integral domain of prime characteristic p.
(a) Show that (x + y)P = xP + yP.
(b) Show that, for all positive integers n, (x + y)pn = xP" + ypn.
() Find elements x and y in a ring of characteristic 4 such that (x + y)* # x* +
vt
(d) Let R be an ID of characteristic 2 Show (x + y)? = x2 + y2. further show (x + y)2" = x2" +
y2" vn €eN.
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Paper I1 Practical No.4 Semester VI
Ideals, Quotient Rings, Homomorphism and Isomorphisms of rings
Objective Questions

1. Consider the ring Z X Z under component wise addition and multiplication.
LetI = {(a,—a) = a € Z}
J={(a,0) =a €Z}
(a) I and J are ideal of Z X Z (b) I and J are subrings of Z X Z
(c) neither I nor J are ideal of Z X Z (d) J is a subring of Z X Z, but I is not

2. Consider the ring M,(Z) = {(Ccl Z) ta,b,c,d € Z}
Let] = {(Z Z) :a,b,c,d are divisible by 5} . Then

(a) I is a subring of M,(Z) but not an ideal of M, (Z)
(b) I is an ideal of M,(Z) but not a subring.

(c) I is not an ideal of M, (Z)

(d) I is both a subring and an ideal of M, (Z).

3. Consider the ideals I = 10 Z and | = 12Z then
(@I1+]=22Z 1]=120Z (b)I+]=2Z [] =60Z
©I1+]=2Z 1] =120Z (d) None of these

4. In the ring of integers Z, consider the ideals [ =4Z + 6Z,] = mZ + nZ, m,n €
IN. Then,

a)l =2Z, ]=dZ, where d =gcd of m and n.
b)l =24Z, J=mnZ

)1 =12Z, ] =+¢Z where £ =Icm of m and n.
d) None of these.

5. In the ring of integers Z, consider the ideal I = (6Z) (4Z)
a)l = 24Z b) I = 12Z o)l =2Z d) None of these

6. The number of ring homomorphisms from Z @ Z X Z are

@0 (b) 1 (c)2 d)3
7. The number of ring homomorphisms from Q to itself are

(a) 1 (b) 2 (c) infinitely many (d) none of these
8. The number of ring homomorphisms from C to itself are

(a) 1 (b)2 (c) infinitely many (d) none of these
9. From the following pairs of rings, the isomorphic pair is

(a) Z[v2] and Z[V5] (b) Zg @ Z4 and Lo,

(©) R and C ) R ={(Z _ab) :a,b eR} and C

10. The Kernel of the ring homomorphisms

¢: R[x] >€ defined by ¢(f (x)) = f(2 + i) is
(a) The principal ideal (x? + 2x + 1)



(b) the principal ideal (x — 2)
(c) the principal ideal (x? — 4x + 5)
(d) the principal ideal (x? + 4x + 1)
11. Consider the following maps from M, (Zp) — Z, defined by

f=(CCL Z)=a, g(ccl Z)=a+d,h(ccl Z)=detA

(a) f, g, h are all ring homomorphisms.
(b) f is a ring homomorphisms, g and h are not
(c) only h is a ring homomorphism
(d) none of these
12. Consider the following pairs the rings.

() Z[v2] and Z[V5].(ii) Z[v=2] and Z[V-5].

(i) Q and R.

. _([a b

(iil)) (@{Av) M and C where M = {[—b a] la,b € ]R}.
Then

(a) (1) and (iv) are isomorphic pairs of rings.

(b) (1) and (i1) are isomorphic pairs of rings.

(c) Only (iv) is an isomorphic pair of rings.

(d) (1), (11) and (iv) are isomorphic pairs of rings.

13. Let Z[x] and Z,[x] denote polynomial rings. The map @,, : Z[x] - Z,[x] defined by
@, : Z[x] - Z,[x] defined by @, (ag + ayx + -+ + axx®) = ag + ayx +.... +agx",
where a; = a; mod n, for 0 < i < k, is a ring homomorphism only if

(a) nis prime. (b) n is a positive integer (c) n is odd. (d) n is even.
. . Z[i] .
14. The quotient ring o
(a) An integral domain which is not a field. (b) a field having 2 elements.
(c) a field having 5 elements. (d) a ring with proper zero divisors.

15. The kernel of the ring homomorphism @ : R[x] — C defined by @(f(x)) = f(2 + i) is
(a) The principal ideal (x — 2).

(b) The principal ideal (x* — 4x + 5)

(c) The principal ideal (x? — 4x — 5)

(d) The principal ideal (x? — 4x + 2).

16. Consider the maps 7, : Z X Z — Z and i,: Z — Z X Z defined by 7, (m,n) =
m, i;(m) = (m, 0)where Z X Z denotes the ring with componentwise addition and
multiplication.

(a) my and i; are ring homomorphisms

(b) Both y and i; are not ring homomorphism

(c) m4 is a ring homomorphism but i; is not a ring homomorphism

(d) i4 1s a ring homomorphism and 74 is not a ring homomorphism

17. The number of ring homoomorphisms from Z to Z are
(a) One (b) (c) two (d) None of these



18.

Consider the ring homomorphism @ : R[x] — R defined by
O(ag +ax + - +ax™) =ap+a, ++ay,.

Then ker @ is

(a) principal ideal (x)
(b) principal ideal (x + 1)
(c) principal ideal (x — 1)
(d) None of the above.

1.

2.

3.

DESCRIPTIVE QUESTIONS

Check whether following sets are ideals of the ring Z X Z under component wise addition
and multiplication.

@I={(aa):a €z} (b) I ={(2a,2b) : a,b € 7}

() I ={(2a,0) : a € Z} dI={(a,—a):a€l}
Check whether of the following are ideals of the polynomial ring Z[x].

@I={f(x) =ayg+a;x+--a,x™ € Z[x]: 3|ay}.

b)I ={f(x) =ay+a;x + - a,x™ € Z[x]: 3|a,}.

©I={f(x) =ay+a;x+ - a,x" € Z[x]: f(0) = 0}.

@I={f(x)=ay+ax+ - a,x™ € Z[x]: Yj-pa; = 0}.

(a) Let R be a commutative ring and a € R be non-zero. Show that, annihilator of
a,ann(a) = {r € R : ra = 0} is an ideal of R.

(b) If A, B are ideals of a commutative ring R such that R = A + B, show that AN B = AB.
(c) Let A and B be ideals of aring R. If AN B = {O}then show ab = 0whena € Aand b €

10.

11.

B.

LetS ={a+bi|a,b € Z,biseven}. Show that S is a subring of Z[i], but not an ideal
of Z[i]

_((a b
Show that I = {(c d
M,(Z)
Show that I = {(

) ra,b,c,d € Z, a,b,c,d are even integers} is an ideal of

8 g) ta € R} is an ideal of the ring R = {(

0 d
Show that [ = {(Ccl Z) : a,b,c,d € Zare divisible by 5} is an ideal an M, (Z).

Is I ={4a + bi : a,b € Z} an ideal of Z[i]? Justify your answer.

a b) :a,b,de ]R}.

Let R be aring and I be an ideal of R. Show that I™ = {Z’le a1z i = a;j €ELRE
N} is an ideal of R.

Let R be a commutative ring and S be the set of all nilpotents elements of R. Show that S
forms an ideal of R.Is S a subring of R? Justify your answer.
Z[i]

Find the characteristic of ——
(2+1i)



12. Show that the following are isomorphic:
(a) Rings Z[\/E] = {a + bV2|a, b € Z}, H = {[Z Zf] la,b € Z}.

(b) Rings R = {[_a z] la,b € ]R} and C.

b
13. Prove or disprove:

(a) The map @ : M,(Z) — Z defined by @ ([? Z ) = a is a ring homomorphism.
(b) LetR = {[g lc)] la,b,c € Z}. The map @ : R — Z defined by @ ([g IZD = aisaring

homomorphism.
a, a
14. Consider the map @ : R[x] - M,(R) defined by @(ag + a;x + - + a,x™) = 00 a(l)]'

Show that @ is a ring homomorphism. Determine Ker @.

15. Let R be a commutative ring of characteristic p. Show that the map f : R — R defined by
f(x) = xP is a ring homomorphism.
16. Show that the following maps are ring isomorphism

(a)LetRz{(_ab Z):a,b € R} f:R - Cdefined by f(_ab Z)=a+bi

o) LetR = {(¢ Zab):a,b €7} f:R - Cdefined by f zab)=a+bx/i

17. Determine whether the following pairs of rings are isomporphic
(i) Z[v2] and Z[V5] (i) Z[V—=2] and Z[V=5]  (iii) Z4 X Z¢ and Z,
(iv) R(+,)) and Q(+,") (v) R(+,7) and C(+, )
18. Show that the union of ideals of aring R inachainl; € I, € --- € [, € [,,,1 1s an ideal.
19. Let R be a commutative ring and / be an ideal in R.
(i) Showthat ] ={x ER:xa =0 Va €I}isanideal in R.
(ii) Show that ] = {x € R : x™ € I for some n € N}is an ideal in R.
20. Find all ideals of the ring Z/ 127 using correspondence Theorem.

21.LetR={(g Z),a,b,d € Z} show that ¢ : R > Z X Z defined by ¢ (& b

¢ 0)=
is a ring homomorphism. Find ker ¢.
22. Show that Z[i]/(2 + i) is a finite field, where (2 + i) = {2+ i)(m+in):m+in € Z[i]}



10.

Paper 11 Practical No.5 Semester VI
Prime and Maximal Ideals, Divisibility in Integral Domains
Objective Questions

Let R = My(Z) and I = {(‘C‘ Z

(a) I is not an ideal. (b) I is a prime ideal but not a maximal ideal.
(¢) I is a maximal ideal (d) I is an ideal but not a prime ideal.

) :a,b,c,d are inZ and are divisible by 5} Then

Let R be a commutative ring. If 0 is a maximal ideal then
@R=0 (b) R is a finite non-zero ring

(¢) R is a field (d) R is an integral domain which is not a field.
The number of maximal ideals in Z,4 are

(a)4 (b)2 ©1 (d)3

_ _ (1 0y,
Let R = M,(Z,) and [ = {(0 o) A:A € R} Then
(a) I is not an ideal in R. (b) I 1s a prime ideal which is not maximal.
(c) I is a maximal ideal (d) I is an ideal but not a prime ideal

Let R = C[0,1],] = {f ER:f G) = O} C[0, 1] = Ring of continuous real valued functions on

[0, 1] under pointwise addition and multiplication.

(a) I is not an ideal in R (b) I is a prime ideal which is not maximal
(c) I is a maximal ideal (d) I is an ideal but not a prime ideal

If R is an integral domain and ] is a proper ideal then

(a) R/I is an integral domain (b) R/I is a field

(c) R/I is finite (d) R/I may not be commutative

Let R be a finite commutative ring. Then

(a) R is a field (b) 0 is the only proper ideal of R
(c) every prime ideal is maximal (d) R is an integral domain

If P; and P, are prime ideals in a commutative ring R. then
(a) Py U P, and P; N P, are prime ideals in R.

(b) P; N P, may not be a prime ideal in R

(c) P, N Py is a prime ideal in R but P; U P, may not be

(d) None of these

LetS={a+bi:ab €Zab are divisible by 5}. Then,
a) S is not an ideal but is a sub ring of Z[i ]

b) Sis anideal as well as subringof Z [ 1]
c¢)Sisanideal of Z [ 1]

d) None of these.
Consider the ring M, (Z) = {(S Z) ta,b,c,d € Z}.
Letl = {(CCL Z) ta,b,c,dare even integers}

a) [ is not an ideal of M, (Z).
b) L is an ideal of M, (Z) which is not a prime ideal.



b) Iis a prime ideal in M,(Z)
d) None of these.

11. Let R be a commutative ring. If {0} is a maximal ideal in R, then
a) R is a finite ring
b) R is a field
¢) R is an integral domain, which is not a field
d) None of these

12. The number of maximal ideals in Z,, are
a)2 b)4 )1 d) None of these

13. Let F be a field. In the ring F X F under component wise addition and multiplication, the
number of maximal ideal are
a) l b) 2 c)3 d) 0.

14. Let R be a commutative ring. If (0) is the only maximal ideal in R, then

(a) R i1s a finite ring (b) R 1s an integral domain, but not field
(¢) R is a field (d) None of these

15. In the polynomial ring Z[x], consider I = {f (x): f(0) = 0}, then
(a) I is an ideal (b) I is an prime ideal but not maximal ideal
(c) I is a maximal ideal (d) I is ideal but neither prime ideal nor maximal

16. Let R be a commutative ring, and p; and p, are prime ideals of R, then
(a) P; U P, and P; N P, both and prime ideals of R.
(b) P; N P, is prime ideal of R always but P; U P, may not be.
(c) If P, € P, or P, € P, then P; N P, is prime ideal of R.
(d) None of the above

17. Which of the following is irreducible in Z[V/5]

(2)9 + 4V5 B1+vV5 (©5 (d4++V5

18. Which of the following is true in Z[v—=5]
(a) 2 + V=5 is irreducible but not prime. (b) 2 + V=5 is prime
(c) 3 is prime (d) 4 is reducible

19. The number of maximal ideals in R X R X R is
(a) 1 (b)3 (c)6 @9

20. Which of the following is prime in Z[i],
@2 ()5 ©17 ()3



21. Consider the ring homomorphismsf;: Z[i] = Z, defined by f(a + bi) = (a — b)mod 2 and
fo: Z[i] = Zs defined by f(a + bi) = (a — 2b)mod 5. Then
(a) ker f; is a maximal ideal but ker f, is not a maximal ideal.
(b) both ker f; and ker f, are not maximal ideals.
(c) both ker f; and ker f, are maximal ideals.
22. In the polynomial ring Z[x], consider [ = {f(x): f(0) = 0}.
a) Iis not an ideal in Z [x]
b) I is a prime ideal which is not maximal.

¢) I is a maximal ideal
d) I'is an ideal which is neither prime nor maximal.

23. Consider the polynomial f(x) = ag + a;x + -+ + a,x™,a, #0 € R[x], f(x) isaunitin R[x] iff
(a)each a; =1 b)ag#0,a;,=0for1 <i<n
(©)ap=0,a,=1 (d) a, = £1
24. In the polynomial ring Z[x], consider [ = {f(x) : f(0) = 0}.
a) I is not an ideal in Z [X]
b) I is a prime ideal which is not maximal.
¢) I is a maximal ideal
d) I'is an ideal which is neither prime nor maximal.

25. The kernel of the ring homomorphism
¢ : R[x] = Cdefined by ¢ (f(x)) = f(1+1)is
@kx—-1) OC*-—x+1) @©&?*=-2x+2) (x*+x+1)
26. In the ring R[x] and C[x], consider the ideal I = (x? — x + 2),
(a) I is a maximal ideal in both R[x] and C[x].  (b) I is a maximal ideal in R[x] but not C[x]
(c) I is a maximal ideal in C[x] but notin R[x]  (d) I is a not maximal ideal in R[x] and C[x].

DISCRPTIVE QUESTIONS

1. LetR,S be commutative rings. And f : R = S be an onto ring homomorphism. Prove that
(i) If P is a prime ideal in S, then f'(P) is a prime ideal in R.
(ii) If M is a maximal ideal in S f~1(M) is a maximal ideal in R.
Do the above results hold if f is not onto? Justify your answer.

2. Prove or disprove:
If R, S are commutative rings and f: R — § is a ring homomorphism then
(1) P is a prime ideal in R = f (P) is a prime ideal in S.
(i1) M is a maximal ideal in R = f (M) is a maximal ideal in S.
3. Prove that
(i) R is an integral domain iff {0} is a prime ideal in R.
(i) R is a field iff {0} is a maximal ideal in R.

4. Let R be aring and I be an ideal of R. Let M be an ideal of R containing I, and let M = M /I be the
corresponding ideal of R/I. Prove that M is maximal if and only if M is maximal.



5. LetR = {(¢ Z):a,b € Z}.Let ¢ : R -7 be defined by  (§ Z):a—b Then,

Is ker ¢ a prime ideal? Is ker ¢p maximal ideal? Justify your answer.

6. Show that the following ideals are maximal in the indicated ring

(a) ] = {a+ bv—5:a,b €Z,a—b iseven}inZ[\/—_S]

(b) (x? + 1) in R[x]

) I={(Bx,y):x,y €EZ}InZXZ

(@I ={f €R:f(0) =0} in the ring of continuous function from R to R
e (V2) inZ[v2]

HI={a+bi/a mod?2 = bmod 2} in Z[i]

7. Find the maximal ideals of the following rings

a) Zg b) Z1o ¢) IR X IRunder component wise addition and multiplication.

(d) Zy4 (e Q OHZDZ

8. Determine the maximal ideals of each of the following
(@RxR (b) R[x]/(x?) (c) R[x]/(x? —3x + 2) (d) R[x]/(x? +x + 1)
(e)R = {% :a,b €7Z,(a,b) =1,bis odd}

9. Is (2) a maximal ideal in Z[i]? Justify your answer.

10. Show that the following ideals are prime ideal in the indicated ring
(a) I is set of all polynomials all of whose coefficients are even in Z[x].
(b) I = {f(x): f(0) = 0} in Z[x]. Also show that I is not maximal ideal.
©)I ={(x,0):x €Z}inZ X Z . Also show that I is not maximal ideal.

_f(a DbY. . .
@ 1I= {(c d) :a,b,c,d € Zdivisible by 5} in M, (Z)
e) x> +x+1)in Z, [x]

(f) I ={(3x,y):x,y € Z}in Z X Z under component wise addition and multiplication.
(2) (x? +1)in Z[x]. Also show it is not maximal

11. Determine which of the following are prime ideals in Z[i]?

@ (2) (i) (3) (i) (1 +9) (iv) (Z+10)
12. Show that (2 + i) is a maximal ideal in Z[i]. How many elements does Z[i]/(2 + i) have?

13. Consider the ring Z[\/H], where d is not 1 and is not divisible by square of number. Define
N:Z[Vd] - Z* as N(a + bVd) = |a® — db?|. Show that
(a) N(x) =0ifand onlyif x = 0 (b) N(xy) = N(x)N(y)
(¢) N(x) = 1if and only if x is unit (d) x is irreducible if N (x) is prime

14. In Z[\/g], prove that 2 and 1 + /5 are irreducible but not prime.
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Polynomial Rings, Fields
Objective Questions

. IfR, =ZV2]|={a+bV2:ab €Z},R, =Z[V5]={a+bV5:ab €Z},R; =Q[V2] =
{a+bV2:ab €Q},R,=Z[i] ={a+bi:ab €L}, then

(a) Ry, Ry, R3, R, are integral domains which are not fields.

(b) Ry, R,, R, are integral domains which are not fields and R; is a field.

(¢) Ri, Ry, R3, Ry are all fields

(d) None of the above
) ) a a
. Consider the ring § = {(a a) ae€ Q}
(a) S is an integral domain which is not a field
1 1
. . . . g . . . 2 2
(b) S is a field with multiplicative identity i1
2 2
(c) S is a non-commutative ring
(d) None of these
. . I[i]
. The quotient ring o
(a) an integral domain which is not a field (b) a field having 2 elements
(c) a field having 4 elements (d) a ring with proper zero divisors
. R[x] .
. The ring Girp S
(a) an infinite integral domain (b) an infinite field
(c) a finite field (d) None of these

. Let R and S be rings. Consider the ring R X S under component wise addition and multiplication.

(a) If R, S are fields, then R X S is a field

(b) If R, S are integral domains, then R X S is an integral domain
(c) R X S is not a field, whatever R, S may be.

(d) None of these

. Let F; and F,be fields having 9 and 16 elements respectively. Then, the number of (non-trivial) ring

homomorphism from F; to F, are

(a) One (b) zero (c) two (d) None of the above.
R[x] .

D

(a) a finite field (b) an infinite integral domain which is not a field

(¢) an infinite field (d) None of these

. Consider the following rings

()Zi  Gi)Zgp (i) {% :a,b€Zb #0,b odd} Then

(a) (1), (i1) and (iii) are fields. (b) (1), (i1) are fields
(c) (i1), (iii) are fields (d) only (ii) is a field

. Let F be a field and R be a subring of F. Then

(a) R is a field (b) R is an integral domain but may not be a field



(c) R may not be an integral domain (d) R may not be commutative
10. There exists field of

(a) 10 elements (b) 7,8,9 elements (c) 12 elements (d) 6 elements
11. Let R = Z[x]/ 2x) Then
(a) R is a field (b) R is an integral domain but not a field
(¢) R is not an integral domain (d) R is a finite commutative ring
12. Let F;, F, be fields, then F; X F, under component wise addition and multiplication is
(a) a field (b) an integral domain which is not a field
(c) not an integral domain (d) a field iff F;, F, are finite

13. The quotient field of quotients of Z[\/f] is

@e[v2] ®R  @©Q@ (@CcC
14. The quotient field of quotient of Z[i] is

(a) Q1] (b) C ©R (d) None of the above
15. The field of quotients of Q[x] is

(a) R[] ®) Clx] () Q(x) = {% f(),g(x) € Qlx].g(x) #0,}  (d) None of these

16. Which of the following statement is true?
(i) R is ring = R[x] is ring (i1) R is division ring = R[x] is division ring
(iii) R is field= R[x] is field.  (iv) R is integral domain = R[x] is integral domain.
17. The polynomial f(x) = 2x2 + 4 is reducible over
(a)Z b)) Q R (d) None
18. Which of the following polynomials in Z[x] satisfy an Eisenstein criterion for irreducibility in Q.

(1) x?—12 (ii) 8x3 = 6x% — 9x + 24
(iii) 4x1° — 9x3 + 24x — 18 (iv) 2x1% — 25x3 + 10x2 — 30
(a) All are irreducible (b) (i1) and (iii) are irreducible
(c) (11), (i11) and (iv) are irreducible (d) only (i) is true
19. The polynomial 8x3 — 6x + 1 is
(a) reducible over Z (b) is reducible over Q
(c) is irreducible over Q (d) is irreducible over R

20. Let f(x) € Z[x]. Which of the following is true?
(a) If f(x) is reducible over Q, then it is reducible over Z
(b) f(x) is reducible over Q, but it may not be reducible over Z
(¢) f(x)is reducible over Q
(d) None of these
21. Let f(x) = x? — 2, then
(a) f(x) is reducible in Q[x]
(b) f(x) is irreducible in Q[x] but reducible in Q[v2][x].
(¢) f(x0 is reducible over Q
(d) None of these
22. Let f(x) = x? — 2, then
(a) f(x) is reducible in Z3[x] and Zs[x]
(b) f(x) is irreducible in Z;[x] but reducible in Zg[x].



