Department of Statistics

Question Bank

Sem 5 (ATKT)

Paper 1 (Code – USST501)

SR. No.	QUESTION TEXT	OPTION 1	OPTION 2	OPTION 3	OPTION 4
1	The result of an experiment is known as	Outcome	Sample Space	Event	Random experiment
2	The set of all possible outcomes of a random experiment is known as	Event	Outcome	Sample Space	Random Experiment
3	Any particular performance of a random experiment is called as	Sample Point	Sample Space	Event	Trial
4	Any subset of sample space of an experiment is called as	Event	Outcome	Sample Space	Random Experiment
5	Events A and B are said to be mutually exclusive if and only if	$P(A \cap B) = 1$	$P(A \cap B) = \emptyset$	$P(A \cup B) = 1$	$P(A \cup B) = \emptyset$
6	Events A and B are said to be mutually exhaustive if and only if	$P(A \cup B) = S$	$P(A \cap B) = \emptyset$	$P(A \cup B) = 1$	$P(A \cup B) = \emptyset$
7	If $S = \{A_1, A_2, \dots, A_n\}$, where n is finite then $\sum_{i=1}^{n} P(A_i) =$	0	1	-1	2
8	An old man says that chances of rain on a particular day is 60%. It is an example of	Statistical definition of probability	Mathematical definition of probability	Axiomatic definition of probability	Subjective probability
9	If P(A) = 0.3, P(B) = 0.2 and P(A∩B) = 0.3 then P(AUB) =	0.2	0.8	0.11	0.6

10	If P(A) = 0.7, P(B) = 0.25 and P(A∩B) = 0.15 then P(AUB)	0.95	1	0.8	0.85
	=				
11	Two dice are thrown simultaneously. The probability of	1	3	1	4
	getting a sum of 9 is	10	10	9	9
12	If P(A) =1 , the event A is called as	Impossible event	Mutually	Mutually exhaustive	Certain event
			exclusive event	event	
13	P (A / B) =	$P(A \cap B)$	$P(A \cap B)$	$P(A \cup B)$	$P(A \cup B)$
		P(B)	P(A)	P(B)