(c) f(x) is reducible in Z;[x] but irreducible in Zs[x]
(d) f(x) is irreducible in Z3[x] as well as in Zg[x].

23. Let R be a commutative ring and f (x) be a polynomial of degree n over R.
Then the no of roots of f(x) in R is

(a) less than or equal to n (b) equal ton
(c) strictly less than n (d) may be greater than n
24. The polynomial 2x + 1 is
(a) unit in Zg[x] (b) zero divisor in Zg[x] but not nilpotent.
(c) nilpotent in Zg[x] (d) None of the above

25.Letl = (x?+x + 1) in Z,[x],1 < n < 10 Then, Z, [x]/I is a field if
(an<5 @®n=2 ()n=3 ([dn=7
26. The polynomial x is irreducible in Z,[x]
(a) foreach n (b) forn > 3 (c) f iff nis prime  (d) not for all n
27. The polynomial x* + 1 is irreducible over
(@R (b) Q ©C (d) Z,
28. The number of roots of the polynomial x2°> — 1 in Z3, is
(a) 25 (b) 5 (c) 24 @it
29. Let f(x) =x3—x%2+1
(a) (f(x)) is a maximal ideal in Z,[x], Z3[x] and Zs[x]
() (f(x)) is a maximal ideal in Z3[x] and Zs[x] but not in Z,[x]
(©) (f(x)) is a maximal ideal in Z;[x]and Z3[x] but not in Zg[x]
(d) None of the above
30. In the ring Z[x],
(a) (x) is a maximal ideal (b) (x) is a prime ideal which is not maximal
(c) there is no maximal ideal in Z[x] (d) (x) is not a prime ideal
3l.Let f(x) =x0 +x°+x8+ -+ x+1
gx)=x1+x0+..+x+1 Then
(a) f(x), g(x) are both irreducible over Z[x].
(b) f(x), g(x) are not irreducible over Z[x]
(c) f(x) is irreducible over Z[x], g[x] is not
(d) g(x) is irreducible over Z[x], f (x) is not
32. Let R be a commutative ring. Then
(a) R[x] is an integral domain if R is an integral domain
(b) R[x]is afield if R is a field
(c) R[x] may not be commutative
(d) None of the above
33. The polynomial f(x) = x is
(a) irreducible over any ring R
(b) irreducible but not prime over any ring R.
(c) can be factored in some polynomial ring.
(d) has no roots



34.

35.

SNk W
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11.
12.

13.

14.
15.

16.
17.

Z[i]/ (2+10)18

(a) a field having 3 elements  (b) a field having 5 elements

(c) not an integral domain (d) ab infinite integral domain

In R[x], Let I = {f(x) € R[x]; f(2) = f'(2) = f"(2) = 0}
J={fx) eR[x]: f(2) =0,f'(3) = 0}

(a) 1,] are ideals in R[x] (b) I is an ideal, J is not
(¢) Neither I nor J is an ideal (d) I is a prime ideal in R[x]
DESCRIPTIVE QUESTIONS

(a)Show that the rings Q[vV2 ] ={r +sv2:7,s € Q}and Q[i] ={r + si: rs € Q} are fields.
(b) Show that the rings Z[\/?], Z[i] are integral domains but not fields, final their quotient fields.

. Check if the fields Q [\/E ] and Q [\/E ] are isomorphic.

Show that Z[i]/ 3 is a field.

Prove that the ring Z, [x]/(x3 + x + 1) is a field, but Z3[x]/(x3 + x +) is not a field.
Find all roots of the polynomial; x% + 3x + 2 over Z[x].

List all polynomials of degree 2 over

(a) Z,[x] (b) Z3[x]

Show that (x) is not a maximal ideal in Z[x]. Find all maximal ideals in Z[x].
Determine which of the given polynomials are irreducible over Q.

() x5 +9x*+12x* + 6 (i) x* +3x% +3 (i) x* +x+1
(iv) x° +5x% + 1 (v) x3 —=5x +10 (vi) x* —3x%2+9
(vii) 2x%> — 5x* + 5 (viii) x* + 8

Find all monic polynomials of degree 2 over Zs.
Show that the polynomial x* + 1 is irreducible over Zy[x]. where p is prime p > 2.

Show that x3 + ax? + bx + 1 € Z[x] is reducible over Z iff eithera = b ora + b = —2.
Let] = {f(x) € R[x]: f(2) = f'(2) = f"(2) = 0} Show that I is a principal ideal in R[x] and find
its generator.
Let f(x) =xt + x4+ -+ x2+x+1
gx)=x0+x+-+x2+x+1
Determine whether f(x), g(x) are irreducible over Q.
Show that x™ — p is irreducible over Q for each prime p.
Find all irreducible polynomials over R and C.

. . . Z[X] 3 _ 3
Determine all ideals in GxieD where (2, x>+ 1) =Q2)+ (x> + 1)

Let={ap+a;x + -+ a,x": ay €Z,a; € Q fori = 1}.Show that R is an integral domain. Find
units and primes in R. Is x a prime in R.



18. For any ring R, show that R~ g,

R
(x)

19. Show that —2_is a field
(x3-2)

20. Let p be a prime. p > 2 Show that the number of irreducible quadratic polynomials of the form x? +
p(r-1)

ax + b is >

p(p+1)

21. Let p be a prime. Show that the number of irreducible polynomials in Zy,[x] is >

R[x]
(x2+1)
23. Let F be a field and let a be a non-zero element of F.

(a) If a f(x) is irreducible in F[x], prove that f(x) is irreducible in F[x]

(b) If f(ax) is irreducible in F[x], prove that f(x) is irreducible in F[x]

(¢) If f(x + a) is irreducible in F[x], prove that f(x) is irreducible in F[x].

(d) use part (c) to prove that 8x3 — 6x + 1 is irreducible over Q
24.If p is a prime, prove that xP~1 — xP~2 + xP=3 _ — x + 1 is irreducible over Q.
25. Let F be a field having 32 elements. Then show that the only sub field of F is {0, 1} and F itself.

26. Show that x? + 1 and x% + x + 4 are irreducible polynomials in Z,4[x]. Show that —(lezl_l[:]) and

22. Show that

is isomorphic to C.

Z11[x]

> are fields having 121 elements.
(x2+x+4)

27. Construct a field of order (1) 25  (ii) 27

28. Show that a finite field containing p™ elements where p is a prime integer has characteristic p.

29. Suppose that f(x) = x™ + a,_1x"" 1 + -+ a, € Z[x]. If r is rational such that x — r divides f(x).
Show that r is an integer.

30. Show that for every prime p there exists a field of order pZ.
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14.

Practical no 7. Unit-wise Theoretical Questions

Unit 1

. Let H be a subgroup of group GG. Prove that the following statements are equivalent.

(a) aHa™' C H for each a € G.
(b) aHa! = H for each a € G.

(c) Every left coset of H in G is also a right coset of H in G i.e. aH = Ha for each
a€qG.

(d) HaHb = Hab for each a,b € G.
Let G be a group. Show that centre of a GG is a normal subgroup of G.

If H is a normal subgroup of G and K is a subgroup of G, Show that HK = KH.

Let G be a group and a € G, Show that N(a) = {x € G : ax = xa} is a subgroup of G
and < a > is a normal subgroup of N(a).

Let G be finite group with a normal subgroup H such that (o(H),o(G/H)) = 1 then show
that H is a unique subgroup of G of order H.

Let G be a group and H is a unique subgroup of a given order, then show that H is a
normal subgroup of G.

Let H and K be subgroup of a group G such that H N K = {e} then show that hk =
kh, he€ Hk € K.
Let G be a group such that (ab)™ = a™b" for some position integer n.

(a) Show that G(n) = {z"/x € G} is a normal subgroup of G.

(b) Show that G(n — 1) = {z"Y /2 € G} is a normal subgroup of G.

Let H be a normal subgroup of G and let % ={Ha:a € G}. Show that HaHb = Hab is
G

a well defined binary operation in T and T is a group under this binary operation.

Let G be a group and H be a subgroup of G. If 22 € H for each x € G, then show that H
is a subgroup of G and G/H is Abelian.

If G/Z(G) is cyclic then prove that G is Abelian.

If a cyclic subgroup H of a group G is normal in G. Show that every subgroup of H is
normal in G .

Let G be a group and H be a normal subgroup of G. Then prove that
(a) (Ha)® = Ha" for all n € Z.
(b) o(Ha) divides o(a).

Let G, G’ be groups and f : G — G’ be an onto homomorphism. Prove that



(a) kernel f is a normal subgroup of G and Imf is a subgroup of G'.

(b) If H' is a subgroup of G’ then f~1(H') = {h € H : f(h) € H'} is a subgroup of
G containing ker f. If H' is normal in G’ then f~!'(H’) is normal in G.

(c) If H is a subgroup G then f(H) = {f(h) : h € H} is a subgroup of G’ and
f(Ha) = f(H)f(a) for each a € G. Further, if H is normal in G then f(H) is
normal in G'.

15. Let G be a group and H be a normal subgroup of G. Show that n: G — G/H defined by
n(a) = Ha is a group homomorphism and Kern = H.

16. State and prove ”First isomorphism theorem / Fundamental theorem of homomorphism of
groups”.

17. State and prove 7 Second isomorphism theorem of groups”.
18. State and prove " Third isomorphism theorem of groups”.
19. State and prove Cayley’s theorem for finite group.

20. Show that A, is a normal subgroup of S,,.

21. Show that

(i) finite cyclic group of order n is isomorphic to the group Z, of residue classes modulo
n.

(ii) Every infinite cyclic group is isomorphic to the group Z of integers under addition.

OR
(i) Show that any two cyclic groups of same order are isomorphic.

(ii) Show that any two infinite cyclic groups are isomorphic.

22. Classify groups of order < 7 up to isomorphism.

(i

(i

23. If (G1,-), (Ge,*) are groups and G1 X Gy = {(91,92) : o1 € Gi,92 € Go} with binary
operation o defined by (g1, g2) © (g1, 95) = (g1 - ¢}, g2 * g5) then

) Show the there are two non-isomorphic groups of order 4.
)

Show that there are only two non-isomorphic groups of order 6.

(a) (G x Gaq,0) is a group.
(b) if Gy, Gy are abelian then G x G is also abelian.
(c) If a € G1,b € Gy such that o(a) = m,o(b) = n, then (a,b)* = (a*,b*) and

o(a,b) = lem(m,n).

(d) If G1,G;y are cyclic then Gy X Gy is cyclic if and only if o(G;) and o(Gy) are

relatively prime.
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(e) If Hy, Hy are normal subgroups of G, Gy respectively then H; x Hj is a normal

Gy x G
subgroup of G x G5 and ﬁ is isomorphic to the external direct product
1 2
Gy Gy
— X —.
H, H,
Unit II

1. R is a ring with multiplicative identity, then
(a) Show that the set of units in R form a group under multiplication.
(b) The set Z(R) ={a € R : ax = za; ¥ x € R}, called the center of the ring is a
subring of R.
2. (a) Show that every element of a finite commutative ring is either a unit or a zero
divisor.
(b) Show that every element of Z, is either a unit or a zero divisor.

(c) Show that an integral domain has no non-zero nilpotent element.
3. Show that subring of an integral domain is an integral domain.
4. (a) Show that, characteristic of a ring R is n if and only if the order of the multi-
plicative identity of R is n in the group (R, +).

(b) Show that characteristic of an integral domain is either 0 or a prime.

D. (a) Let R be a ring with unity 1z and I be an ideal in R such that 1z € I then prove
that I = R.

(b) Let R be a commutative ring and a € R. Prove that Ra = (a) = {ra/r € R} is
an ideal of R.

(c) Show that any ideal of the ring Z is of the form mZ for some m € Z.

6. (a) If I is an ideal of a ring R, then show that R/I = {x+1 : z € R} is a ring with
the operations (z+ 1)+ (y+1)=(zr+y)+ L and (z+ I)(y+ 1) =xy + I.

(b) Let R be a commutative ring. If I, J are ideals in R, Show that I NJ, I + J and
1J are ideals of R, where

I+J={z+y :zelyecJ} and[J—{inyi : xiel,yieJ,neN}.
=1

(c) Let R be a ring and I, J, K be ideals of R. Prove (a) I(J + K) = IJ + IK,
(I+)K=1J+JK. (b)IfJCI, then IN(J+K)=J+(INK).

(d) For a ring R, show that any ideal of the ring of n x n matrices over R, M, (R) is
of the form M,,(I) = {[a;;] : a;; € I} for some ideal I of R.

7. Show that a commutative ring is a field if and only if it has no proper ideal.

8. Let I be an ideal in a ring R and 1 : R — R/I is defined by n(a) = a + I for a € R. Show
that 1 is a homomorphism and ker n = I.
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10.

11.

12.

13.

14.

15.

16.

Let R be a commutative ring. Show that I = {a : a € R,a" = 0 for some n € N} is an
ideal (called the nil radical) of R and R/I has no nilpotent element.

Let R, R’ be commutative rings and f : R — R’ be a ring homomorphism. Show that-
(a) If f is surjective, [ is an ideal of R, then f(I) is an ideal of R'.
(b) If I’ is an ideal of R’ , then f~!(I’) is an ideal of R.

State and prove the First Isomorphism Theorem(Fundamental theorem of homomorphism)
of rings.

(Second Isomorphism Theorem of rings) Let A be a subring and B be an ideal of a ring R.
Then AN B is an ideal of A and A/(ANB) ~ (A+ B)/B.

(Third Isomorphism Theorem of rings) Let A, B be ideals of a ring R with A C B. Then
A/B is an ideal of R/B and (R/B)/(A/B) ~ R/A.

Show that, J is an ideal of the quotient ring R/I if and only if there is an ideal J C [ of
the ring R such that J ={x +1:2 € J}.

There is exactly one non-zero ring homomorphism from Z into any ring R.

Let f: R — S be an onto ring homomorphism and K = ker f. Prove that there is one-one
onto correspondence between ideals of R containing K and ideals of S.

Unit III

Fields

1.

2.

Show that a field is an integral domain. Is the converse true? Justify your answer.

Show that a finite integral domain is a field. Give an example of an infinite integral domain
which is not a field.

Show that characteristic of a field is either zero or a prime number.
Show that the ring Z,, of residue classes modulo n is field if and only if n is a prime number.
Show that a field has no ideals except 0 and itself.

Show that an ideal P in a commutative ring R is a prime ideal if and only if R/P is an
integral domain.

Show that an ideal M in a commutative ring R is a maximal ideal if and only if R/M is a
field.

(a) If R is a finite commutative ring prove that every prime ideal is maximal.

(b) If R is a commutative ring such that for @ € R there exists a n € N (depending

on a) such that a™ = a then show that every prime ideal is maximal.

(a) Show that an ideal [ in the ring Z of integers is a prime ideal if and only if I = (0)
or I = pZ where p is a prime number.
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(b) Show that every non-zero prime ideal in Z is a maximal ideal.
(c) Show that an ideal I in the ring Z of integers is a maximal ideal if and only if
I = pZ where p is a prime number.
10. Show that a field contains a subfield isomorphic to Z, or Q.
11. Explain construction of quotient field of Z.

12. Show that the rings, Z[i], Z[v/2], Z[/—5] are integral domain which are not fields. Show
that their quotient fields are Qli], Q[v/2], Q[v/—5] respective.

Polynomial Rings

1. Let R be a ring. Let R[z] = {a,2* + ap 12" ' + -1z +ap : a; € R,n € ZT}. Show
that R[z] is a ring with respect to usual addition and multiplication of polynomial. Further
show that if R is an integral domain, then R|x] is also an integral domain.

2. Let F be a field.

(a) Show that F[z] is an integral domain. Is it a field? Justify your answer.
(b) Show that only units in F[x] are the non-zero elements of F.

(¢) Division Algorithm: For any pair of non-constant polynomials f(z), g(z) € F|x], there
exist q(z),r(x) € F[z] such that f(x) = g(x)q(x) + r(z) where r(x) =0 or degr(z) <
deg g().

3. Let F be a field. Show that every ideal of F[z] is principal ideal.

4. Let F be a field a € F, and f(z) € F[z]. Then a is a zero of f(z) if and only = — a is a
factor of f(z).

5. Define irreducible polynomials. Let F' be a field, f(z) € F[z] and deg f(x) = 2 or 3. Show
that f(x) is reducible over F'if and only if f(x) has a zero in F.

6. Show that
(a) if F'is a field, f(x) and g(x) in F[z]| are associate if and only if f(z) = cg(z)
where ¢ # 0 in R.
OR
if R is an integral domain f(z) and g(z) in R|x] are associate iff f(z) = cg(x)
where c is a unit in R.
(b) Let F be a field and let f(x),g(x), h(z) € Flz]. If f(x) is irreducible over F and

f(@)lg(x)h(z),then f(x)|g(x) or f(x)|h(z).
(In R[z] or Q[z], C[x]) if f(x) is irreducible and f(z)|g(z)h(z),then f(z)|g(x) or

f(@)|h(z).

7. Let F be a field. Show that (p(z)) is a maximal ideal in f[z] if and only if p(z) is an
irreducible polynomial in F'[x].

OR
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Let F be a field. Show that Fz]/ < p(x) > is a field if and only if p(z) is an irreducible
polynomial in F[z].

8. Show that any a non-zero ideal of F|z| is prime if and only if it is maximal.

9. Show that the only irreducible polynomials in R[x] are a linear polynomial z —a or quadratic
polynomial 2% 4 bz + ¢ such that b* — 4c < 0, where a,b, c € R.

OR

Show that the only maximal (or prime )ideals in R[z] are principal ideals < z —a > or
< 2% 4 bz + ¢ > such that b*> —ac < 0, a,b,c € R.

10. Show that the only irreducible polynomials in C[z] are a linear polynomial = —« for a € C.
OR

Show that the only maximal (or prime )ideals in C[z] are principal ideals < x — a > where
acC.

11. Eisenstein’s Criteria for Irreducibility Let f(z) = 2" ++a, 12" '+ - a1z +ag € Z[x].
Let p € Z be a prime such that p | a;, for all i = 1,2,---n — 1 and p? { ap. Then f(z) is
irreducible in Q[z].

12. Using Eisenstein’s criteria show that the p*— Cyclotomic polynomial ®,(z) = 2P~ 1+ 2?2+
.-+ 4+ 2 4+ 1 where p is prime, is irreducible over Q.

13. Let f(z) = apa™ + -+ + ap € Zlz] and a, # 0 if r/s € Q,(r,s) =1, f(r/s) = 0 then show
that r/a,, s/aq.

14. Show that p'/" is irrational where n > 1 and p is a prime.
Divisibility
1. Let R be a commutative ring and a, b, u # 0. Then show that
(a) If u is an unit in R then ula.
(b) b€ (a) & alb + (b) C (a).
(c) a and b are associates <> (a) = (b)
(d) If a|lgr <> ais a unit and R = (a).

2. Let R be an Integral Domain , Let p € R. Then ,
(a) p is prime iff (p) is a non zero prime ideal of R.

(b) If p is prime then p is irreducible. Show that the converse is not true.
3. Prove that in Z (ring of integers) a non zero non unit element p is irreducible iff p is prime.

4. Let R be an Integral Domain and @ € R , a # 0g. If (a) is maximal then a is irreducible.
Give an example to show that converse is not true.
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5. Let R be a commutative ring and I, J be prime ideals of R. Show that, I NJ is prime only
ifICJorJClI.

6. Let R be commutative and I, J be ideal of R and P is a prime ideal of R that contains
INJ. Prove that either I C P or J C P.

7. Let p be a non-zero element in an integral domain R. Then, if p is irreducible then R/(p)
is a field and (p) is a maximal ideal.
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Topology of Metric Spaces and Real Analysis: Practical 3.1
Continuous Functions on Metric Spaces.
Objective Questions 3.1

(Revised Syllabus 2018-19)

(1) Let d be the usual distance in R. For any A C R,ds : R — R is defined by da(z) =
inf{d(z,a) : a € A}. Then
(a) dg,dr\@ are not continuous on R and dg(z) >0 Ve R\ Q.
(b) dg =0 and dr\@ = 0 on R and dg, dr\g@ are continuous on R.
(c) dr,dr\@ are continuous on R and dp\g(z) >0 Vz € Q.
(d) None of the above.

(2) Let d denote the usual distance in R and for A C R, let

1 ifzeA
XA(SU)Z{ o

0 ifx¢gA -

Then

(a) xa is continuous on R if and only if A is an open subset of R.
(b) x4 is continuous on R if and only if A is a closed subset of R.
(¢) xa is continuous on R if and only if A =0 or A =R.

(d) None of the above.

(3) Consider the metrics d and d; on N, where d is the induced distance from R with usual
1

distance and d;(m,n) =
N. Then

(a) i:(N,d) — (N,d;) is continuous but ¢ : (N, d;) — (N, d) is not continuous.
(b) i: (N,d) — (N, dy) is not continuous.
(c
(d

, : N — N denote the identity map on

) i:(N,dy) — (N,d) is not continuous.
) None of the above.

(4) Let dy and ds be equivalent metrics on X and (Y, d) be any metric space. If f: (X, d;) —
(Y,d) and ¢ : (Y,d) — (X, d;) are continuous maps on X and Y respectively, then
(a) f:(X,dy) — (Y,d) is continuous, but g : (Y,d) — (X, dy) may not be continuous
(b) f:(X,ds) — (Y, d) may not be continuous, but g : (Y,d) — (X, ds) is continuous
(¢) f:(X,dy) — (Y,d)and g : (Y,d) — (X, d2) are continuous on X and Y respectively.
(d) None of the above.

(5) Let A= {z € R:sinz = 1}, the distance in R being usual. Then
(a) A is an infinite closed set.  (b) A is a finite closed set.
(c) A is an open set. (d) None of the above.

(6) Let (X,d) and (Y, d’) be metric spaces and f,g: X — Y be continuous maps. If A C X
such that f(z) = g(z) V x € A, then the statement which is not true is
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z)=g(r) VreA
glx) VzeA
() = g(z) V¥ x € 0A where 0A is the boundary of A

N N N N
oo

y

(7) Let (X,d) and (Y,d’) be metric spaces and f,g : X — Y be continuous maps. Let
={r e X : f(z) =g(x)}. Then

a) Ais a dense subset of X. (b) A is a closed subset of X.

c)

A is an open subset of X.  (d) None of the above.

r( /ﬂ/—\:';

(8)

et d denote the usual distance in R and d; denote the discrete metric on R. Let ¢ :
d1) — (R, d) be the identity map. Then

C i(Q). (b) i7Y(Q) C i1 (Q).
-1(Q) € i Y(Q). (d) None of the above.

=Re

NESH
L~
@
—

N N N
SRS
~—

N

(9) Let (X,d) and (Y, d") be metric spaces and f : X — Y. Let {4, },en be a family of closed
subsets of X. Then the statement which is not true is
(a) If f is continuous on A; and A, then f is continuous on A; U As.

(b) If f is continuous on each A,, then f is continuous on U A,.
n=1
(c) If f is continuous on each A, then f is continuous on A = ﬂ A, provided A # ()

neN
(d) None of the above.

(10) Let f : R? — R (the distance in R and R? are Euclidean) be defined by f(z,y) = |z|.
Then
(a) f is not continuous at (z,0) for each = € Z.
(b) f is not continuous at (0,0).
(c) f is continuous on R?
(d) None of the above.

(11) f,g : R — R are any maps, such that f o g and g o f are continuous (distance being
usual). Then
(a) f R — R and g : R — R are continuous
(b) fog=gof
(c) At least one of f and g is coninuous.
(d) Neither f nor g may be continuous.

(12) Let (X,d) be a metric space where X is a finite set and (Y, d') be any metric space. Let
f X — Y. Then the statement which is not true is

(a) f is continuous on X

(b) f(X) is bounded.

(c) If Aisopenin X, f(A ) is open in Y

(d) If B is closed in Y, f~}(B) is closed in X.
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(13) Let (X,d) be a compact metric space and f : X — (0,00). (distance usual) be a
continuous function. If inf{f(x) : x € X} = m, then
(a) mmay be0 (b) m=0 (¢c) m>0 (d) m may be negative

(14) Let (X, d) be a finite metric space, | X| > 2. If f : X — R (usual distance) is a continuous
function, then
(a) |f(X)]>2 (b) f(X) = [m, M] for some m, M € R
(c) fis a constant function.  (d) None of the above.

(15) Let (X,d) be a metric space. If f,g € C(X,R), then
(a) f+ g€ C(X,R), but f-¢g may not be in C(X,R).
(b) f+g,f—gand2f e C(X,R).
(¢) f+9.f—ge€ C(X,R), but 2f may not be in C'(X,R)
(d) f+g,f—9g€ C(X,R), but fg may not be in C'(X,R)

(16) Let X; =[0,1];Y; =[0,00); Xo = (0,1) U(2,3),Ys = (0,1); X3 =(0,1),Y5 = {0,1}. Then
there exists a continuous onto function from X; — Y; when
(a) i=1,2,3 (b) i=1,2 (c) i=2 (d) =3

1

(17) Consider the map L : C[0, 1] — R (usual distance) defined by L(f) = / f(t) dt. Then,

0
(a) L:(C[0,1],] ]l:) — R is continuous but L : (C[0, 1],| ||~c) — R is not continuous.
(b) L:(C[0,1],] |loc) — R is not continuous.

(c) L:(C[0,1],|| |l:) — Rand L: (C[0,1],|| ||cc) — R are both not continuous.
(d) None of the above.

(18) Consider the map ¢ : C[0, 1] — R defined by ¢(f) = f(0). Then

(a) ¢:(C[0,1],|| ||cc) — R is not continuous.

(b) ¢:(C[0,1],] |looc) — R is continuous.

(c) ¢:(C[0,1],] o) — R and ¢ : (C[0, 1], ||z) — R are not continuous.
(d) None of the above.

(19) Let (X, d) be a metric space and f € C(X,R) be a bounded function. Then f
(a) attains both bounds. (c) may not attain either bound.

(b) attains at least one bound. (d) None of the above.

(20) Let f : R — R be continuous function (distance usual) and A C R. Consider the
following statements:

) If A is closed and bounded, f(A) is closed and bounded.

ii) If A is closed, f(A) is closed.  (iii) If A is bounded, f(A) is bounded.

a) (i), (ii), (iii) are true statements.

b) (i) and (iii) are true, (ii) is not true.

c) Only (i) is true.

d) (i) and (ii) are true, (iii) is not true.

(i
(
(
(
(
(
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(21) Let (X,d) be a compact metric space and f : X — R is continuous. Let (x,) be a
sequence in X. Which statement is false?
(a) If (x,) is convergent (f(z,)) is convergent.
(b) If (x,) is Cauchy, (f(z,)) is Cauchy.
(¢) (f(z,)) has convergent subsequence.
(d) None of (a), (b), (c) are false.

Topology of Metric Spaces and Real Analysis: Practical 3.1
Continuous Functions on Metric Spaces
Descriptive Questions 3.1

(1) Let f,g : R — R be continuous function (with respect to usual distance). Let h : R? —
R? be defined by h(x,y) = (f(z),g(y)). Show that h : (R?* d) — (R? d) is Continuous
where d is Euclidean distance.

(2) Let f : R? — R be continuous map. Show that g : R?> — R defined by g(z,y) =
f(x 4+ y,z —y) is continuous.

(3) Show that i : (R,d) — (R, d;) where d is usual distance in R and d; is discrete metric on
R is not continuous where ¢ is the identity map on R.

(4) Let (X,d) be a metric space and let A C X, If dq : X — R is defined by da(x) = d(z, A).
Show that d4 is continuous.

3
(5) X = M(R) and ||A]| = ( Z a%ij)> . Show that f: X — R (distance usual) defined
1<i,j<2

by f(A) = detA is continuous. Hence show that
(i) (GL)2(R) is an open subset of X.
ii) (SL)2(R) is a closed subset of X.

(6) Prove or disprove:
a) If (X,d) and (Y,d') are metric spaces and f : X — Y is a continuous bijective map,
then for any open ball B in (X, d), f(B) is an open ball (Y, d').
b) Let (X,d) and (Y,d’) be metric spaces. If (X,d) is complete and f : X — Y is
continuous and onto, then (Y, d’) is complete.

(7) Let (X,d) and (Y, d’) be metric spaces. Prove that f : X — Y is continuous on X if and
only if f is continuous on each compact subset of X.

(8) Let A, B be two compact subsets of a metric space (X, d) such that AN B # (). Show that
d(A,B) >0 and 3 a € A, b € B such that d(A, B) = d(a,b).

(9) Let K C R™ be such that any continuous function fromK to R be bounded. Show that K
is compact.



US/AMTG603  Sem VI,Paper3:Topology of Metric Spaces and Real Analysis, Rev. Syl. 2018

(10) Show that S' = {(z,y) € R? : 22 + y* = 1} is a compact subset of R?, distance being
Euclidean.

(11) Let f: X — (0,00) be a continuous function, where (X, d) is a compact metric space.
Show that 3 € > 0 such that f(x) > ¢,V € X.

(12) ¥ : (C[0,1], || |]oo) — R (usual distance) defined by (f) = f(0) is continuous.

1
(13) L: (C[0,1],]| |leo) — R (usual distance) defined by L(f) = / f(t) dt is continuous.
0
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Topology of Metric Spaces and Real Analysis: Practical 3.2
Uniform Continuity and Fixed Point Theorem
Objective Questions 3.2

(Revised Syllabus 2018-19)

1
(1) f:R\ {0} — R defined by, f(z) = — for = # 0 is uniformly continuous on
T

(a) (0,1) (b) (0,00) (c) [1,00) (d) None of these.
(2) f(x)= . 5 for x € R is uniformly continuous on

(a) [0, 1] but not on [0, c0) (c) R

(b) [1,00) but not on [0, c0) (d) None of these.

(3) Let ACR. If f,g: A — R are uniformly continuous on A, then
(a) f+ g is uniformly continuous on A but f - g may not be uniformly continuous on A.
(b) f+gand f-g are uniformly continuous on A.
(c) Neither f + g nor f - g may be uniformly continuous on A.
(d) None of the above.

(4) Consider the following functions (distance in R is usual):
(i) f:10,27r] — R, f(x) = zsinx

iii) f:[0,1] x [0,1] — R, f(z,y) = x + y ( distance in R? Euclidean)

) (i), (ii), (iii) are uniformly continuous.

) (i) and (iii) are uniformly continuous, (ii) is not.
) Only (i) is uniformly continuous.

d) Only (iii) is uniformly continuous.

(5) Suppose A and B are closed subsets of R and f: AU B — R is uniformly continuous on
A as well as B. Then,
(a) f is uniformly continuous on AU B.
(b) f is uniformly continuous on AU B if AN B = 0.
(¢) f may not be uniformly continuous on AU B.
(d) None of the above.

(6) f:]0,00) — R defined by f(x) = /x is

a) continuous on [0, 00) but not uniformly continuous on [0, co).
b) uniformly continuous on [0, 1] but not on [0, c0).

c¢) uniformly continuous on [0, 00).

d) None of the above.

(
(
(
(
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(7) If f,g : R — R are uniformly continuous on R, then

(a) The product f - ¢ uniformly continuous on R.

(b) The composites f o g and g o f uniformly continuous on R.

(c) f? and ¢? are uniformly continuous on R.

(d) None of the above.

(8) Let (X,d) be a metric space and A be a non-empty subset of X. Then dy : X — R
defined by da(z) = d(x, A) = inf{d(z,a) : a € A} is

(a) continuous on A but not on X. (c¢) not uniformly continuous on X.
(b) uniformly continuous on X. (d) None of these.

(9) Let (X,d) and (Y,d') be a metric spaces and f : X — Y . Suppose (z,) is a Cauchy
sequence in X, then {f(x,)} is a Cauchy sequence in Y if

(a) f is continuous on X. (¢) X and Y are complete.
(b) f is uniformly continuous on X. (d) None of these.

(10) Let A C R, A is bounded but not closed. Then
(a) Any continuous function from A to R is bounded.
(b) Any continuous function from A to R is uniformly continuous.
(¢) Any continuous, bounded function from A to R attains bounds.
(d) None of the above.

(11) Let (X,d) and (Y,d') be metric spaces and f : X — Y a uniformly continuous function.
Then the statement which is not true is
(a) Given a bounded subset A of X, f(A) need not be a bounded subset of Y.
(b) If {z,} is a Cauchy sequence in X, then {f(z,)} is a Cauchy sequence in Y.
(c) If {f(z,)} is a Cauchy sequence in Y, {z,} is a Cauchy sequence in X.
(d) If {x,} is convergent, then {f(z,)} is convergent.

(12) Consider the following maps:

(i) f:R — R such that f is differentiable and |f'(z)| < M V z € R.
(ii) A linear transformation 7" : R" — R™.

(iii) A map f: R — R satisfying Lipchitz condition namely 3 M > 0 such that |f(x) —
f)| <Mlx—y| Vaz,ye R

Then

a) (i) and (iii) are uniformly continuous.

b) (i), (ii) and (iii) are uniformly continuous.
¢) only (iii) is uniformly continuous.

d) None of above.

(
(
(
(

(13) Which of the following real valued functions are uniformly continuous on the give sets.
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(i) f(z) = Lon (0,1). (i) f(z) =% on [0,1].

x
(a) Only (i) (b) only (ii) (c) both (i) and (ii) (d) Neither (i) nor (ii).
Topology of Metric Spaces and Real Analysis: Practical 3.2

Uniform Continuity and Fixed Point Theorem
Descriptive Questions 3.2

(1) Show that the function f(x) =

for z € R is uniformly continuous on R.
1+ 22
(2) Prove or disprove:
If f,g : R — R are uniformly continuous on a nonempty set A C R then the product
function f - ¢ is uniformly continuous on A.

(3) If f:R — R is such that f'(z) exists Vx € R and 3 a constant M such that |f'(z)| <
M ¥V x € R, then show that f is uniformly continuous on R.

(4) If (X,d), (Y,d) are metric spaces, then prove that any Lipschitz function f : (X,d) —
(Y, d) is uniformly continuous. Hence, deduce that sin x, cos x are uniformly continuous on

R.

(5) Let A= (0,1] € R. Define d4 : A — R as da(z) = d(x, A). Draw graph of d4. Further,
prove that if (X, d) is a metric space and A C X then d4 : X — R defined by da(z) =
d(xz,A) for € X is uniformly continuous on X.

(6) Let f : [a,b] — [a,b] be differentiable and |f'(x)| < ¢ with 0 < ¢ < 1. Then show that f
is a contraction of [a, b].

(7) Let X and Y be metric spaces. Assume that Y is a discrete metric space and that f :
X — Y is a contraction. What can you conclude about f?

(8) Define a sequence of positive real numbers by letting x to be any positive real number and

Tpi1 = (1 +x,)"'. Show that this sequence converges and find its limit. (Hint: Prove that

1
f is a contraction mapping where f : [z, 00) — R defined as f(z) = F)
x
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Topology of Metric Spaces and Real Analysis: Practical 3.3
Connected Sets , Connected Metric Spaces
Objective Questions 3.3

(Revised Syllabus 2018-19)

(1) Let (X,d) be a discrete metric space
(a) X is connected.
(b) X is connected only if X is infinite.
(c) X is connected if and only if X is a singleton set.
(d) None of above.

(2) Let d be usual distance in R and d; be the discrete metric in R. Then

) [0, 1] is a connected subset (R, d) as well as (R, d;).

) [0, 1] is connected subset of (R, d) but not connected subset of (R, d;).

) [0,1] is not a connected subset of (R, d) but a connected subset of (R, d;)
d) [0, 1] is not a connected subset of (R, d) as well as (R, d;)

f A is a connected subset of (R,d) ( d being usual distance) then
a) A° and A are connected. -

b) A° may not be connected but A is connected.

c

(4) Let A, B be connected subsets of (R, d) where d is the usual distance in R. If AN B # 0,
then the following set may not be connected.
(a) AUB (b)) AnNB (c) A\B (d) Ax BinR? ( Euclidean distance).

(5) Let A C Q. If A is a connected subset of (R, d) where d is usual distance then
(a) A=Q (b) A is an infinite bounded set.
(c) A is a singleton set. (d) None of the above.

(6) Consider the following subsets of (R?, d) where d Euclidean .
(O{(z,y) eR?:ay =1} (i){(z,y) eR* 1z =0}
(i13){(x,y) € R? : zy = 0} Then,
(a) (), (i7)(4i7) are all connected. (b) (i), (i7i) are connected.
(c¢) Only (7i7) is connected. (d) Only (4) is connected.

(7) Let A, B be non-empty closed subsets of a metric space (X,d). If AU B and AN B are
connected subsets of X, Then6 (a) A and B are both connected.
(b) A and B are both not connected.
(¢c) A and B are connected if and only if A = B
(d) None of these.

(8) Let ( , ) be a finite metric space. If A C X is connected then
(a) A (b) A#X (c) Aisasingleton set. (d) A has more than one element.
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(9) If A, B are connected subsets of (R?,d) where d is usual distance and AN B # (), then
(a) AU B is connected but A N B may not be connected.
(b) AU B may not be connected but AN B is connected.
(¢c) AUB and AN B are connected.
(d) None of the above.

(10) Consider (R?, d) where d is Euclidean metric and A be an open ball in R? and L be a line
in R?. Then

(a) AU L is connected if L does not intersect A.

(b) AU L is connected if L intersects A.

(c) AU L is disconnected if L intersects A but is not a tangent to A.

(d) Cannot say.

(11) In (R?,d) where d is Euclidean distance, the following set is not connected.
(a) R2\Q x Q.
(b) R2\ {(0,0)}
EC) R\ {(z,y) 1y = 0}

d) None of the above.

(12) If A, B are connected subsets of (R, d) where d is usual and AN B # (), then
(a) AU B is connected but AN B may not be connected.
(b) AU B may not be connected but AN B is connected.
(¢) AU B and AN B are connected.
(d) None of the above.

(13) Let A and B be connected subsets in a metric space (X,d) and A C C C B Then,
(a) C is connected .
(b) C° is connected.
(c) C is connected.
(d) C N Ais connected.
Topology of Metric Spaces and Real Analysis: Practical 3.3
Connected Sets , Connected Metric Spaces

Descriptive Questions 3.3

(1) Let (X,d) be a metric space and A, B C X be closed. Prove that AN B¢ and B N A°
separated.

(2) Let (X,d) be a metric space and A, B,C C X. If A and B are separated, B and C are
separated, then prove that AU C and B are separated.

(3) Find the components of the followings:
(i) [0,1] U [2, 3] with usual distance.
(ii) (0,1) U {2, 3} with usual distance .
(i) Q

10
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(iv) R\ Q

(v) [0,1] with distance metric.

(vi) {1,2,3} with any metric.

(vii)N with usual distance .

(viii) {(z,y) € R? : 2 € Q or y € Q} with Euclidean distance in R

(4) Find the connected subsets of the following metric spaces:
(i) (X,d) where d is discrete metric.
(ii) (X, d) where X is a finite set.
(iii) (N, d) where d is usual distance in R.
(iv) (Q,d) where d is usual distance in R

(5) Show that the following subsets of (R? d) (d being Euclidean distance) are not connected.
(1) {(z,y) € R? - 2? —y? = 1}
(i) {(r,9) € B -y £ 0)
(i) R*\ {(z,y) € R? : y = 6}

(6) Prove or disprove:

(i) If A, C are connected subsets of a metric space and A C B C C, then B is connected.
(ii) If A° and OA are connected then A is connected.
(iii) If A, B are connected then AU B, AN B are connected.
(iii) An open ball in a metric space is connected.
)

(iv) If A is a connected subset of a metric space (X, d), then A° and 0A ( boundary of A)
are connected.

11
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Topology of Metric Spaces and Real Analysis: Practical 3.4
Path Connectedness, Convex sets, Continuity and Connectedness
Objective Questions 3.4

(Revised Syllabus 2018-19)

(1) Let (X,d) be a connected metric space. If f : X — R (d usual) is a non-constant
continuous function .Then, f(X) is
(a) finite set  (b) countable set.  (c) singleton set (d) uncountable set.

(2) The unit circle S' = {z € R?: ||lz|| = 1} is (distance Euclidean)

(a) Compact and Connected (¢) Connected but not Compact
(b) Compact but not Connected (d) neither Compact nor Connected

(3) Let (X, d) be a finite metric space ,| X| > 2. If f: X — R (usual distance) is a continuous
function, then
(a) [f(X)] =2
(b) f(X) is connected.
(c¢) If f(X) is connected then f is a constant function.
(d) None of these.

(4) Let A be a non-empty connected subset of R? (distance Euclidean). Let S = {||a|| : a € A}.
If every element in S is a rational number then
(a) A is a singleton set.
(b) Each point in A lies on a circle C, where C, = {(z,y) € R? : 2% + y*> = r?} for some
reQ

¢) Each point in A lies on a parabola 2> = ry for some r > 0.
(c) p P Y
(d) None of the above.

(5) Let (X,d) be a connected metric space and A C X consider y4 : X — R defined by

(z) = 1 ifzeA
XA =0 ifzeA

(a) If x4 is continuous on X, then A is a finite set.
(b) If x4 is continuous on X, then A =0 or A = X.
(c) If x4 is continuous on X then A is a non-empty proper subset of X.
(d) None of the above.

(6) If f:[a,b] — R is a continuous function, then f([a,b]) is
(a) (0, M] for some M >0 (b) (m, M) for some m, M € R
(c) [m, M] for m, M € R (d) None of these.

12
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(7) Which of the following statements is false in R™ ?
(a) Continuous image of a compact set is compact.
b) Continuous image of a connected set is connected.

(

(c) Continuous image of a path connected set is path connected.
(d) None of the above.
L

(8)

et (X, d) be a connected metric space which is not bounded. Let xy € X and
A,

o
8

€ X :d(x,x9) = r}(r >0). Then

(a) A, =0 except for finitely many positive real number 7.
(b) A, #0VYr>0
(c) A, =0V r>0
(d) None of these.

(9) Let (X,d) be a connected metric space and f : X — 7Z be a continuous map. Then
(a) f is onto . (b) f is one-one.
(c) f is bijective. (d) f is constant

(10) R™\ {Ogn} is not path connected if
(a) n=3, (b)) n=4 (c) n=1 (d) None of these.

(11) In (R?,d) (d Euclidean distance), the following set is not path connected.

(a) R\ QxQ (c) R* —{(w,y) : y = 0}
(b) R*\ {(0,0)} (d) B((0,0),7) \{(0,0)}

(12) In (R?,d) (d Euclidean distance), the following set is path connected.
(a) B((0,0), 1) U{(z,y) eR*:y =1}
(b) B((0,0),1) U{(z,y) eR*:y =2}
(c) B((0,0),1) U{(z,y) e R*: x =2}
(d) None of the above.
(13) Which of the following statements is false:

(
(b) A connected subset of R™ (distance being Euclidean) is path connected.

(c¢) Union of two path connected subsets A, B in R" distance being Euclidean such that
AN B # () is again path connected.

(d) If A, B are two path connected subsets of R" (distance being Euclidean) such that
AN B # () then AN B is path connected.

W
a) A path connected subset of R” (distance being Euclidean) is connected.
b)

)

(14) Let (X,d) and (Y,d') be metric spaces. If f: (X,d) — (Y, d) is a continuous function,
then

(a) Number of components of (X, d) < Number of components of (Y, d’).

(b) Number of components of (X, d) > Number of components of (Y, d').

(¢) Number of components of (X, d) = Number of components of (Y, d’).

(d) Cannot say.

13
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(15) Let (X,d) and (Y, d’) be metric spaces and f : (X,d) — (Y, d’) be a bijective continuous
function, then
(a) Number of components of (X, d) < Number of components of (Y, d’).
(b) Number of components of (X, d) > Number of components of (Y, d').
(¢) Number of components of (X, d) = Number of components of (Y, d').
(d) Cannot say.

Topology of Metric Spaces and real Analysis: Practical 3.4
Path Connectedness, Convex sets, Continuity and Connectedness
Descriptive Questions 3.4

(1) Prove that the following subsets of R" (distance being Euclidean) are convex and hence
path connected. (i) an open ball (ii) a closed ball (iii) a line

(2) Let (X, d) be a metric space and A be a proper non-empty subset of X. If the characteristic
function y 4 is continuous on X, show that X is not connected.

(3) Show that B,.((0,0))\ {(0,0)} is path connected in R? with Euclidean distance.

(4) Show that R?\ S x S where S is any countable subset of R is path connected. (Hint: For
any z,y € R?\ S x S there are uncountable lines passing through z and y).

(5) Prove or disprove :
(a) If A is a path connected subset of R" (distance being Euclidean) thenA® is path
connected.
(b) If {A,}nen is a sequence of path connected subsets of R? (distance being Euclidean)
such that A,.1 € A, Vn € N and N,enA, # 0 then N, enA, is connected.
(6) (a) If (X,d) is a connected metric space and f : X — Z a continuous function, prove
that f is constant.

(b) If (X, d) is a connected metric space and (Y, d’) is any metric space, Y being a finite
set, then show that any continuous function f: X — Y is constant.

(c¢) Let (X,d) be a connected metric space and (Y, d;) be a discrete metric space. Show
that any continuous function f: X — Y is constant.

(7) Let (X,d) be a connected metric space which is not bounded. Prove that for each zy € X
and each r > 0, the set {x € X : d(z, () = r} is non-empty.

(8) Give an example of a subset of R" (distance being Euclidean) which is connected but not
path connected.

(9) Show that if (X, d) is a connected metric space then either X is countable or X is singleton.

(10) Show that the following sets are path connected subsets of R2.

14
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(i) E={(x,y) e R:, x> 0,22 —y* =1}
(i) B, ={(z,y) € R?:2® +y* = r?}
(ii) £={(z,y) € R*: 2y =0}
(iv) E={(z,y) eR*:y? =2} U{(z,y) e R? : y* = —z}
(v) E={(z,y) e R?:y =0}
) E={(v,y) eR?:1 <22 +y<3}
i)
i)

15
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Topology of Metric Spaces and Real Analysis: Practical 3.5
Pointwise and Uniform Convergence of Sequences of Functions and Properties
Objective questions 3.5

(Revised Syllabus 2018-19)

' _J1 ifw e [-n,n]
(a) {xn} converges pointwise to 0 on R.
(b) {xn} does not converge uniformly on R.
(¢) {xn} converges uniformly to 1 on R.
(

d) None of the above.

(2) Let f,(x) =sinnz for z € R. and g¢,(x) = f"éx) Vx € R. Then

(a) {f.} and {,,} are uniformly convergent on R.

(b) {f.} and {,} are not pointwise convergent on R.
(¢) {gn} is uniformly convergent on R but {f,} is not.
(d) {fn} is uniformly convergent on R but {g,} is not.

1
0 ifz¢ |0~
(3) Let f, :]0,1] — [0, 1] be defined by f,(x) = x * x»(z) where x,(x) = T
1 ifxe |0,—
n

»} converges uniformly to 0 on [0, 1]
»} converges pointwise to 1 on [0, 1]
»} converges uniformly to 1 on [0, 1]
one of the above.

but does not converge uniformly.

2o

—nx

(4) The least integer value of k for which {e -
n

@0 ()1 () —1 (d) 2

} is uniformly convergent on [0, 00) is

(5) If {f.} and {g,} are sequences of functions on S, S C R converging uniformly to f and g
respectively on S then the following sequence of functions may not converge uniformly of
S to the given function.

gfa) {fn +gn} to f +g' (b) {fn - gn} to f - 4g. (C) {)‘fn} to )‘f' (d) {fn *gn} to
* (.

6) Let f,(z) = ,
(6) Let fule) = 1o
(a) {fn} converges uniformly on [0, 1]

n

0<z<1.

1
(b) {fn} converges uniformly on [5, 1]

16
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1
(¢) {fn} converges uniformly on [O, 3

(d) {f.} converges uniformly on (0, 1]
(7) Let fu(z) = — Yz €[0,1]. Then
n
(a) {fn} converges uniformly to 0 but f! does not converge uniformly on [0, 1].
(b) {fn} converges uniformly to 0 and f/ converges uniformly to 1 on [0, 1].
(c
(d

)
) {fa} does not converges uniformly on [0, 1] but f/ converges uniformly on [0, 1].
) None of the above.

x

(§) Let fulr) = ——
but converges uniformly on [0,a] where a > 0. Also show that {f,} does not converge
uniformly on [a, c0],a > 0
(a) {fn} converges uniformly on [0, c0)

{fn} converges uniformly on [a,c0),a >0

{fn} converges uniformly on [0, a],a > 0

None of the above.

for x € [0,00). Show that {f,} does not converge uniformly on [0, c0)

{gn} is uniformly convergent on [0, 1].

{g»} is not uniformly convergent on [0, 1].

{gx} is not pointwise convergent on [0, 1].
) None of the above.

b)
c)
d)
9) ¢ §@ 1 —2),0<z<L1.
)
)

(10) {f.} and {gn}, gn # O are real valued functions on a non-empty subset S, S C R which
are uniformly convergent to the functions f and g respectively on S.
(a) {fn* g,} need not be uniformly convergent on S.
(b) {fn/gn} is uniformly convergent on S.
(¢) {fn * gn} is uniformly convergent to f * g on S if each f, is bounded on S.
(d) {fn * gn} converges uniformly to f * g on S if and only if either f =0 or g =0 on S.

(11) Let {f.} be a sequence of real valued functions on a set S converging uniformly to a
function f. Then the following statement is not true.
(a) Each f, is bounded on S = f is bounded on S.
(b) Each f, is differential on S = f is differentiable on S
(c¢) Each f, is continuous on S = f is continuous on S.
(d) Each f, is integrable on S = f is integrable on S.

(12) Let {f.} be a sequence of real valued R—integrable functions on [a,b] and f be the
pointwise limit of { f,,}

b
(a) If lim / fn # / f then {f,} doesn’t converge uniformly to f.
n——~oo a a
b b
(b) If {f.} doesn’t converge uniformly to f, then lim / fn # / f.
n—m=o0 a a

17
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b b
(¢) If lim / fn # / f then the convergence is uniform.
n—=o0 a a
(d) None of the above.

(13) Let {f,} be asequence of differentiable functions on (a, b). Let nli_r)noo fulz) = f(2), nli_r>1r10O fi(x) =
g(x) (pointwise limits)

) If f is differntable on (a,b), then f' = g on (a,b)

) If {f!} converges uniformly to g, then f is differentable on (a,b) and f' = g.

) If f/=g on (a,b) then {f,} converges uniformly to f on (a,b).

) If {f.} converges uniformly to f, then f is differentiable and f’ = g on (a,b)

if z <
(14) Lot fu(@)=¢" =" ="
n ifz>n
(a) {fn} converges uniformly on R to a bounded function.
(b) {fa} converges uniformly on R to an unbounded functions.
(¢) {fn} is not pointwise convergent on R.
(d) {f.} converges pointwise on R.

(15) Let f,(x) = . —|—xn:c2

(a) {fn} converges uniformly on R but {f/} does not converge uniformly on R.
(b) {fn} converges uniformly on R and {f’} also converges uniformly on R.

(¢) {fn} does not converge uniformly on R but {f/} converges uniformly on R.
(d) Neither {f,,} nor {f;} converge uniformly on R.

n

(16) Let fu(r) = 1 on [0.2) and f(x) = lim_f, ()

a) {fn} converges uniformly to f on [0,2] and f is continuous at x = 1.

b) {f.} does not converge uniformly to f on [0,2] and f is not continuous on [0, 1].
c)

d

{fn} does not converge uniformly to f on [0,2] but f is continuous on [0, 2|.
) None of the above.

w(z) = 2" for x € [0, 1]

(a) The pointwise limit of {f,} is not continuous on [0, 1]

(b) {f.} converges pointwise on [0, 1] to a continuous function.
(c) {fn} converges uniformly on [0, 1] to a continuous function.
(d) None of the above.

n

(18) fu(z) = % for x € [0,1]. Let nli_r)n()(} folz) = f(:z:),nli_r>noo fi(x) = g(x)

) {fn} and {f]} converge uniformly on [0, 1].
b) {f!} converges uniformly to g on [0, 1]

{f/} does not converge uniformly to g on [0, 1].
d) None of the above

18
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Topology of Metric Spaces and Real Analysis: Practical 3.5
Pointwise and Uniform Convergence of Sequences of Functions and Properties
DESCRIPTIVE QUESTIONS 3.5

(1) Show that each of the following sequences of functions converges pointwise on (0, 1). Identify
the subintervals on which the convergence is uniform.

(i) — (i) —

nr+ 1 nr+ 1 (iii)

1
nr+1

(2) Examine the following sequences of functions for pointwise and uniform convergence on
[0, 1]

(i) nze ™ (i) nzx(l — z2)" (iii) nz(l — 22)"

(3) Examine the following sequences of functions for pointwise and the uniform convergence

on [0,00). In case of the convergence not being uniform, examine whether the convergence
is uniform on [0, a] or [a, c0) where a > 0.

(1) e~ N . sin nx (111) x2e—nm ‘ .TG_T:C
W) T (iv)

(V) n2$26—nm

n

(4) fu:(0,00) — R, fu(x)

= . Then
1+ nx

(i) Show that {f,} is bounded on (0, c0) for each n € N.

(ii) Find the pointwise limit f of {f,} and show that f is not bounded on (0, c0).

(iii) Is {fn} uniformly convergent on (0, 00)? State clearly the theorem you used.

(iv) Show that there does not exist &« € RT such that | f,(x)| < « for all n € N and for all
z € (0, 00).

(5) Show that the following sequences of functions do not converge uniformly on the given

domain.
z ifz<n
n ifz>n
.. nT
(ii) fn :[0,00), fu(2)

T 1+ na?

(i) fn:[0,00) — R, fu(z)

0 if0o<ae<
(i) fu: (0.1] — R fu() =4 1
T

= 3=

if L <<
n

19
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(6) fn:1[0,1] — R, fu(z) = nxe ™. Show that each f,, continuous on [0, 1], the pointwise
limit of { f,,} continuous on [0, 1] but {f,,} does not converge uniformly convergent on [0, 1].

(7) Show that the following sequence of functions do not converge uniformly on the given
domain.

fo i [0,1] — R, fi(z) = {

n ifOS:BS%L

1 otherwise

(8) Let fu: 0,1] — B, fule) = ——.

Show that {f,} converges pointwise to f on [a,b] and each f, and f are R—integrable on
b b
0,1] with lim / fo(z) do = / f(z)dx but {f,} does converges uniformly on [0, 1].
n—-—ao0 a a

n? if0<z<

S =

(9) Let f, : [0,1] — R, fu(z) = . Show that {f,} does not converge
0  otherwise
uniformly on [0,1]. (Hint: show that if each f, is R-integrable on [0,1] and f, — f
b

pointwise on [0, 1] but lim / fn(x) is not convergent.)
n—aoo a

n’z fo<z<:
2
(10) Let f, : [0,1] — R is defined for n > 2, f,(z) = { —n? (a:— —) if 1 <x<2. Show
n
0 1f%§x§1

that {f,} does not converge uniformly on [0, 1].
(Hint: Show that each f,, is R-integrable on [0,1] and f,, — f pointwise on [0,1] , but

hm/fn #/f )dz.)

(11) Let fo: [-1,1] — R, fu(2) = y/2? + 5. Given that f, — f uniformly on [—1, 1] where

f(z) = |z| for x € [-1,1]. Find lim 1 fn( ) dx

n——~oo

(12) Let f, : [0,1] — R, fu.(x) = x + n. Does {f,} converge pointwise at any = € [—1.1].
Does sequence { f,} converge uniformly on [—1,1]? Show that {f} converges uniformly on
[—1,1].

—n-x

(13) fo: R — R, fu(z) = c . Find the pointwise limit function f of {f,} and g of {f’}.
Does f! — g uniformly on R?. Is f'(0) = g(0)?
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Topology of Metric Spaces and Real Analysis: Practical 3.6
Objective Questions 3.6

(Revised Syllabus 2018-19)

a) uniformly convergent on [0, A] where A > 0 but not on [0, c0).
b) not uniformly convergent on [0, A] where A > 0.

c¢) uniformly convergent on [0, c0).
d) none of the above.

a) uniformly convergent on R.

b) not uniformly convergent on [—a, a] where 0 < a < 1
c¢) uniformly convergent on [—a,a] where 0 < a < 1.

d) none of the above.

(a) pointwise convergent on [1, 00). (¢) uniformly convergent on [0, 00).
(b) uniformly convergent on [0, a],a < 1. (d) none of the above.

T

(4) The series ; = Dot Dz -1 is

(a) uniformly convergent on [0, c0). (c) uniformly convergent on [a,b],a > 0.
(b) uniformly convergent on [0, 1]. (d) none of the above.

(5) The series Z "(1—ux)is

a) umformly convergent on R.

b) uniformly on [0, 1].

¢) uniformly convergent on [0, a] where 0 < a < 1 but not on [0, 1].
d) none of the above.

(
(
(
(

sinnzx

(6) The least value of integer k for which Z

converges uniformly on R is

(a) 1. (b) 2. (c¢) —1. (d) none of the above.
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Z |a,| is convergent then Z apx

n=1

(a) uniformly convergent on R

(b) uniformly convergent on any bounded interval.
(c) uniformly convergent on [—a,a], where 0 < a < 1.
(d) none of the above.

(8) The series Zaz”(l — )
n=1
(a) converges uniformly to x on [0, a|, where 0 < a < 1.
(b) converges uniformly on [0, 1).
(c) is not pointwise convergent at x = 1.
(d) none of the above.

o 2
(9) The series Z ﬁ (a) converges uniformly on (0, c0).
€T n
n=1

(b) Converge_s uniformly on [a,00),a > 0.
(c) does not converge uniformly on [a, 00),a > 0.
(d) none of the above.

oo

1
(10) The series Z

n=1 W

(a) converges uniformly on R\ {0}.

(b) does not converge uniformly on [a,c0),a > 0.
(¢) converges uniformly on [a,c0),a > 0.

(

d) none of the above.

(11) Consider the series Z 2"(1 — 2z"). Then

n=1

) /1 ix"(l — 22")dx # g/ﬂl z"(1 —22")dx

(b) / %" dr = i/l (1 — 2™V da

) it converges uniformly on [O 1] and can be integrated term by term.
(d) none of the above.

(12) Let f(x) = g BT Phen
n
n=1

(a) None of the below statements are true.

COS NT
(b) Z 5— is not uniformly convergent on [0, 1] and cannot be integrated term by term.
n
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cos nx
(c) E >— is uniformly convergent on [0, 1] and can be integrated term by term.
n
n=1

(d) Z CBT 4 not uniformly convergent on [0, ¢], where 0 < ¢ < 1 and

cos kx cos mc
éllnl nh—I>noo/ Z d(L’ 7& 61£>n1/ Z

(13) The power series expansion for / Pt is
0

i x2n+1 i n 2n+1 i n 2n+1 e (_1)nx2n+l
(@) > o ) D i
| | !
“~ (2n+1)! £~ nl n+1) — n+1 “— (2n)!(n + 1)
(14) If R is the radius of convergence of power series Z cpx”, then radius of convergence of
n=0
S 1
the power series Zcﬁx”k is (a) R* (b) R (c) Rv (d) T
n=0
(15) If R is the radius of convergence of power series Z cp,”, then radius of convergence of
n=0
- 1
the power series chx"k is (a) R* (b) R (c) R (d) T
n=0
(16) If R is the radius of convergence of power series Z cp,x” then the radius of convergence
n=0

ofi(_n?ncnx" is () B2 () R ()0 (d) oo

(17) Z a,x" has radius of convergence R; and Z b,z", has radius of convergence R,.

o0

a, if niseven
Let C, =< " . Then the radius of convergence of the power series Z cpx"
b, ifnisodd —

18

(a) Ry + Ry (b) min{R;, Ry} (c) max{R;, Ro} (d) None of the above.

(18) Let R be the radius of convergence of power series Z cpx”, then the following powe series
n=0
does not have radius of convergence R.
o0 Cn N o n o
SPIEIDTINCE SERNCE YEIE LIS g i
n=0 n=0 n=0 n=0
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(19) Let Z c,z” be a power series with integer coefficients such that ¢, # 0 for infinitely many

n=0

n. If R is the radius of convergence of Z x", then

n=0

(a) R=0 (b) R=c0 () R<1 (d) R>1

(20) Let f(z) = ch;ﬂ” for |x| < R. If f(x) is an even function for |z| < R, then

n=0
(a) ¢, =0 YVneN. (¢) ¢, =0 when n is odd.
(b) ¢, =0 when n is even. (d) None of the above.

(21) If Z cpx” has radius of convergence 1, then

n=0

(a) the power series converges at z = 1 and x = —1.
(b) the power series diverges at z = 1 and x = —1.
(c) the power series converges at z = 1 and diverges at z = —1.
(d) none of the above.
- —  ifn=2k
(22) Consider the power series Z cpx”, for which ¢, = < 2k n :
"0 3L ifn =2k +1
Then the radius of convergence of Z cpx” is
n=0

(23) If v is a non-zero real number then the radius of convergence of o™ is

(a) |a] <b>@ (© 0 (d) o

(24) If @ and f are real numbers such that 0 < |5| < || then radius of convergence of

o gy 1 1
Slam 4 g is @) ol 0) (0 B (@)
n=0 ‘Oé’ ’B|
e
(25) The series expansion log(l +z) =z — — + 3T -7t is valid if
(@) |z| <1 (b) |z|<Afor A>0 (c) |[z|]<1 (d) >0
1
(26) The series expansion 1 + 2z +3z? + -+ +na" '+ ... = (e is valid in
—x

(a) R (b) (=1,1) (c¢) [-1,1) (d) [a,b] for any a,b € R,a < b

24



US/AMTG603  Sem VI,Paper3:Topology of Metric Spaces and Real Analysis, Rev. Syl. 2018

2 1'3 n

(27) Let E(z) = 1+x+%+§+ +%+--. for x € R. Then lim 2"E(—z) =
. T—r00
(@)1 ()0 (c) oo (d) ~1

e e 2n 0 n 2n+l

I’ n
(28) Let E(z ; —.C ;(—1) o nz 2n .z € R. Then
(a) E(z),C(x),S(x) are one-one (¢) C(x), S(x) are one-one
(b) Only E(z) is one-one (d) None of the above.

(29) Let L : (0,00) — R be defined as L(E(z)) = z and E(L(y)) = y,x € R.

() 10—y =-3 L (© L) =Y

0o 0o (d) None of the above.
=> >

n=1 n=0

(30) Let L : (0,00) — R be defined as L(E(x)) =z and E(L(y)) = y,z € R. Then
(a) L is represented by power series on (0,1).  (b) L is represented by power series on
(0,00).  (c) L is not represented by power series.  (d) None of the above.

Elw) + B(=2) and sinth<x> — B(=2)
2 2

(31) Let coshz =

is not true.
(a) sinh(—z) = —sinhz,cosh(—z) = —coshx (b) sinh(x + y) = sinhzcosh(y) +

, € R. Then the following identity

coshxsinhy  (c) e sinhz = coshx  (d) cosh” +sinh*z = 1
T

Topology of Metric Spaces and Real Analysis: Practical 3.6
Descriptive Questions 3.6

(1) Show that Z 2" (1—x) converges uniformly to x on [0, a], where 0 < a < 1, butz z"(l1—x)
n=1 n=1
is not uniformly convergent on [0, 1).

(2) Show that the series Z "(1 — x) converges uniformly on [0, 1].

n=1

1
(3) (i) Show that Z 5 does not converge uniformly on R\ {0} but converges uniformly

on [a, oo)a>0
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1
ii) Show that ——— is uniformly convergent on R.
2 2
x2+n

is uniformly convergent on [a, c0),a > 1.

(iii) Show that )
T

(iv) Show that Z
T
n=1

1 is uniformly convergent on [0,a],a < 1 but not pointwise con-

vergent on [17, 00).

- x
(v) Show that Z —_—
n=1 (1 +

) does not converge uniformly on (0, o) but converges uniformly
T n

on [a,00),a > 0.

(4) Show that each of the following series of functions converges uniformly on the indicated

interval.
o0

(i) Z “negn [0, A], A > 0.

00),a > 0.

(iii) Z ? on [a,00),a > 0.

If a,| < oo, then the series a,, cosnx and a, sinnz converge on R.
g
n=1 n=1 n=1
0 —1)" 2
(6) Show that the series Z (=1 (i ) converges uniformly every bounded subset of R.
n
n=1
(7) Show that Z sin mj,p < 1 is uniformly convergent on S = [—m, —a] U [a,7],a > 0.
g2 —a2
R en?  elr? | : . 2
8) (1 2z — in |a, b|]. Show that the series converges uniformly to 2xe™"
n? (n+1)2
n=1
b =2 =2
s e nZ e (n+1)2
b. H how that 2 — do=e*—e™".
on [a,b]. Hence show aZ/ e (1) r=e e
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(ii) Z x"(1—2z"). Show that the series does not converge pointwise at = 1 but converges

pointwise to
+x

1 0 1
on [0,1). Show that /0 H%dx + ;/O 2"(1 — 22™)dz. Hence

show that the series does not converge uniformly on [0, 1). State the result you used .
(Let D be a bounded subset of R and let f: D — R be a function. We say that f is
integrable over D if f is a bounded function and if there are a,b € R with D C |a, b]
such that the function f*: [a,b] — R defined by

. f(z) ifzeD
fla) = 0 otherwise
is integrable on [a b|. In this case, the Riemann integral of f over D is defined by

/f dx—/f()dx.
Reference: A Course in Calculus an Real Ananlysis, Sudhir R. Ghorpade, Balmohan
V. Limaye,Second Edition, Springer, pg. no. 216 )

o0

(iii) 2:1 L frfw - +(7Zn__1ii)”2x2} in [0,1].

n=

Show that /01 [i {1 —i—nz?a? B 1+<T(Ln_—li 2&:2]] Z/ {1 +n222 1 —i-(T(ln_—lig)C?ﬁ de.

n=1

G —1
but ; L +n;c2x2 e +(T<ln — i§2$2] does not converge uniformly on [0, 1].

(9) Show that Z o S is uniformly convergent on R and check that it can be differen-
n+n+z
tiated term by term.

(10) Find the radius of convergence of each of the following power series.

o0 oo 3 oo n
3,.n N on e n
i) nE_O n°x (iii) nE_O e (v) nE_O T 1°
.. =\ on n . > 3 5 " ) © "
(ii) ngo YR (iv) ngo(n —5n“+Tn—2)z" (vi) ngom

(0 Z (x — 1)1 (i) Z n'(xn: 2)" (i) Z (22 —1)"
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(v 3 GO Chyran

o

hh—1)--(h—n+1)

(12) Find the radius of convergence of the power series E cpx”, where ¢, = '
n!
n=0

o0
(13) Consider the power series Z cpr” with integer coefficients. If ¢, # 0 for infinitely many
n=0
n, then show that its radius of convergence is at most 1.

(14) Give an example of a power series with radius of convergence = 5 and interval of conver-

gence = (3,13).

(15) If Z cpx” is a power series such that 0 < o < |¢,| < 8 V n € N where a, § € R, find its
n=0
radius of convergence.

(16) Let Z a,z" and Z b,x™ be power series such that

n=0 n=0
1 if n is square of an integer b 1 if n = k! for some k € N
ap = n — . .
0 otherwise 0 otherwise

(o] o
Find the radius of convergence of Z an,x’ and Z b,x".
n=1

n=0
(17) If 0 < |a| < |B] then find the radius of convergence of

Z(a" + f")x™ and Z(a” + /™).
n=0

n=0

1 oo
(18) Show that T—r %x” for |z < 1.

(19) By differentiating a suitable power series term by term, obtain the formula,

1

2 n—1 -
1+2x 432"+ +nx +"'—m

for —a < x < a. What should be the value of ‘a’ so that term by term differentiation is
valid?
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3 5 d
(20) If sinx = o — % + % + -+ for x € R and d—(sinx) = cosz,Vr € R, then show that
x
. [
cosr =1— o + 1 + -
(21) Show by integrating the series for L that log(1 + x) = i<_1)n+1x_”
1+a’ o n’

(22) By integrating a suitable powe series over an interal [0,¢], where 0 < ¢ < 1, show that
1 i 1
2 = nl(n+2)

: L 135+ .(2n — 1)z}
23) F < 1, show that sin™'z =
(23) For |z| < 1, show that sin™" z % 24 ()@ 1)

n 2n+1

(24) For |z] < 1, show that tan™!x Z 2 Y
n

(25) Find a series expansion for / e~ dt for z € R.
0

) 1 00 00
a
26) If E a,| < oo, prove that E anx”™ | dx = E n

n=0
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Topology of Metric Spaces and Real Analysis: Practical 3.7
Miscellaneous.

Revised Syllabus 2018-19
UNIT I : Continuous functions on Metric Spaces

(1) Let (X,d) and (Y,d') be metric spaces. Show that f : X — Y is continuous at p € X if
and only if for each sequence (z,) in X converging to p, the sequence (f(z,)) converges to

f(p)nY.

(2) Let (X,d)and (Y, d’) be metric spaces and f : X — Y. Show that the following statements
are equivalent.

(i) f is continuous on X.
(ii) For each open subset G of Y, f~1(G) is an open subset of X.
(iii) For each closed subset F of Y, f~1(F) is a closed subset of X.

(3) Let (X,d) and (Y,d') be metric spaces. Show that f: X — Y is continuous at p € X if
and only if for each sequence (x,) in X converging to p, the sequence (f(x,)) converges to

f(p) inY.

(4) Let (X,d) and (Y, d’) be metric spaces. Show that f is continuous at z € X if and only if
for each open subset U of Y containing f(x),3 an open subset V' of X containing x such
that f(V) CU.

(5) Let (X,d)and (Y,d'),(Z,d") be metric spaces. If f : X — Y is continuousand g : Y — Z
is continuous, then show using € — § definition or sequential criterion that go f : X — Z
is continuous. Give an example to show that converse of the above statement is not true.

(6) Let (X,d) and (Y, d’) be metric spaces. Show that f: X — Y is continuous on X if and
only if for each subset A of X, f(A) C (f(A)).

(7) Let (X, d) and (Y, d') be metric spaces. Show that f : XBY is continuous on X if and only
if for each subset B of Y, (f~1(B)) C f~1(B).

(8) Let (X,d) and (Y,d’) be metric space and f : X — R (usual distance) be a continuous
function. If f(zo) > 0 for some zy € X, show that f(z) > 0,Vzx € B(x,?).

(9) Let (X,d) and (Y, d’) be metric spaces. When is f : X — Y said to be uniformly contin-
uous? Give an example to show that a continuous map need not be uniformly continuous.

(10) Let (X,d) and (Y,d') be metric spaces. If f,g: X — Y are continuous functions, then
show that FF = {z € X : f(x) = g(z)} is a closed subset of X. Hence, deduce that if
f(z) = g(z),Yx € D, where D is a dense subset of X, then f = g.
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(11) Let (X,d) and (Y, d’) be metric spaces. Show that f : (X,d) — (Y,d') is a continuous
function if and only if f~'(B°) C (f~'(B))° for each subset B of Y.

(12) Let (X, d) be a metric space and A C X. Using € —J definition show that f4(z) = d(x, A)
is a continuous map from (X, d) to (R, d) where d is the usual distance on R.

(13) Let f : R — R be a continuous function (distance is Euclidean ) and F' be a closed
subset of R. Show that A ={z € F': f(z) =0} is a closed set in R. Is the result true if F'
is not closed?

(14) Let (X, d) be a metric space. Show that f : (X,d) — (R, d) (where d is usual distance) is
continuous if and only if f~!(—o00,a) and f~!(a,c0) are both open in (X, d) for each a € R.

(15) Show that the metrics d and d; on a set X are equivalent if and only if i : (X, d) — (X, d;)
and i : (X,d;) — (X, d) are continuous functions, where i denotes the identity map on X.

(16) Let f: R — R (with respect to usual distance) and A = {(z,y) : y < f(x)}, B = {(z,y) :
y > f(x)}. Show that f is continuous on R if and only if A, B are open subsets of (R?,d)
where d is the Euclidean distance.

(17) Let X be a finite set and d be any metric on X. Show that any function f: X — Y is
continuous, where (Y, d') is a metric space.

(18) Let (X,d) be a discrete metric space and (Y,d') be any metric space. Show that any
function f : X — Y is continuous.

(19) Show that any function f : (N,d) — (X, d’) is continuous, where d is usual distance on
N and (X, d’) is any metric space.

(20) Show that any function f : (Z,d) — (X, d’) is continuous, where d is usual distance on
Z and (X, d') is any metric space.

(21) (X,d) and (Y,d') are metric space and f : X — Y is continuous. Give examples to show
that

(i) G is an open subset of X does not imply f(G) is an open subset of Y.
(ii) F is a closed subset of X does not imply f(F) is a closed subset of Y.

(iii) (x,) is a Cauchy sequence in X does not imply the sequence (f(x,)) is a Cauchy in
Y.

(22) Let (X,d) be a metric space and (Y, d’) be any metric spaces. If f: (X,d) — (Y,d') is a
continuous function, then show that f(X) is a compact set.

(23) Let (X,d) and (Y,d') be metric spaces and f : X — Y be continuous. If (X,d) is a
compact metric space, then show that f: X — Y is uniformly continuous.
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(24) Let (X,d) be a complete metric space. T': X — X be a contraction map. Then show
that T has a fixed point.

(25) Let (X,d) be a complete metric space and T': X — X be a mapping such that 7™ =
ToToTo...oT(mtimes) is a contraction for some fixed m then show 7' has an unique
fixed point.

(26) Let (X,d) be a compact metric space and T': X — X be such that d(T(x),T(y)) <
d(x,y) then show that T" has unique fixed point in X.

UNIT II : Connected sets

(1) Let (X,d) be a metric space. Prove that the following statements are equivalent:

(i) X can be expressed as a union of two non-empty separated sets.

(ii) X can be expressed as a union of two non-empty disjoint closed sets.

(iii)
)

iii) X can be expressed as a union of two non-empty disjoint open sets.
(iv

There is a non-empty proper subset of X which is both open and closed.

(2) Show that A is a connected subset of R with respect to the usual distance if and only if it
is an interval.

(3) Let (X,d) be a connected metric space and (Y, d') be any metric space. If f: (X,d) —
(Y,d') is a continuous function, then show f(X) is a connected set.

(4) Show that a metric space (X,d) is connected if and only if every continuous function
f:X — {1,—1} is constant.

(5) If a metric space (X, d) is connected and A is a non-empty proper subset of X, then show
that 0 A, boundary of A is non-empty.

(6) Show that a metric space (X, d) is connected if and only if for each a,b € X, there is a
connected subset E of X such that a,b € E.

(7) Let (X,d) be a metric space. If A is a connected subset of X, and A C B C A then show
that B is connected. Hence, show that A is connected. Give an example to show that if
A, C are connected subset of X and A C B C C then B need not be connected.

(8) If A and B are connected subset of a metric space (X,d), and AN B # (), then show that
AU B is connected. Give an example to show that A N B need not be connected.

(9) Let (X,d) be a metric space. If {4, : @ € A} is a family of connected subsets of X such
that NaepAn # 0, then show that U,ep A, is connected.

(10) Let (X,d) be a metric space. If {A,, : n € N} is a family of connected subsets of X such
that A, N A, 1 # 0 for each n € N, then show that U,enA, is connected.
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(11) Prove that an open ball in R™ is a convex set. (The distance being Euclidean). Hence,
deduce that it is path connected.

(12) Show that a path connected subset of R™ is connected.

(13) Let A and B be path connected subsets of a metric space (X, d) such that AN B # 0.
Show that AU B is path connected.

(14) Let (X,d) and (Y,d') be metric spaces. If (X,d) is path connected and f: X — Y is
continuous, show that f(X) is path connected.

(15) Let (X,d) be a metric space and A be a non-empty subset of X.
Prove or disprove: IfA is connected, then A°, and A are connected. Give an example to
show that A° and A may be connected, but A may not be connected.

(16) Let (X, d) be a metric space. If A is connected subset of X, then show that A is connected.
Give an example to show that A° may not be connected.

UNIT III : Sequences and series of functions

(1) Mn Test: A sequence {f,} of real valued functions on S (S C R) converges uniformly to
a function f: S — R on S if and only if, lim M, = 0 where

n——oo

M, = sup{|f.(z) — f(x)| : « € S}. Hence show that if there is a sequence (¢,) in R such
that |f.(x) — f(x)| < t, for all n > ngy for some ny € N and for all = € S such that ¢, — 0,
then f, — f uniformly on S.

(2) State and prove Cauchy Criterion for uniform convergence of sequences of functions.

(3) Let {f.} be a sequence of real valued functions defined on a set S C R such that f,, — f
uniformly on S. If each f,, is bounded on S, then prove the following.

(i) f is bounded on S.

(ii) there exists a € RT such that |f,(z)| < « for all n € N and for all z € S.

(iii) sup{f.(z):z € S} — sup{f(x):xz € S}.

(iv) inf{f,(z) :x € S} — inf{f(x): 2z € S}.

(4) Let {f.} be a sequence of real valued continuous functions defined on a subset S of R such
that f, — f uniformly on S. Then prove the following.

(i) f is continuous on S.

(ii) For any p € S, lim lim f,(z) = lim lim f,(x).
n—s

00 T—p T—p Nn—>00
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(5) Let {f.} be a sequence of real valued R—integrable functions defined on [a,b] such that
b
fn — f uniformly on [a, b] . Then prove that f is R— integrable on [a, b] and lim / fult) dt =
n—oo a

b
/ lim f,(t) dt.

n——~oo

(6) {fn} is a sequence of real valued R—integrable functions on [a, b] converging uniformly to

fon [a,b]. If F,(z) = / fn(t) dt then prove that {F,,} converges uniformly to F' on [a, b]
where F(x) = / f(t)dt.

(7) Let {f.} and {g,} be sequences of real valued bounded functions on S subset of R. If {f,}
and {g,} converge uniformly to f and g respectively on S, then prove that {f, * g,} is
uniformly convergent on S.

(8) Let {f.} be a sequence of real valued continuously differentiable functions on [a,b],a < b
such that {f,(zo)} is convergent for some xy € [a,b] and {f/} converges uniformly on [a, b].
Then

(i) there is a continuously differentiable function f on [a,b] such that f, — f uniformly
on [a,b] and

(ii) f) — f’ uniformly on [a, b].

(9) Let {f.} be a sequence of differentiable real valued functions on a bounded interval I. If
{fn(zg)} is convergent for some xy € I and {f]} converges uniformly to g on I then {f,}
converges uniformly on I and if {f,} converges uniformly to f on I then f is differentiable
on [ and f' =g on I.

o0

(10) State and prove Cauchy Criterion for Uniform Convergence of a Series E fn of real valued
n=0
functions on a subset S of R.

o0

(11) State and prove Weierstrass M-Test for the convergence of a series Z fn of real valued
functions defined on subset S of R. i

(12) Let {f.} be a sequence of real-valued bounded functions on a set S C R. If the series
io: fn converges uniformly to the sum function f on .S then prove that f is also bounded

n=1
on S.
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(13) If {f.} is a sequence if real valued continuous functions on S, S C R such that Z fn con-

n 1

verges uniformly to f on S, then prove that f is continuous on S, and for p € S, Z lim fn( ) =
n=1

(14) Let Z fn be a series of R—integrable functions on [a,b] , converging uniformly to f on

n=1

b 0o b
la, b], then prove that f is R—integrable on [a, b] and / f(x) dz = Z/ fn(z) dz

(15) If {f.} is a sequence of differentiable functions on [a, b] such that each f] is continuous

on [a,b] and if Z fn converges to f pointwise on [a,b] and Z [ converges uniformly on

n=1 n=1

la, b] then prove that f'(z Z fi(x) fora<z<hb.

NOTE: For Q. No. (12) to (15), the corresponding result about uniform convergence of
sequence of functions can be used directly.

(16) If the power series Z cpx” converges at 7 € R, x1 # 0 and diverges at o € R then the

n=0
%)

power series Z lc,x™| converges for all z € R with |z| < |x;1]| and diverges for all x € R

n=0
with |z| > |z3].

(17) A power series Z cpx” is either absolutely convergent for all x € R, or there is a unique
n=1
real number 7 > 0 such that the series is absolutely convergent for each z € R with |z| < r

and is divergent for each z € R with |z| > r.

oo 1
(18) Let chx” be a power series with coefficients in R. Let o = limsup|c,| . Then the
— n—-:oo
n=0 -
radius of convergence r of Z e is — (if a = 0,7 = oo and if a = 0o, = 0) (Statement
a
n=0
Only).
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Definition: limit superior of a sequence <lim sup an): Let (a,) be a sequence in R.
n—-:o0

i. If (a,) is not bounded above then lim sup a,, = co
n——oo

ii. If (a,) is bounded above then for each n € N, define, M,, = sup{ay : k¥ > n}. Then
sequence (M,,) is monotonic decreasing. If sequence (M,,) is bounded below then it is

convergent. In such case, limsupa, = lim M,.
n—->00 n—>>00
iii. If sequence (M,,) is not bounded below then lim sup a,, = —oc0.
n——oo

It can be proved that if sequence (a,) is convergent then limsupa, = lim a,
n—->00 n—>00

o0
(19) Let chx" be a power series with coefficients in R and there exist ny € N such that
n=0

Cn . - 1
cn 70, Vn >ng. Let a = lim 11 Then the radius of convergence 1 of Z cpx” 18 —
n—oo | ¢, — 1o
(if « = 0,7 = 00 and if & = oo, = 0) (Statement Only).
(20) Let r be the radius of convergence of a power series chx". If s € R is such that
n=1
0 < s < r, then prove that the power series converges uniformly on [—s, s|. Further, let
[ee)
f:(=r,r) — R be the sum function of the power series Z cpx™ then prove that
n=0
(i) f is continuous on (—r,r).
T e anrl
ii) For every xz € (—r,7), t)dt = Cn
(i) vaer, [ r0a=3 et
(iii) f is differentiable on (—r,r) and f'(z) = chw:”’l for x € (—r,r).
n=1
F(0)

(iv) f is infinitely differentiable on (—r,r), and ¢, = for n € N, ¢o = f(0).

n!
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Numerical Methods 1

Lagrange’s Linear, quadratic and higher order Interpolation,
Iterated interpolation, Newton’s divided difference
interpolation

Numerical Methods Objective Questions 1

(1) The Lagrange’s quacdratic interpolating polynomial obtained in two different ways

(a) are not identical at all,

(1) may be different in form but are idemtical otherwise,
(¢) always in the same form,

() None of the above,

(2) The Lagrange's quadratic interpolating polynomial of f(x) such that f{0) = 1, f(1) =3, f(3) =55
using Lagrange’s interpolation is

(a) 82 —6e+1(b)Br® +6x—1(c) =8z —6r+1 (d) None of these

(3) If f(l) = 0.2675, f(2) = 0.5287, then the appropriate value of f{1.5) using Newton's divided
difference interpolation polynomial is

(a) 0.2981 (b) 0.3981 (¢) 1.3981 (d) Noue of these

(4) The interpolating polynomial of f() such that f(l1) = =2, f(2) = 1, f(3) = 2 using iterated
interpolation s

(a) a*+6x—T () a" —6r—T7 () —a*+6r—7 (d) None of these
(5) Which of the following statement is true.
(a) Lagrange's and Newton’s divided difference polynomials are two different forms of the same

polvnomial,

(h) Lagrange’s and iterated interpolation polynomials are two different forms of the same poly-
nomial,

(¢} Newton’s divided difference and iterated interpolation polynomials are two different. forms of
the same polynomial.

(d) All the above

(6) Let f(—2) =46, f{—1) =4, f(3) = 156. Using Lagrange’s quadratic interpolation formula, the
value of f(0) is

(a) —5 (b) —&% (¢) 15 (d) 15
(T) Given P(1) = 1, P(3) = 27 and P{4) = 64, the value of £y, (2) is
fa) 12 (b} 13 (c) 14 () 15,

(8) If f(x) = cosa, ap = 0.2 and &y = 0.3, then flay, 1] is

(a) 0.2473 (b) 0.2483 [e) 032483 (d) None of these.



(9) If fla) = cosa, ap = 0.2, &1 = 0.3 and @2 = 0.4, then [y, 41,22 is
(a) —0.4772 (b) —0.5772 (c) —0.4882 () —0.7472
(10) The value lim f[ry, 1] is
F1—+ro

(a) [ (b) (o) ()0 (d) w0

Numerical Methods Descriptive Questions 1

(1) Let f(—2) = 46, f(—1) = 4, f(1) = 4, f(3) = 156. Use Lagrange's interpolation formla to
estimate the value of f(0).

(2) Find the Lagrange’s interpolating polynomial for the following data:

fley 659 705 729 8

(3) Find the Newton's divided difference interpolating polynomial for the bollowing data:

¥ -1 1 4 i
fley -2 0 63 32

Also interpolate at & = 5.

(4) Fimd the Tterated interpolating polynomial for the following data:

* -1 2 4 5
fle) -5 13 255 635

Also interpolate at 3 = 3.

(3) Find the unique polynomial P(r) of degree 2 or less such that P(1) = 1, P(3) = 27, P(4) = 64,
using each of the following methods:
(i) Lagrange's interpolating formula,
(ii) Newton divided difference formula, and
(iii) Iterated interpolation formula.

(6) If f(x) = i— for & = i, a2 and @y, find the second order divided difference flr, xs, i3]

(7) If flx) = —113 for i = @y, 2, a3 and vy, find the third order divided difference f[a, o2, a3, 04].

(8) Given f(3) =35, f(7)= 10, find the linear interpolating polynomial using
(i) Lagrange interpolation
(i) Tterated interpolation
(i) Newton's divided difference interpolation

Hence find an approximation value of f(4).

b



(9) Given In(l) = 0, In{4) = 1.3863 and In(6) = 1.791. Estimate In(2) using linear amnd quadratic
interpolation formyla. Find the error.

(10) Given f(x) = ¢ and take 1y = 1, 1 = 1.1. Use linear interpolation formula to caleulate and
approximate value of f(1.04) and f(1.05) and hence obtain a bound on truncation error at the
midpoint, of wy and .

(11) (i) For the data points (0.82,2.270500) and (0.83, 2.293319). Find unique polynomial Fi{xr) o
degree 1 or less and hence evaluate P {0.826).

(ii) For the data points (0,—1), (1,—1) and (2, 7) find unique polynomial Pa(z) of degree 2 or
less and hence evaluate Pa(1.5).

(12) Find Lagrange’s interpolation polynomial for the following
& 0 2 3 6
fla) 659 T05 720 84
(13) The function y = f(x} i5 given at the points (7,3), (8,1), (9, 1) and (10,9). Find the value of y
for & = 9.5 using Lagrange’s interpolation formula,

(14) The following values of the function f{x) for values of & are given as (1) =4, f(2) =5, f(7) =5,
f(8)=4. Find the value of f(6) and also the value of & for which f{x) is maxirmum or minimym
by Lagrange's interpolation formula,

(15} Find the value of tan 33° by Lagrange’s interpolation formula if tan 30° = 0.5774, tan 327 = 0,6249,
tan 35% = (.7002, tan38” = (L7513,

(16) The following values of the unction y = f{x) are given:
f(0y=4, f(l1)=3 f(3)=

Use Lagrange's quadratic interpolation formula to determine

. F '!'rJ o 1
1"- ': tl l} 5 . ir'a :
(ﬂ ‘f{ .}:| l:l.l:l !T a lTl.ljl j; J{H

(17) Find the unique polynomial P{x) of degree 2 or less such that P(1) =2, P(2) = 26, P(4) =
using each of the following methods:

(i) Lagranpe's quadratic interpolation formula
(i) Newton's divided difference formula,
(iii) Tterated interpolation formula.

(18) Use Lagrange’s interpolation formula to find the value of y at @ = 2.7 from the following data:

v 5 95 3
y=log,x 0.69315 0.91620 1,008061

Also estimate the error in interpolating polynomial,

(19) By considering the limit of the three points Lagrange’s interpolation formula relative 1o wg, &1, 29+
as = —+ 0 obtain the formula
iu}‘! o T LE r— E(x — 2% 4 I1)
e O =
(a1 Top— I (g — 1)

fla) = flw)




(20) Given log,, 654 = 2.8156, log,, 658 = 2.8182, log,, 659 = 2.8189 and log,, 661 = 2.8202. Find by
divided difference formula the value of log,, 656,

(21) Find the polynomial of lowest possible degree which assumes the values 1245,33, 5,9 and 1335 at
r=—4,—-1,0,2 and 5. Also [ind the nature of the polynomial at abscissa 1 by Divided Difference
Fornmla,

(22) Apply Newton's divided difference formmla to find the value of f(8) if f(1) = 3, f(3) = 31,
F(6) =223, f(10) = 1011, f(11) = 1343.

(22) Given that

= 1 8 4 5
ye L 27 81 T29

Find 45 using Newton’s divided difference formuyla.

(23) Use Newton's divided difference formula to find f(7) if f(3) = 24, f(5) = 120, f(8) = 504,
f(9) =720, f(12) = 1716,

(24) Given

r 0 1 2 5
fley 2 3 12 147

What is the form of the unction?

(25) Find the function u, in power of (& — 1), given that uwy = 8, w, = 11, uy = 68, us = 123 using
divided difference formyla.

(26) Find the function u, in power of (& — 4), where uy = 8, u, = 11, uy = 68, us = 125 ysing divided
difference formula.

(27) Find f(x) as a polynomial in powers of ¢ — 5 using the following data:

r 0 2 3 4 T 0
fixy 5 26 58 112 466 922




Numerical Methods 2

Finite difference operators, Interpolating polynomial using

finite differences

Numerical Methods Objective QQuestions 2
(1) The forward difference operator A is equal to
(a) 1—-E b)1+E (€) 1-E~ (d) E—1.
(2) If f{l) =05, f(2) =7, f(3) =8, then
(a) Afi2)=1,Vf(2)=2and Ef(2) =8
L) Afi2y=2,Vf(2Y=1aml Ef(2)=8
(¢) Af(2)=1,Vf(2)=1and Ef(2)=3
() None of these
(3) If fi4) = -1, f(6) =3, f(8) =5, then
(a) 4f(5) =3, pf(5) =1 (b) df(5) =4, nf(5) =1
(c) df(3) =5, pfi(s) =2 (d) None of these
(4) If f{1}=0.227, f(3) = 0528, f(5) = 0.729, then
(a) Af(3) =0.301, Vf(2) =0201, 6f(2) = 0.378 and pf{2) = 0.301
(b) Af(3) = 0.378, Vf(2) = 0.301, 4f(2) = 0.301 and pf(2) = 0.201
(e) Af(3) = 0.201, Vf(2) = 0.301, 6f(2) = 0.301 and pf(2) = 0.378
(d) None of these
(3) Which of the following statement is false:

A2y 2 fiy
0 Py L0 o rewTIE

(©) f(z)~ LI m”%ﬂﬁrﬁﬂ

I

(6) Which of the following statement is True:

(a) Af(eg) =V (1) =68 (x1m)

(b) Af(xe) # V), Af(xg) =6 f(w1)

(e) Aflwo) =V 1), &f(wy) # 6 flwys)

() Afwg) # Vfla), Af(wg) # 6 f(12)
(7) Which of the following statement is trye

(a) A=E(l—V) (b) 6 = E(1—V) (c) 1 =E(1-V)
(8) If flx) = 2* — 2r + 4 and interval of differencing is ynity then

(a) Af(x)=0 (b) A*f(x) =0 (¢c) A'f(x)=0

&n

() p=E(1-V).

(d) None of the these



(9} The Gregory-Newton forward difference Interpolating polynomial corresponds to the data f(0.1) =
1.4, f(0.2) =156 is

(a) L6+ 1.24 (b} 1.6x —1.24
(e) 1.Gx—+ 1.56 () None of these

(10) The value of f{0.2) using Gregory-Newton forward difference Interpolation for the data f{0.1) =
—1.699, f(0.3)=—1073is

(a) —2.638  (b) —1.386  {c) 1.386  (d) None of these

(11) The value of f(0.13) using Gregory-Newton backward difference Interpolation for the data f(0) =
—1.5, fl0l)y=-1.27 is

(a) 1.2585 (b) —1.2585 (¢) —1.3275 (d) None of these

(12} The Gregory-Newton backward difference Interpolating polynomial corresponds to the data f(0.4) =
2, fl0.5) =228 is

(a) 2,80 —0.88 (b) 282 + 0.88
(c) 2.8x+ 3.68 () None of these

(13) The backward difference operator ¥V is equal to
(a) E'A  (B)EA (e)E—-A (dET4+A

(14) Which of the following statement is trye?

(a) §=AV (B #=A+V (c)&#=AV ()&=

1| L-

(153} Which of the following statement is true?

(a} 6 = EY2A (b} § = E=Y2AW (c) & = EA (d) § = EV2V

Numerical Methods Descriptive Questions 2
(1) Evaluate the following:

(i) Ae™ log(3x)
. o
.4 (ms'z.-tr)

ws (3

Take i = 1.

(2) Prove that

| . Af(r)
(i) Alog f(x)=log (l T )
a%® 4 glr

(i) A" (@) = a" (@™ — 1)" and hence evalnate A* (m)

i



Ti
(iii) A" cos{ar +0) = (2sin ﬂ coslar+b+n i and hence evaluate Alcos® 2r.
> 2

-

(3) Show that Yorns = Yo+ {TJ' Ayy+ {3} A%y + -+ Ay, where i, is a polynomial in #, Using above
formula, find fix) if

¥ 0 1 2 3 4 5
fle) -1 3 19 53 111 199

Hence find the value of f{8).

(4} Evaluate the following, interval of differencing being unity:

i) (2A+3)(E+2)(3a*+2)
(i) (V+ A2 +x+1)

(5) Let f(E) = aoE"+ @ BV + @E" ' 4+« +a,, and interval of differencing being ynity. Show that

J(E)e™ =¢" 4 flel)

(6) Given that

x 1 2 3 4 5 6
10 17 26 &7

Find the value of Viy,.

(T) Estimate the missing term in the following:

r 1 2 3 4 35 6 T
y 2 4 8 - 32 o4 128
(8) Prove that
(i) = ys+ Ay + A%y + Ay,
(i) 1 = wp + 45 + 6A%y_1 + 10A%y,
(9) e is a function of & for which fifth differences are constants and u, + wy = =786, u2 + ug = 686,

iz + s = 1088, Find uy,
(10) Show that
(i) ATE* = VrEMT where » is an integer,

i a
(i) A fy= E{_ljk(i)fj_g- where j € M,
=0 '

(i) f;=" (Di"fu where j € N.

fe=t)

(11} Show that

(i) pd=3(A+V)
i) #F=A-V
(idd) .;12=l+£1f5-’
(iv) 6= E-12A



(12) Prove that

A? | Ee
P
W) =7 ARe¥

g 1t
Ut &3 (;::) Ca(e+ (e +2) e (w4 n)

(13) If f(x) = ¢, then show that
(i} A*f(x) = (e —1)%*
(i} V*f(x) = (1 = P)¥H
(14) If fx_y) = y_1, f(2g) = Wy, S(21) = 11 and f(ir2) = ya, then show that FPyy =1 — 24y + 1y

for all n € W,

(15) Construct the interpolating polynomial that fits the data

x 0 .1 0.2 0.3 4 0.5
flegy =156 =127 —-098 —-063 -—022 025

using the Gregory-Newton forward or backwandl interpolation. Hence or otherwise estimate the
values of f(x) at & = 0.15, 0.25, 0.45.

(16) Using the Newton's backward difference interpolation, construct the interpolating polynomial that
fits the data

x 0.1 0.3 0.5 0.7 0.9 1.1
fley —-1699 —1073 —0375 0443 1429 2631

Estimate the value of f{x) at x = 0.6 and & = 1.0,

(17) The following data represents the function f(z) = ",

x L L. 2.0 2.
flr) 27183 44817 T7.3801 12,1825

Estimate the value of f(2.25) using the (i) Newton's forward difference interpolation and (ii)
Newton's backward difference interpolation. Compare with the exact value.

(18) The following data represents the function f{z) = cos{r + 1).

J B0 0@ _0d e
fla) 05405 03620 0.1700  —0.0292

Estimate the value of f(0.5) using the Newton's backward difference interpolation, Compare with
the exact value.

(19) Ordinate f{x) of a normal curve in terms of standard deviation & are given as

¥ 1.00 1.02 1.04 1.06G 1.08
Slz) 02420 02371 02323 02275 0.2227

Find the ordinate for standard deviation x = 1.025.

(20) Using Newton’s forward interpolation formula estimate the population for the vear 1988 [rom the
table.

year 1973 1983 1993 2003 2013
popilation o2 132285 168076 195690 246050




(21) Find the value of an annuity at 5%'}5 given the following table using Newton’s backward interpolation

formula
Annunity value | 172.2903 | 162.83580 | 153.7245 | 145.3375 | 137.6483
(22) The population of a town is as follows:
year 1972 | 1982 | 1992 | 2002 2012

population in crores | 20 24 | 25 ab 46

Estimate the increase in population during the period 1996 to 2002 using Newton's backward mterpolation
formmmula.

(23) For linear interpolation, in case of equispaced tabular data, show that the error does not exceed 1/8 of
the second difference.

(24) Determine the step size that can be used in the tabulation of f{x) = sin(x) in the interval [0, /4] at
equally spaced nodal points so that the truncation error of the quadratic interpolation is less than 5% 1075,

(25) Given that f(0) = 1, f{1) = 3, f(3) = 55, find the unique polynomial of degree 2 or less, which fits the
given data. Find the bound on the error.

(26) The following values of the function f{x) = sin{x) + cos(x), are given

X 107 207 an®
fix) | 1.1585 | 1.2817 | 1.3660

Construet the quadratic interpolating polynomial that fits the data. Hence find f(m7/12). Compare with
the exact value.

(27) The following data are part of a table for f{x) = (cos x)/z.

X 0.1 0.2 03 | 04
f{x)(in radians) | 9.0500 | 4.9003 | 3.1845 | 2.3027

Caleulate f(0.12}, (i) by interpolating directly from the table, (ii) by first tabulating = f(z) and then
interpolating from the table, Explain the difference between the results.

(28) The following data are part of a table for glx) = sina/z?;

X 0.1 0.2 0.3 0.4 (.5
e(x) | 9.9833 | 4.9667 | 3.2836 | 2.4339 | 1.9177

Calculate g{0.25) as accurately as possible

(a) by interpolating directly in this table.
(h) by first tabulating xg(z) and then interpolating in that table,
{c) explain the difference between the results in (a) and (b} respectively.

the ollowing problems, ond the maximum value of the umiorm mesh s1ze i that can be tota ate
Eghlhflj'gphi find th 1 § fth if h size h th be used huls
flz) on [a,b], using quadratic interpolation such that |Error| < =,

(i) flz)=(2+x)4, [a,8] =[1,2],e =10-%
(i) flz) =11, [o. 8] = [0,1],e = 1074



(ifi) flz) =z, [a.b] = [0,1].e =5 x 1076,

30) In the following problems, find the maximum value of the uniform mesh size & that can be nsed to tabulate
2P
f(x) on [a.b], using cubic interpolation such that |Error| < .

(i) flz) = €%, [a.b] = [1.2.5},.e =107
(ii) f(z)=cos2z, [a,b] = [0,7/4],s = 1075,
(iii) flz) = ze®, [a.b] =[1,2],e = 5x 1073,

L0



Numerical Methods 3

Piecewise linear and c}auqdratic interpolation, Newton’s
bivariate interpolation for equi-spaced points

Numerical Methods Objective Questions 3

(1) The piecewise linear interpolation polynomial in the interval [0, 1] for the data f(0) =1, f(1) = 2,

(a) 14+ (b)) 1—a (e) 14 2x (d) 1+ 3z

(2) The value of f(1.5) using piecewise linear interpolation polynomial in the interval [1, 2] for the
data f(1)=2, f(2)=35,...1s

(a) 2.5 (b) 4.5 (¢) 3.5 () 1.5

(3) For the data f(—2) = =23, f(0) =1, f{1) =4, ..., the piecewise quadratic interpolation polyno-
mial in the interval [—2,1] is

(a) —3a* +6r+1 (b) 3" —6r+ 1
(¢) 3" +6r+1 () None of these

(4) The value of f(3) using piecewise ¢uadratic interpolation polynomial in the interval [1,4] for the
data f(L)=-2,f@)=-5 f4)=7,... I8

(a) O (b) =2 (c) 2 (d) None of these
(3) The problem of polynomial interpolation fr functions of two independent variables is called

(a) quadratic spline interpolation,
() bivariate interpolation,

(¢) linear interpolation.

(d) All the above,

(6) For the data f(1,2) =5, f(1,3) = 10, f(2,2) = 8§ and f(2,3) = 13, using Newton’s bivariate
interpolating polynomial, the value of f(1.5,2.5) s

(a) 10 () 9 c) 8 () None of these

(7} For the data f(2,3) =6, f(2,4) = 11, f(3,3) = 9and f(3,4) = 14, interpolating polynomial is
constiycted using

(a) piecewise linear interpolation.

() piecewise quadratic interpolation.
(¢) Newton's bivariate interpolation.
() All the above,

(8) For the data f(0,0) =1, f(1,0) = 1.414, f(0,1) = 1.732 and f(1,1) = 2, using Newton's bivariate
interpolating polynomial, the value of f(0.25,0.75) is

(a) 1.652 (b) 1.753 (¢) 1.642 (c) None of these

L0



(9) For the data f(—1,1) = fl0,1) = f(—L2) = 1, &y = =1, yo = L, h = k = 1, using Newton's
bivariate interpolating polvnomial, the value of f{z, y) is

(a) —1 (b) 1 (¢) 0 (d) None of these
(10) Which of the following statement, is true

{H-} :"‘-J:.Ir{i:uﬂj = {E_'r + l}f{:l‘, i.l'}

(b} A fla,y) = (1 — Ep) fla,y)

(¢} Acflw,y)=(E: —1)f(x,y)

() None of the above,

(11) Which of the following statement is true

(8} Agyflx,y)=(1—E,) [z, y)
(b} Apeflz. )= (Ey — 1) f(x,9)
(¢) Derflay) =1 —EFf(xu)
(d) & flay)=(1—E,)f(x,y)
(12) Which of the following statement is trye

(8) Arcflay) =(1— Eﬂﬂf{*ﬁr 4)

(b} Ay flay) = (1—E,) f(x,y)

() A fila, y) = A, y)

(d) Apyfiey)= (B — 101 —Ey)f(x, )
(13) If flw,y) = ¢ Yand h =1, then A, f(x, y) is

(a) (1 +e¥)

(b} e(e’ — 1)

(¢} —e™(1+y)

(d) None of the above

(14) If fla,y) =" +y° and h = 2, k = 1, then the value of A (—1,1) is

(a) 2 (b) 4 (c) —d () None of these
(15) If fla,y) = 2 —y* and =1, k =2, then the value of A,,(2, 3) is
(a) 13 (ly) —14 (c) 14 (d) None of these

Numerical Methods Descriptive Questions 3

(1) The following data for a function f{x, ¥) is given.

UL 1 2
2 3 8§
3 10 13

Find f(1.5,2.5) using linear interpolation.

11



(2) The following data for a function f{r, ) is given,

O 0 1 3
0 —4 -3 23
2 12 13 39

Cbtain the interpolating polynomial that fits the data.
(3) Using the following data obtain the Lagrange and Newton's bivariate interpolating polynomial,

ylar— () 1 2
0 q 3 T

1 3 6 11

2 i 11 17

(4) Obtain the Newton's bivariate interpolating polynomial that fits the following data

yya+ 1 T 9
L 4 18 56
2 11 2 63
3 T

(2) Obtain the piecewise linear interpolating polynomials for f(x) defined by the data:

r 1 2 4 8
fley 3 7 21 73

Hence estimate values of f(3) and f(7).
(6) Obtain the piecewise linear interpolating polynomials for f{r) defined by the given data. Inter-

polate at the indicated points

(i) = 0 1 2 3
fley 1 2 5 10
Interpolate at & = 0.5, 1.5 and 2.5.

r 05 15 25

W 7@ 0125 335 1562
Interpolate at & = 1,2.
(7T) Determine the piecewise quadratic it P{x) o flx) = (1 + 25~ with knots —1,-1/2,0,1/2, 1.
Henee find an approximate value of f(—0.75), f{—0.52), f(0.75) and f({0.52).
(8) Determine the piecewise quadratic fit Plx) v fia) = cosx with knots 0, 7/2, 7, 37/2, 27, Hence
find an approximate value of cos(x/4), sin(3x /4), cos(bx/4).
(9) Obtain the piecewise quadratic interpolating polynomials for f(ir) defined by the given data
Interpolate at the indicated points
i) - —2 0 1 3 4
fley —23 1 4 82 193
Interpolate at & = —0.5,2,

12



x -2 -1 1 2 4

(ii) flz) 29 8 2 5 7

Interpolate at x = 0.5, 3.
(10) Obtain the Newton's bivariate interpolating polynomial that fits the following data:

| 10 14

Y4z —+ 4 &
4
3 13 17

Hence find f(4.5.4.5) and f{4.12, 4.32).

(11) From the following data for a function f{x, y) find f{1.39.1.99) and f{1.22,1.33).

5L —F 1 2
1 2 2.3214
2 Sa0kE O

{12) Using Lagrange’s bivariate interpolation polynomial solve Exercise 4, 10, 11,

(13) Construct the Hermite interpolation polynomial that fits the data

x  flx) fl=)
2 28 5D
3 105 105

Interpolate f(r) at x =2.5.

(14) (i) Construct Hermite interpolation polynomial that fits the data

x  fl@)  fl=)
i 0 10000
(.5 0.4794 0.8776

L0 08415  0.5403

Estimate the value of f{0.75). Find a bound on the error. If the data represents the function
f(x) = sinx, then find the actual error at = = 0.75.

(ii) Construct Hermite interpolation polynomial that fits the data

z  flz) fil=)
G 4 -5
1. & SN
9 1Y

Interpolate fizx) at = = 0.5 and = = 1.5.

(15) In the following problems, obtain the piecewisee cubic interpolating polynomials for the function f{x}
defined by the given data, Interpolate at the induced points,

" = % T T T
flz) 276 54 334 350 -349 -269 94
Interpolate at = —3.0 and = = 2.0

13



5kl

i) 2 A 8 a4 I = 4
" TF(r) -108 -255 -303 -303 -300 -108 225
Interpolate at x =0 and x =3

oz 1 0 1
() flz) 25 -32 -37
flz) 22 0 -14

Interpolate at # = —0.5 and & = 1.5

x i 1 2
(iv) flx) -6 -8 22
fiz) 0 2 76

Interpolate at # = 0.5 and # = 1.5

(16) Obtain the piecewise cubic interpolating polynomials for the function fix) defined by

w: -3 =% =1 1 X & 7
flz) 369 222 171 1656 207 990 1779

Hence find f(6.5).

(17) Using the following values of f(x) and f'{x).

1 -5
0 1 -1
1 3 7

Estimate the values of f(—0.5) and f{0.5) using piecewise cubic Hermite interpolation.

14



Numerical Methods 4
Numerical Differentiation

Numerical Methods Objective Questions 4
(1) The value of f'{1) using linear interpolation for the data f{1) =0.723, f(1.5) = 0.812 is
(a) 0.718 (b) 0.178 (c) 0.187 () None of these,

(2) The value of f'(0) using quadratic interpolation for the data f(0) = 0.621, f(1.5) = 0.818,
f(25)=0.889 is

(a) 0.6624 (b) 0.5334 (c) 0.1675 (d) None of these

(3) For the data f{0.8) = 0.4096, f(1.0) = 1, f(1.2) = 2.0736, the value of f*(1) using quadratic
interpolation s

(a) 12.08 (b) 11.92 (¢) 12.00 (d) None of these.
(4) The step length h has optimal value if

(a} |[RE|=|TE] (b) |RE| + |TE] = minimuymn

(¢) Either (a) or (b) (d) None of these

(where RE and TE denote the round off error and tryncation error respectively ).
(5) Which of the following statement is false:
(a) In numerical differentiation method, the local truncation error is proportional (o some power
of h.

() In numerical differentiation method, the round off ervor is inversely proportional to some
power of f.

(¢} In numerical differentiation method, the local truncation error is inversely proportional to
some power of i,

() The error of approximation in the r-th order derivative at any point & using the method
based on interpolation is B0 (2) = f7(x) — P ().

(6) If £(0.2,0.1) = 2.0351, F(0.2,0.2) = 2.0801, [(0.3,0.1) = 2.0403, f(0.3,0.2) = 2.1153, then at
(0.2,0.1)

o = ; ﬂ = (}—f = .;_,'i'__'l" = qE
(a) 5, =0.082, 5 =0.450 (b) 5 = 052, 5= 0.045
B s B oo G
(©) dr 0002, oy 0.045 () None of these,

(T) The following table gives the value of f(x, ).

Yle—+ 01 02 03
00 20200 20351 2.0403
0.2 2.0851 2.0801 21153
0.3 20403 0 21153 2.1893

Then the value of f—i}{; at (0.2,0.2) is

14



(a) 1.1970 (k) 0.1197 (¢) 2.9925 () Nome of these.

(8) The Jacobian matrix of the system of equations fi{z,y) = P+ ay—1* =0, fulz.y) = 22* +
Sey+ 3yt =0at (L, 1) is

(a) G Ilg ) (b) (_32 ﬁ) (c) (?5 E:.LE) (d) None of these.

(9} Error in linear interpolation is

Fp — Wy
¥

(a) EY(x1) = Fl&)wm<tf<m

(b) El(x) =2 ;"“f’{g), By <E <y
(&) i) =25 L1(0) 20 <§ <

R

SL0() w < § <
(10) Given the following values of f(x) = In x:

T 2.0 2.2 2.6
fla) 0.6915 0788346 0,95551

(d) Eifw) =

Error on upper bound for f'(2.0) using quadratic interpolation is
(a) 0,05 (b) 0.007 (¢) 0.005 (d) 0,025,
(11) Given the following values of f(z) = In
¢ 20 22 26
] 0005 075815 09
Error on upper bound for (2.0} using quadratic interpolation is

(a) 0.0704 (b) 0,704 (¢) 0,007 (d) 0.005.

Numerical Methods Descriptive Questions 4

(1) Find f(1.6) and f"{1.6) using quadratic interpolation from the following data for the function
fiz).

+ L2 1.1 1.6
Flx) 05506 0.0018  0.6008

(2) Given the following values of f(x), find the approximate value of f/(6.0) using linear and quadratic
interpolation and f7(6.0) using quadratic interpolation.

x 60 61 64
fle) 01750 —0.1998  —0.2596
(3) The following data for the function f(x) = x! is given by

T (14 0.6 (.8
flz) 00256 01296  0.4006

Find f{0.8) and f7{0.8) using quadratic interpolation, Compare with the exact solution, Obtain
the bound on the truncation error,
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(4) Consider the following the function
(i) flz)=2"+22
(i) flx)=e"

Take r = 2.0, 2.2, 2.6. Find the approximate valye of f'{2.0) using linear and quadratic interpola-
tion and f7(2.0) using quadratic interpolation. Also obtain an upper bound on the error.

(3) The following table of values are given for a function f(z, y):

vl = 01 0.2 0.3

0.1 20200 20351 2.0403

0.2 20351 20801 21153

0.5 20403 21153 2.1803

af &f .

(i) Estimate the value of o at (0.2,0.1), = aL (0.2, 0.2) by first order and second order formulas.
s &f ; :
(i) Estimate the value of 250 at (0.2,0.2) using second order formula.

If the table represents the function f(&,y) = 3sin(;ry) + cos & + cosy, find the actyal errors,

(6} he following table of values are given for a function f{z, ¥):

gl x—= 05 0.7 0.0
0.4 20138 3.0603  6.6850
0.6 13400 24506  4.4817
0.8 00048 16487  3.0042

(i) Estimate the value of gi at (0.5,0.6), —J at (0.9,0.8) by first order formula.

% j at (0,7, 0.6) using second order formula.

(7) The following systems of equations are given:

(ii) Estimate the value of

(8) filmy)=2+ oy —9?=0,folr, ) =2y +50+06y =0
(b) flzsy)=a — v —ay=0, e y) =37+ 57+ =0

Find the Jacobian matrix of the systems of equations at (1,2) and (0.5.1).
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(&) Find y'(a), v"(x) using Newton forward, Newton backward, and Stirling's interpolation in the following

x L0 1.1 1.2 1.3 1.4 1.5 L.G
(i) wlx) 7980 8403 8721 0,129 9451 9.750 10.031

TRTY

At r=1.1and = 1.6.

ool =
=

]
-1 ea
| =
by| e

At =10

r 1 105 1.1 115 12 125 130
(i) y(r) 1 L0247 1.048% 1.0723 1.0954 1.1180 1.1401

Atz=1,2=125 and = 1.15,

x 3 3.2 34 36 a8 40
(iv) flz) -14 -10.032 -5.296 0.256 G672 14

At = 3.0

T .4 (L3 0.6 0.7 0.8
(v} flz) L5836 17974 2.0442 23275 2.6511

At xr = 0.b.
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Numerical Analysis 5

1 3

Trapezoidal rule, Simpson’s 3 and 3 rule

Numerical Analysis Objective Questions 5

(1) If A1, Ag, - - - A\, are the Cote’s numbers, then the value of Ay + Xy + -+ A\, is

(a) (n—1)/h (b) nh

1
d
(2) The approximate value of / °
0 ]. +x

(a) 0.75 (b) 0.55

(¢) nh —1 (d) None of these.

using Trapezoidal rule (based on interpolation) is

(c) 0.65 (d) None of these.

b
(3) The Trapezoidal rule for / f(z)dz is given by:

() “5 21 (a) + )
) 22 () + 1)
© 220w - 1)
(@ "0~ fa)

1 b
(4) The Simpson’s 3 rule for / f(z)dz is given by:

b—a a+b

() ")+ 470 1 )

) "L p(a) +ar(TED) + )

(€) "1 — 475 + )
b—a a+b

(@) =21 (a) - 470 - 7o)

2

3 b
(5) The Simpson’s 3 rule for / ydx is given by:

b—a
(a) ——[y—1+ 30 + 3y1 + ¥2]

8
(b) b+a

8
b—a
(c) 2 ly—1 + 3yo — 3y1 + o
b—a

(d) T[y—l + 3yo + 3y1 — yol

[y—1 — 3yo + 3y1 + o]

1
d
(6) The approximate value of /0 ; ;;2

1
using Simpson’s 3 rule (based on interpolation) is



(a) 0.7533 (b) 0.6533 (c) 0.7833 (d) None of these.

1
(7) The highest order of polynomial integrand for which Simpsons 3 rule of integration is exact is
(a) First (b) Second (¢) Third (d) Fourth.

3
(8) Simpson’s 3 for integration is mainly based on the idea of
b
(a) Approximating f(x) in I = / f(z)dz by a cubic polynomial.

b
(b) Approximating f(z) in I = / f(z)dx by a quadratic polynomial.

(c) Converting the limit of integral limits [a, b] into [—1,1].

(d) Using similar concepts as Gauss quadrature formula.
(9) Which of the following statement is true:

(a) Simpson’s one-third rule can be applied when the range [a, b] is divided into even number of
subintervals.

(b) Simpson’s three-eight rule can be applied when the range [a,b] is divided into number of
subintervals, which must be a multiple of3.

(c) Trapezoidal rule can be applied for any number of subintervals.
(d) All of the above.

Numerical Analysis Descriptive Questions 5

1
(1) Evaluate / e“dx using Trapezoidal, Simpson’s % abd % rule.
0

1/2
(2) Calculate / L dx using trapezoidal rule.
o sinzx

1 .
(3) Evaluate / (1 + smx) dz,
0

T

(i) using trapezoidal rule.
(ii) using Simpson’s % and % rule.

3

(4) Evaluate i H——xx by Simpson’s rule % and % and hence calculate log 2.

1
(5) Evaluate / ze”dx by Simpson’s 3 and 2 rule.
0

1

(6) Evaluate e’dx by Trapezoidal rule. Hence find the numerical value of the integral.

S—

5.2

(7) Evaluate log, (z)dz by Simpson’s 2 rule.

S~

5.4

(8) Evaluate . log,(x)dx for the following data using Simpson’s g rule.

T~



x 4 4.2 4.4 4.6 4.8 5) 5.2

log (x) 1.3863 1.4351 1.4816 1.5261 1.5686 1.6094 1.6487




Numerical Analysis 6

Composite Trapezoidal and Simpson’s rule

Numerical Analysis Objective Questions 6

4
d
(1) Using four intervals of equal length, the approximate value of / 5 f_ 7 by Composite Simpson’s
1 2%
rule is
(a) 0.75 (b) 0.55 (c) 0.65 (d) None of these.

1
(2) The approximate value of / Vx? + x + 8dx using four intervals of equal length by Composite
0

Trapezoidal rule is

(a) 2.752 (b) 3.952 (c) 2.972 (d) None of these.

(3) The approximate value of / ’ Vsin zdx using Composite Simpson’s with A = % is
0
(a) 1.1073 (b) 1.1873 (c) 1.0673 (d) 1.0093

(4) The approximate value of / x sin xdzx using Composite Trapezoidal with five ordinates is
0

(a) 3 (b) 3 (c) 7 (d) 0
(5) The error term of the Trapezoidal rule is given by
(b — a>3 "
(2) === f"(n),ne(0.1)
(b — a)2 "
(b) ==/ (m),ne(0,1)
(b — a)3 "
() == /"(),ne(0.1)

(d) None of the above.

1
(6) The error of / de
o 1+x

(a) 0.5685 (b) 0.6931 (c) 0.75 (d) None of these.

using Trapezoidal rule is

(7) The error of approximation in the Simpson’s rule is given by

f(n),n € (0,2)

()~ vy 0 e (0,2)
(b a)
2880
(c) —va(n)ﬂ? € (0,2)

2880
(b) =
(b—a)®
(d) None of the above.

Numerical Analysis Descriptive Questions 6



(1) Obtain the approximate value of the following integrals by using Composite Simpson’s rule and
Composite Trapezoidal rule(take 7 equi-spaced ordinates):

(i) /1 ' de (ii) /0 T T S

20 +1

1/2
(ii) Calculate / ,x dz using Composite Trapezoidal rule with h =1/4 and h = 1/8.
o sinz

(2) The length of the curve represented by a function y = f(z) on an interval [a,b] is given by the
b
integral / vV 1+ [f(x)]2dz. Use the Composite Trapezoidal rule and Composite Simpson’s rule

with n = 4 to compute the length of the following curves:

1
x
(3) By computing the integral / 52 by Composite Simpson’s rule and hence compute the value
0 x
of m correct to six decimal places.

6
d
(4) Evaluate / 7 +x 5 by Composite Simpson’s rule.
0 x

1
(5) Evaluate / . +3: 5 by Composite Simpson’s rule with h = %
0 x

1
d
(6) Using six intervals of equal length, obtain the approximate value of / % by using Composite
0 x

Trapezoidal rule and Composite Simpson’s rule. Hence obtain the approximate value of log, 2.



Numerical Analysis Practical- Semester VI

Miscellaneous Theoretical Questions

Unit 1

(1) (a) Show that the Langrange’s quadratic interpolating polynomial P(z) for the function f(z) with
interpolating conditions f(z;) = P(z;),0 <1i < 2 is given by

P(x) = lo(x) f(x0) + L1(z) f(21) + Lo(x) f(22)

where ¢;(x),0 < i < 2 are the Langrange fundamental polynomial.
n
(b) If P(z) = Z&(x)f(x,) is the Langrange’s interpolating polynomial of degree n, then show that
i=0
n

() Pla) = Y s ).

=0
(i) Y li(z) =1
i=0

(c) With usual notation, show that the Newton’s Divided Difference Interpolating polynomial P, (x) for
the function f(x) with nodal points xg, x1,...,x, is given by

Py(x) = flzo] + (x — xo) flzo, z1] + -+ + (& — o) - - - (x — 2p—1) fl@o, T1, - - - o)

(2) (a) State Rolle’s theorem
(b) If f is a function s.t.
(i) fis (n+ 1) times continuously differentiable on [a, b).
(ii) xo,x1,---,x, are (n+ 1) distinct points in [a, b]
(iii) P,(x) is an interpolating polynomial of degree at most n that interpolates f(x) in [a, b].

Then show that for every z € [a,b] there is { = £(x) in (a,b) where x # z;, for t =0, -+ ,n s.t.

) T

(n+1)! (=)

En(fi2) = f(x) = Pu(z)
(c¢) Determine the maximum truncation error for linear interpolation.
(d) Derive the error formula when tabulated values are equally spaced.

(e) Determine the step size h that can be used in the tabulation of a function f(x), a <z < b, at equally
spaced nodal points so that the truncation error of the quadratic interpolation is less than €.

(f) Determine the step size h that can be used in the tabulation of a function f(x), a < x < b, at equally
spaced nodal points so that the truncation error of the cubic interpolation is less than .
(3) (a) Explain the two operators A and F used in numerical analysis and obtain the relation between the
two.
(b) Prove the following relations.
(i) A -V =AV.
(i) A+ V=A/V-V/A.

n—1
(i) Y A?f(ax) = Af(zn) — Af ().
k=0

(iv) ACF(z)g(@) = (@) A(g(w:) + g(wisn) A ().



o g () — fr)Ag(a)
(v) A(f(wi)/g(x)) = ( )g(xi)g(xm) :
i AP ()
) AN = =56 )
(c) If f(z) = €™, then show that
(1) Anf(x) — (eah _ 1)neax
(ii) vnf(x) — (1 o e—ah)ne(w
(d) Prove the following relations.
(i) p? =1+ ;62
(il) dp=3(A+V).

1

(iii)) A = 552-}—5\/1—%@.

(iv) A((f(z = DAg(z — 1)) = A(f(x)Vg(x))
(v) AVf(z) = VAf(z) = 6*f(2)

(vi) 6 = AE"2 = VE:

(4) (a) Show that E =1+ A and deduce the Gregory-Newton forward difference interpolating polynomial

with usual notation .

Po(z) =Y “CiN' f (o)

=0

(b) Show that £ = 1—V and deduce the Gregory-Newton backward difference interpolating polynomial

with usual notation .

Pu(a) = 3 (-1) OV f(ao)

=0

(c¢) Derive Stirling’s central difference formula for interpolation and discuss its important uses.



Unit 2

(1) (a) Derive Piecewise linear interpolation formula.
(b) Derive Piecewise quadratic interpolation formula.
(c) Derive Piecewise cubic. interpolation formula.

(2) Derive Lagrange’s bivariate interpolating polynomial for a function f(z,y) defined at (m+1)(n+1)
distinct points (x;,y;),i =0,1,--- ,m,j =0,1,---n

(3) Show that £ = 1 + A and deduce the Newton’s bivariate interpolating polynomial P(x,y) for
equispaced points for the function with usual notation is given by

P(z,y) = f(xo,y0) + %(w —0) Ay + %(y - yO)Ay] f(wo,y0) + -+~

(4) (a) Using Langrange’s interpolating polynomial P,(z) = Zﬁk(:v)f(xk) where {i(x) is the Lan-
k=0
f(x1) — f(@o)

grange’s fundamental polynomial, show that Pj(x) =
Tr1 — X

using linear interpolation.

n
(b) Using Langrange’s interpolating polynomial P,(x) = Zﬁk(:c)f(xk) where ((z) is the Lan-
k=0
grange’s fundamental polynomial, show that

21‘0 — 1 — X2
(zo — z1)(20 — 22)

To — X2
(x1 — x0)(x1 — x2)

To —T1
(x2 — x0) (22 — 1)

Py(z0) = o) + f(z1) + f(z2)

using quadratic interpolation.

(c) Using Langrange’s interpolating polynomial
Po(z) =Y li(2)f(zp)
k=0

where (i (x) is the Langrange’s fundamental polynomial, show that

1 _ f(zo (a1 f(x2)
Prlw) =2 (zo — 21)(z0 — 22) - (21 —zo)(x1 —22) (w2 — o) (22 — 21)

using quadratic interpolation and hence find error approximation at xg.
(5) Given (z0,Y0), - (Tn,Yn), derive first and second derivative of a function f(z), using

(i) Newton’s forward Interpolation formula.
(ii) Newton’s backward interpolation formula.
(iii) Stirling’s Interpolation formula.
(6) Given z = f(z,y), if the value of f(z,y) is known at (z;,¥;)i=0,... » then

(i) Define <gf) and (gf> using first order and second order formula.
v (z4,93) Yy (z3,:)

B f 02 f

11 enne all usmg rSt order and second order rormula.

(")Dﬁ() d() ing first order and second order formul
LY / (1, 42 O ) (4, 1)



Unit 3

(1) (a) Derive the Newton-Cotes Quadrature formula / f(z)dr = Z A f(xr), where
k=0

M= (_1)n—k

(b) Derive the Newton-Cotes Quadrature formula / f(z)dz = Z M f (zg) and deduce the trapezoidal

k=0

rule/ f(m)dac:

at ro and z1.

(¢) Derive the Newton-Cotes Quadrature formula / f(x)dx = Z)\k f(xr) and deduce the Simpson’s

k=0

— rul
31rue7

b —a a
[ #@de =20 @) + 477 + 10

using method of interpolation.

(d) Derive the Newton-Cotes Quadrature formula / f(z)dz = Z)\k f(zx) and deduce the Simpson’s

k=0

3 rule,
[ wae = 2ta0) +3761) 485 + e
using method of interpolation where x; = zg +ih, i = 1,2,3 and xg = a,x3 = b.
(2) (a) Derive error in Trapezoidal rule.
(b) Derive error in Simpson’s % rule.
(c) Derive error in Simpson’s g rule.

(3*) (Necessary and sufficient condition)
n

Let I,(f) = ij,n f(xjn) n > 1, be a sequence of numerical integration formulas that approximate

J=0

= /abf(m)daz

. Let .# be a family dense in Cla,b]. Then I,(f) — I(f) all f € .% and

n
B = Sup Z|wj7n|:n21 < 0
7—0

b n
(4) (a) Derive the trapezoidal rule from Newton-Cotes Quadrature formula / f(z)dr = Z A f(x) and

deduce the composite trapezoidal rule

/ flz [F(@o+2(f(21) + F() ++ + F(wn1)) + F(n)]

k!(n_k)!h/ons(S—1)...(8—k+1)(8—k—1)...(8_n)d8'

[f(a)+f(b)] using method of interpolation and hence find error approximation



b n
(b) Derive the Simpson’s rule from Newton-Cotes Quadrature formula / f(z)dzx = Zx\k f(zg) and

k=0
deduce the composite Simpson’s rule

b
[ @) = G4 )+ F )+ ) 42 )+ () 4 f )+ )+ (20



Number Theory 1

Quadratic Reciprocity

Objective Questions
Assume p and q are odd primes and ( ) denotes Legendre Symbol.
(1) The value of (g) is
() (b)1 (c)-1 (d)o
(2) If (%):1, then
(@) p=1or 7(mod 8) (b) p= 3 or 5(mod 8)
(c) p=1 or 7(mod12) (d)p= 3 or 5(mod 12)
(3) If (%):1, then
(@)p= 1 or 3(mod 12) (b) p= 1 or 7(mod 12)
(c) p=1 or 5(mod12) (d)p=1o0r 11(mod 12)
(4) If (?): 1, then
(a) p=6k+1 (b)p=6k+5 (c) p=8k+5 (d) cannot say

(5) If p=97 ,then

(a)(_?l) = 1and (pi) =1 (b)(_?l) = —1and (pi) =1

(c) (‘71) = —1and (pi) =1 (d) (‘71) = 1and (pi) =1
(6)Which of the following is correct:
(a)(g) —1and (g) -1 (b)(g) — —1and (g) =1

A=t (2=t @)= rend ()=



(7) Which of the following is correct:

OED) = rana (2) =1 () = tana (£) =

Ot (=t ()=t (5=

aP~1y .
(8)if 1<a<p ,then the value of ( - ) is

(@)1 (b) a (c) p-1 (d)p
(9) The value of (Lw) is

41

(@)41 (b) 40 (c)2 (d)1
(10) The value of (E) is
(@)5 (b) 2 ()1 (d)-1

(11) The value of (@) is

p—1 p+1
(@ (=1) =z (b) (=1) = (c)(p-1)! (d) None of these

(12) The value of 25:11(%) is

(a)1 (b) -1 (c)0 (d)p-1
(13) In which of the following case, both congruence equations have solutions:

(a) x2 = 3mod 5,x*> = 5mod 3 (b) x? = 3mod 7,x% = 7 mod3

(c) x> =5mod 11,x*> = 11 mod 5 (d)x?> =5mod 13,x%> = 13 mod 5
(14) If gis primitive root of odd prime p then which of the following is true:

(a) g is quadratic residue of p (b)g is quadratic non residue of p

(c)gP~tis quadratic non residue of p  (d) gP~2 is quadratic residue of p

(15) The prime p for which (§)=1 is

(a) p= 19(mod40) (b) p= 7(mod40) (c) p= 1(mod40) (d) p= 33 (mod40)



Number Theory Descriptive Questions 1

(1) Find all quadratic residues and quadratic non-residues for primes p=11,13,17,19.

(2) Given p=11,9=7.
(i)Consider residues of q,2q,...,(p7_1)q mod p. How many residues are greater than (p-1)/2?
r-1)

(i) Compute ;_? 5]

(iii) Compute (%) in two ways using (i) and (ii).

—-23

(3) Evaluate:(g) , (

28, G820,
(4) Determine whether following quadratic congruences are solvable:
(i) x? =150(mod1009)
(ii) x2 = 137(mod401)
(iii)x? = 73(mod173)
(iv) x? = 219(mod419)
(v) x% = —43(mod79)

(5) If gis primitive root of p then prove that (§)=—1 .Also prove that the quadratic residues modulo p

are congruentto g2,g%,9°......gP~! and quadratic non-residues are congruent to g g% ,g° ...

(6) If gis primitive root of p, prove that product of quadratic residues of p is congruent modulop to

g @*~D/%and the product of quadratic non-residue modulo p to g®~D*/4 .
(7) If pis an odd prime then prove that 273;}(%):0.

(8) Find all primes p such that
0 (=1 @ (2)=-1 @ (5) =1

(9) Find a prime number which is simultaneously expressible in the form x2 + y 2 ,u? +
2v% ,r? + 3s2.

= Py _ (1
(10) Let g=2p+1 .Show that (q) ( > )



(11) Let g be the least positive integer such that g<p and that (%) = —1, prove that q is prime.

(12) Let p= 3(mod4) and q=2p+1. Then prove that q divides M, =2P —1.

(13) Let p=g+4a .Show that (Z) = (g) = (g)

(14) Show that (i) (g) = 1if and only if p=1,5,19 or 23(mod24).

(ii)(%) = 1if and only if p= 1,3,9,19,25 or 27(mod 28).

(15)Prove that if p>3 is an odd prime ,then (_73) = 1if p=1(mod 6)

=—1if p = 5(mod 6)
Hence show that the prime divisors p different from 3 of n? —n+1 are of the form 6k+1.

(16) Show that there infinitely many primes of the form 6n+1.

(17) Solve the quadratic congruence x? = 11(mod 35).

(18) Prove that the odd prime divisors p of the integers 9™ + lare of the form p= 1(mod 4).
(19)For a prime p=7(mod 8), show that p|2®P~1/2 —1. Hence show that 2" — 1 are composite

for n=11,23,83.

(20) Show that for any prime p= +3(mod8) ,the equation x? — 2y?=p has no solution.



Number Theory
Practical 2
Jacobi Symbol and Quadratic congruences with composite modulii

Objective Questions

(1) If p=7 and g= 13, then
@ (5;)=1and () = -1 (0)(5) = —1and (2) =1

-1

_ 2\ = o _ 2
(c) (E) =1and (pq) =1 (d) (pq) = —1and (,,q) =-1
(2) Let a, b be positive integers which are relatively prime and b>1 be odd,then

(a) a is quadratic residue of b if and only if (%)=1.
(b) If ais quadratic residue of b then (%)=1 .

(c) If(%)=1 ,thena is quadratic residue of b .

(d) None of these
(3) The congruence x? = a(mod32) (with 1 < a < 31)is solvable for
(a)a=1,9,17,25 only (b)a=1,5,9,25 only

(c)a=1,5,9,21,25 only (d)a=1,21,25 only
(4) Let p be an odd prime . The congruence x? + (pTH) =0modp

(a) Is solvable if p is of the type 4k+3 (b) Is not solvable if p is of the type 4k+3
(c) Is solvable if p is of the type 8k+7 (d) None of these
(5) Let p be a prime. There exist integers x ,y with (x,p)=1,(y ,p)=1 and x? + y? = 0 mod p
(a) For all prime p (b) For all primes of the type 4k+3
(c) Onlyforp=2 (d) For p=2 and primes of the type 4k+3
(6)The number of solutions of the congruence x? = 3 mod 112232 is

(a)0 (b) 2 (c)4 (d1



(7) The congruence x? = 231 mod 1105 has

(a) 2 solutions (b) 1 solution (c) 4 solutions (d) no solutions
(8) The congruence x? = 25 mod 1013 has

(a) 2 solutions (b) 1 solution (c) 4 solutions (d) no solutions
(9) Which of the following is correct ?

(a) The quadratic congruence x? = 12 mod 5 has a solution.

(b) The quadratic congruence x? = 12 mod 7 has a solution.

(c) The quadratic congruence x? = 12 mod 35 has a solution.

(d) None of these.

(10) Which of the following is false?
(a) x? = a mod 2always has a solution.
(b) x? = amod 4 has solution if and only if a = 1 mod 4

2 = a mod 2™,for n>2 has a solution if and only if a = 1 mod 8

(c)x
(d) None of (a),(b),(c) is true.
(11) Ifx? = a mod 2™,for n>2 has a solution then it has
(a) exactly 2 incongruent solutions  (b) exactly 4 incongruent solutions
(c)exactly 1 solution (d) none of these

(12) The congruence x? = 19 mod 73 has

(a) only one solution  (b) two solutions  (c) no solution  (d) none of these



Number Theory

Descriptive Questions 2

(1) Evaluate (%) ,(%) , (%).
(2) Which of the following congruences are solvable ?
(i) x? =10 mod 127
(ii) x%2 =11 mod 61
(i)  x%=42mod 97
(iv) x? =31mod 103

(3) Determine whether x? = 25 mod 1013 is solvable.
(4) Determine whether x? = 231 mod 1105 is solvable.

(5)Show that 7 and 18 are the only incongruent solutions of x> = —1 mod 52
(6) Solve
(i)x? = 14 (mod 5%)
(ii)x? = 7 (mod 33)
(iii)x? = 31 (mod 11%)
(7)Determine number of solutions of the congruence x2 = 3 (mod 112232) without actually finding
them.
(8) Determine number of solutions of the congruence x? = 9 (mod 23523) without actually finding

them.

(9) Prove that if x2 = a (mod 2™) , where a is odd and n> 3 has a solution, then it has exactly four
incongruent solutions.

(10)Determine the values of a for which x? = a (mod 2*) is solvable and find solutions.



Number Theory 3

Simple Finite Continued Fractions (SCF)

Objective Questions

Notation: For SCF [ ap, a1, ........... an] ;Ck=[ao, a1, .coeun..... ,ak] = Px /qk ; 0<k<n
(1) The initial integer in the symbol [ao, ai, ........... ,an] will be zero when the value of the

fraction is

(a) Positive & Greater than one (b) Positive & less than one

(C)Negaitive (d) Can not say

(2) The simple continued fraction (SCF) for %}5 is given by
(@ [0,1,1,2,2,3,3] (b)[2,1,2,1,3,3] (¢)[1,1,2,2,3,3] (d) None of these

(3) The SCF for — 17—136 is given by
(a) [-1,2,1,2,3,4] (b) [-2,1,1,2,3,4] (c)[-1,1,2,1,2,3] (d) None of these

(4) The SCF [ 0,1,2,3,4,3] represents

97 97 34
(a) Dot (b) 39 () T35 (d) None of these

(5) The SCF [ —2,1,2,3,4,3] represents

97
(a) — % (b) - 535 () — % (d) None of these

(6) The SCF [ 2,1,2,1,2,1,2] equals
@[1,1,1,2,12,1,2] (b [21,2,12,121] (©)[2,1,2,1,2,1,1,11 (d) None of these
(7) The SCF [ 2,1,2,1,2,2,1] equals
@[212121,1,11  (b)[2121,23] (c)[1,1,2,1,2,2,1] (d) None of these
(8) Ifr=[2,3,32] then - is given by
@) [23.3.2] (b)[%,1/3,13,%] () [0,2,3,3,2] (d) None of these

(9) The value of the 4™ convergent of [ 2,3,1,4,2,3] is

(a) g (b) g )2 (d) None of these



(10) If ue/us represents quotient of two successive numbers in the Fibonacci Sequence then ue/us

(a) [272’272’2] (b) [1,191,1’1] (C) [_171913191] (d)
None of these

(11) Which of the following statement is correct :
(@)po =a0;qo=1  (b) po=1; qo=1 (¢) po=1; qo= a0 (d) po= ai; qo= ao
(12) Which of the following statement is correct :
(@)p1 =a;;qi=1 (®) pi=1; qi= a (©) p1= a120+1; q1= a1 (d) pr=1; q1= a0
(13) For k > 1 which of the following statement is correct :
(a) Pxgk-1—q Pr-1 =(-1)* (b) PxQk-1—qk Pk-1 =(-1D¥1
(©) Pxqk-1—qk Pr-1 =(-1)* ax (d) Prqk-1—qx Pr-1 =(- 1) ax
(14) For k > 2 which of the following statement is correct :
(a) Pegk-2—q Pr-2 =(-1)*? (b) P2~ P2 =(-1)*
(¢) Prqk-2—qx Pk2 =(-1) % ax (d) Prqk-2—qk Px-2 =(-1)* ak

(15) Which of the following statement is correct :

(@) Cp> C2> Cy>Ce....... (b)C1<C3<Cs5<Cy...... (c) Co<C2<Cy<Cs..... (d) Ci<(Cs<
Cs<(Cs.....
(16) For a positive integer ‘c’ ; if SCF [ao, a1, ........... an] >[ao,ar, .oooo...... ,an +c] then

(a) nis odd (b)niseven (c)Both (a) & (b) (d) None of (a) & (b)



Number Theory Descriptive Questions 3

(1) Find SCF of 303/118 and Verify a) PaQni—qn Pt =(-1)™! b) PaGn2—qn Pnz =(-1)"an

7 19 71 5! 3%

(2) Find SCEF for the following : - = === ﬁ where p & p+2 are twin

57

187 > 51 ° 5577’5
primes.

(3) Find rational numbers represented by following SCF:

a) [LLLLLLIL b)[22,1,1,2,1] ¢)[-2,1,3,5,7,9] d)[0,2,3,1,2,3] e) [ 1,1,1,2,2,2]
H1-1.234,1] g)[2,22,2,2] ) [0,1,1,2,1,2,1,2]

. . 6174 . 1729
(4) Find two representations of SCF for 1729 and hence or otherwise for Toa

(5) For the following SCF , find Ck’s & verify Co<C2<C4<Cs..... and C; > C3> Cs> C;

a)[-3,24,1,1,3,2] b)[04,3,5,8,2,1,7]

(6) Let fn be the n' Fibonacci number. Find SCF for f,;+1 /fn. Prove that
fo? — fast.fo-1 = (1™ foralln>2

(7) Let Pell number P, be defined as follows : Po=0,P1=1& Py =2Pn1+ Pn2 V n>2.
If t € Q is such that it’s SCF consists of n, 2’s then prove that t = Pnt1

Pn
(8) If Cx= Z—k is the k™ convergent of the simple continued fraction [ ap, ai, ........... ,an]
k
then prove that qx >2*?2 for 2<k<n
(9) Find the SCF representation of 3-1416 ; 3-14159
(10) If Cx= z—k is the k™ convergent of the simple continued fraction [ ao , a1, ........... ,an]
k
and ap>0 then show that ppk = [ak, a1, eeennnnns ,at, ao]
k-1

(11)  Using SCF of suitable rational solve the following :
a) 118x + 303y =1

b) 18x +5y =18

c) 158x—57y =1



Number Theory
Practical 4
Simple Infinite Continued Fractions (SICF)
Objective Questions

(1) The SICF of V15 is given by
(@ [3,1,3] BI[3,1,6] (¢ [3,1,2,3,4,8,5] (d) None of these

(2) The SICF of V2 —1 is given by

(@)[0,1,2] (b)[1,3]. (¢) [0,2] (d)None of these

3) If a =[2,1]then a equals

(a) 1++3 (b) 2V2 (c) 1—/3 (d) None of these
(4) The SICF of ((: ;11)) is given by

(a)[el,e,— 1] (b)]0,2,6,10,14,18,........] (¢)[2,1,2,1,4,1,8,.....]  (d) None of these

2 _
(5) The SICF of ((:2 +11)) is given by

(a) [ 0,1,3,5,7,9....... ] (b)[0,2,6,10,14,18,........ ]
(c)[1,1,45,7.8........ ] (d) None of these

(6) The SICF [1,1,1,1,...... ] represents

(a1 (b) 1.1111 (c) 1+2\/§ (d) None of these
(M Forn€ IN,Vn?2+ 1 =
(@[n,n,2n] (b) [n,2n] (©)[n,1,2n] (d) None of these

(8) Let x=1[1,3,1,5,1,7,1,9,...... ].If Cn= z—” is the n'™ convergent of x then we know that

n

| x - Cn| <

, using this inequality the rational approximation to x correct upto 3 decimal

dn dn+1

places is



34 301 267

(a) > (b) P (c) o1s (d) None of these
@1 x=""2 thenx =
(@ [2,31] b [2,1,3] ©[2,1,3]. (d) None of these.
(10) If a =[ao,ar,az........... ,] and C, =[ap,ar,a........... , an] is the n™ convergent then
a=
(a) 1111-{130 ¢, () 7111_130 C,—1 (c)Both (a)and (b) (d) None of these.
(11) If Ck= Z—Z is the k' convergent of SICF [ao, a1, a2 ........... ,] then

@ (Ci0,Ci1) €(C2,C3) () (C10,Cn1) € (C12,C3)

(©) (Ci0,Ci1) €(Cs,C3)  (d) none of these



Number Theory

Descriptive Questions 4

(1) Obtain SICF for the following :
a) V2 b)V3 -1 o)v2 +1 d)2-v3 e Vi1 ) V22 g V4l h)%

N 1+7 5++/37
l) +2 J) +4

2) Obtain SICF for the following :

a)\/?b)\/% C)\Ed)\E

3) Find value of the following SICF :
(@) [0,1,1,1,1,1,...... 1 (b)[2,1,2,1,,........ ] (o[1,2,1,2,........ ] e[1,1,2]
HIT12] ) [1,223]

_ 2 _
4) Assume e =2.718281828 and find first four terms of SICF for 1) an (e —1)
(e+1) (e2 +1)

5) SICF for ‘e’ is given by [2,1,2,1,1,4,1,1,4,.....] ; find e correct upto 4 decimal places.

6) Prove Vvn2+ 1 =[n, 2n ] for all n €IN hence find SICF for V17

7) Letx=[1,2,3,.....]. Find least n such that n® convergent Pn approximates x correct upto

an
5 decimal places.

8) Prove that \/(4m? + 4) =[2m,m,4m |
9) Assume that T =1 3,7,15,1,212,.....]

a) Find first 5 convergents.

355 . .
b) Show 15 Approximates 7 correct upto 6 decimal places

. . a a 1
¢) Obtain rational > such that | T — - | < N



Number Theory : PRACTICAL 5
NUMBER-THEORETIC FUNCTIONS

Objective Questions

(1) Which of the following is the solution of 7(n) = 4?
(a)2 (b) 4 (c)8 (d) 16

(2) Which of the following is the solution of a(n) = 4?

(@) 1 (b) 2 (c)3 (d)4
(3)a(n) = 2%,k € N has no solution for
(a) k=1 (2) k=2 (c) k=3 (d) k=5
(4) Ifthe prime p = —1(mod 4)and if 2|k, then o(p*) is congruent 4 to
(a) 0O(mod 4) (b) 1(mod 4) (c) 2(mod 4) (d) cannot say
(5) Which of the following is not perfect?
(@)22(23 - 1) (b)2%(25 — 1) (€)26(27 — 1) (d)210(211 — 1)
(6)Let p and g be distinct primes and n = pq. Then a(n) is
@pq ()P +1)(g+1)(c)n+l (d) None
(7) Let p and q be distinct primes and n = pq. Then t(n) is
(@)1(b)2(c)4  (d)p+q
(8) If2" -1 and 2™ + 1 are both primes for n € N,then
(a) n must be odd (b) there are infinitely many such n
(c) n=2 (d) None of the above
(9) Let E, = 22" 4 1,then for n # m, gcd(E,, E,) is
(@)n (b) 2™ (c) 1 (d) None
(10) Let p and q be distinct primes and M,, = 2™ — 1. Then gcd (M, , M) is

(a)1 (b)p (c)a (d)n



NUMBER THEORY DESCRIPTIVE QUESTIONS-5

1. Provethat [[g, d=n@

2. Prove that if nis a natural number such that 7(n) = q, where q is prime, then
n=qP~for some prime p.

3. Find the least integer n such that 7(n) = 25.

4. If w(n) denotes the number of distinct prime factors of n, prove that t(n) = 29,

5. Prove that 7(n) is odd if and only if n is a square.

6. If t(n) = 4, what can be said about the canonical factorization of n?

7. Prove thatif o(n) is prime, then n = p*, where p is prime and k > 1.

8. Prove that if a(p*) = n, where p is prime, then p|(n — 1).

9. Prove thatif nis odd, then 7(n) = o(n)(mod 2).

10. Prove that if p is prime and n = 2, then a(p"z"l) is composite.

11. Prove that if n =7(mod 8), then g (n) =0(mod 8)

12. Prove that if n =23(mod 24), then g(n) =0(mod 24)

13. Prove that if p and q are distinct primes such that (p?) = a(q*), then p=5 and g=2.

14. Prove that there are no primes p and q such that a(p?) = 0(g°).

15. Prove that ¥4, u(d)| = 20

16. Prove that if p is prime and p = 1(mod 3), then the equation @ (x) = 2p has no
solution.

17. Prove that @(n)|n i f and only if n =1, 2%,0r 2%3F where a, 8 are natural

numbers.
18. Prove that if n % 2(mod 4),then p)(n® —n) = 0.
19. Let n = p;“1p, %2 ... .... p,.%" be the prime factorization of the integer n>1. If fis a

multiplicative function that is not identically zero, prove that

Z pu@)fd) =0 - f)NA—=fP2))..(A=f0r) )

din

20, If nis a perfect number prove that If the integer n>1 has the prime factorization n =
p1%1p, %2 ... ....p,. %7, establish the following:
(@) Zapnu(d)r(d) = (=1)"
(b) Tamu(d)o(d) = (=1)"P1Py o - Dy
Hd _ (1 _ L _t _1
(© Zan™2 = (1-2)(1 pz) (1=

P1
(d) Zapn dp(d) = (1 = p)(A = p3) e 1= ;)

21. Verify each of the statements below:

(a) No power of a prime can be a perfect number.



(b) A perfect square cannot be a perfect number.
(c) The product of two odd primes is never a perfect number.

22. If nis a perfect number, prove that de% =2

23. If the three numbersp = 3.2" 1 —1,g=3.2" —1and r = 9.2?"1 — 1 areall
prime and n > 2,then show that 2"pq and 2™r are amicable numbers.

24. Prove that the Mersenne number M.,5 is a prime, hence the integer
n = 21221 — 1)is perfect.

25. Forn = 2, show that the last digit of the Fermat number E, = 22" +1is7.
26. Show that the Fermat number E, = 22" +1 is nevera perfect square.
27. For n>0, number F, = 22" + 1is never a triangular number.

28. Show that every Fermat number, F, is a prime or a pseudoprime.






Number Theory(practical no.6)

Objective Questions

(1) The fundamental solution of x? —3y% = 1is
(@) (2,1) (b)(7,4) (c) (1,0) (d)None

(2) Pell’sequation x? —13y? = —1 has

(a) Only one solution (b) no solution
(c) infinitely many solutions (d) None

(3) Letv29 = [ag; @7, @3, ... @y ). Then (a, — @p_q + Ay_p — ... +a, — a;) equals
(@) 29 (b) -1 (c) 3 (d) None

(4) Pell’s equation x? — 30y2= -1 has

(a) only one solution (b) no solution (c)infinitely many solutions (d) None

(5) If a=1++2,B =1—+/2thenthe Pell numbers P, and Q,, are given as

(a™+p™) (a"-B™) (a™+B™) (a"-p™)
@P =55, Q= "5 (b) Qn="57%> P= """
n_Bn n+B‘ﬂ
(0P =2 0, = 2 (d) None

(6) For the Pell numbers B, and Q,withn>1, Q,—PF, =

(@) Pn—q (b) Qn-1 (c) 2Pp_4 (d) None
(7) If xq,y; isafundamental solution of x2 — dy? = 1, then every positive solution of the

equation is given by x,,y, which satisfy
(@) yn+ x,Vd = (1 +yVd)" (b) xn + yuVd = (x1 +y,Vd)"

(c) Both (a) and (b) (d) None

if C,= L (n=0,1,2,.....) is the n'™® convergent and k is the length of the period

(8)
Of the infinite SCF of Vid , then pux_1, qni—1 isasolutionof x% —dy? =1

(a) k=2, n=5 (b) k=3, n=4 (c) Both (a) and (b) (d)None



(9) Every Carmichael number, an absolute pseudoprime
(a) isodd (b) has atleast 3 distinct prime factors (c) composite
(d) (a), (b),and (c)

(10)  If dis divisible by a prime p = 3(mod 4), then the equation x? — dy? = —1 has

(a) nosolution (b) infinitely many solutions (c) onesolution (d) None



DESCRIPTIVE QUESTIONS

1) Establish that if x, ,y, is a solutionof x? —dy? = —1, then
x = 2dyy* -1, Y = 2%9Yo satisfies x? —dy? = 1.

2) Find the fundamental solutions of

i) x? —-3y?2=1
ii) x? —41y? =1
iii) x?2 —6y?2=1
iv) x? —47y? =

. . 5 12
3) Prove solutions (x,,y,) of x2 —6y? =1 are given by [ ]

4) Prove that if (x;,y;) is fundamental solution of x? —dy? = 1, then all solutions are given

a0 e

5) Does x2—15y%2 = —1 haveanysolution?  Explain using
(i) continued fractions (ii) quadratic residues
6) Prove that if (x;,y;) is fundamental solution to the associated Pell’s equation

x2—dy?= —1, then all solutions are given by

] l dylrn 1[0]



Number Theory Practical 7
Miscellaneous Theory Questions

Unit 1

(1) Define the terms Quadratic residue and Quadratic non-residue of an odd prime p. If p is an odd
p-1
prime and gcd (a,p)=1 then prove that a is quadratic residue of p if and only if a 2 = 1(modp)
p-1
and a is quadratic non-residue of p ifandonlyif a 2 = —1(modp).

(2) Define Legendre symbol (%) .If pis an odd prime and a and b are relatively prime to p then

prove that

(i)(g) = apT_l mod p.

i () G)= ()

(iii) a= b mod p implies (g) = (g).

(iv) If (a,p)=1 then (a—z) =1land (a:Tb) = (2).

P p
o) (2) =1and ()= -1’7,
(3) Show that (_?1) = 1ifp=1mod 4 and (_?1) =-1if p= 3 mod 4.

Hence Show that there are infinitely many primes of the form 4k+1.

(4) State and prove Gauss’ Lemma.

(5) If piis an odd prime and (a,2p) = 1, then show that (%) = (—1)t, where t= 251—11)/2 [%]

p?-1

and (%) =(-1) s
(6) If pis an odd prime ,then prove that (i) (2/p)= 1if p=1 or 7 mod 8 and
(i) (2/p) =-1if p= 3 or 5mod 8
(7) State and prove Quadratic Reciprocity Law.
(8) If pisan odd prime ,then prove that (i) (3/p)= 1if p=1or 11 mod 12 and

(i) (3/p) =-1if p= 5 or 7 mod 12



(9) ) If pisan odd prime ,then prove that(i) (-2/p)= 1if p= 1 or 3 mod 8 and
(i) (-2/p) =-1if p=50r 7 mod 8
(10) Define Jacobi Symbol (g) for Q positive and odd. If Q and Q' are odd and positive then show

that

i) O > =(=)

Qe QQr
(i) () ) =)
(i) (P.Q) = 1then (5) = (&) =1
() 1f (PP",QQ) =1 then (o) = (2)

(v) P’= P mod Q implies (%) = (g)

_ Q-1
(11) If Qis odd and Q>0, then show that (31) =(-1)z and (%) = (—1)@-v/8,

(12) State and prove Generalized Quadratic Reciprocity Law.

(13) If pisan odd prime and (a, p) = 1, then show that the congruence
x2 =a(mod p™) n>1 hasa solution if and only if (%) =1.

(14) If ais an odd integer . Then show that
(a) x? = a (mod 2) always has a solution.
(b) x2 =a (mod 4) has a solution if and only if a= 1 (mod 4)
(c) x?2=a(mod2™) forn = 3,has asolution if and only if a = 1(mod 8)

(15) If n = 2kop, k1 . ... p,Fr is the prime factorization of n>1 and (a,n)=1, then show that

2 =

x a (mod n) is solvable if and only if

(a) (pi) =1fori=12, .1

(b)a=1 (mod 4) if4|n,but 8 does not divide n

(c)a= 1 (mod 8) if8|n.



Unit Il

Continued Fraction

Notation: For SCF[ap, a1, ........... an] 3 Ck= [ao, a1, coovvnnnnn. ,ak] = Px /qk ; 0<k<n

1) Show that any rational number can be written as a finite simple continued fraction and
every finite SCF represents a rational number.
2) For 0<k<n, define Px and qx as po =ao;qo=1 ; pi=aiao+1;qi=arand = [ ao, a1,
........... ,an] = Pn /qn then prove that
a)For k >2
Pk _ OkPk—11Dk—2
Ak Ak qk-1 tqk-2
b) Pk g1 —Priqe=(-1)¥! Fork>1
¢) Puqgr2—Praqe=(-1)*ax Fork>2
d) Pk _ Pk-1 _ (-nk1
ax Ak-1 Ardk-1
e) If n is odd then ry < ry2 and if n is even then 2 <1y

3) Prove the following:

a) The convergents with even subscripts form a strictly increasing sequence.
b) The convergents with odd subscripts form a strictly decreasing sequence.

¢) Every convergent with an odd subscript is greater than every convergent with an even

subscript .

4) Ifged(ab)=landab= [ao,ai, ........... ,an] where n is odd. Then prove that x= cqn-1 &

y= -Cpn-1 gives a solution of ax+by =c¢

5) Prove that every Simple Infinite Continued fraction (SICF) represents an irrational
number and conversely.

6) Prove that two distinct Simple Infinite Continued fractions converge to different
numbers.

7) If1< b < qgn then prove that the rational number a/b satisfies |x — Z—" [ <|x — % |
n

8) State and prove Dirichlet’s Theorem about quadratic approximation.

Unit 1l

(My,is Mersenne number, F,is Fermat number)

1. Define the Mobius u-function. Show that it is a multiplicative function.



2. State and prove the Mobius inversion formula.

3. If 2%-1is prime (k >1), then show that n = 2¥~1(2% — 1) is perfect and
every even perfect number is of this form.

4. If p and q=2p+1 are primes, then prove that either q| M,, or q|M, + 2, but
not both.

5. If g=2n+1 is prime then establish the following,
(a) q| M,, provided that g = 1(mod 8) or g = 7(mod 8)
(b)q|M,, + 2 provided that g = 3(mod 8) or g = 5(mod 8)

6. If pis an odd prime then show that any odd divisor of M, is of the form
2kp+1.

7. If pis an odd prime then show that any odd divisor q of M), is of the form
q = +1(mod 8).

8. State and prove Korselt’s criterion for Carmichael numbers.

9. Prove that every Carmichael number is the product of three or more
distinct odd factors. Furthermore, prove that, if n is a Carmichael number
and if p is an odd prime , then p divides n if and only if p-1|n-1.

10.Show that any absolute pseudoprime is square free.

11. Let x,y; be the fundamental solution of x? — dy? = 1. Then show that
every pair of integers x,,, y,defined by the condition
X + Y Vd = (x1 + y1 VA" n=1,2,3......... is also a
positive solution.



12. If x4,y is the fundamental solution of x2 — dy? = 1, then prove that
every positive solution of the equation is given by x,, y, where
X, and y,are the integers determined from

Xy + yoVd = (1 + yVd)" n=1,2,3........

13. Let d be a positive nonsquare integer. Let (xg, y9)=(1,0) be the trivial
solution to the equation x2? — dy? = 1.Then show that all solutions to the
equation in non-negative integers may be expressed by each of the
following forms, where the integer n > 1.

[

3l Yn

]=[x1 d)’1] [xn—l]
i X1 Yn-1

x, dy 1"
GOSN N

14) Assuming that equation x? — dy? = —1 issolvable, letx;,y; be
the smallest positive solution. Prove that all solutions of equation

x? —dy? = —1 are given by x,,y, where

Xy + ypVd = (%1 + y1v/d)™  with n=1,3,5,7.....
and that all solutions of x2 —dy? =1 are givenby x,,V,

with n=2,4,6,8.......

....................................................................................................................................



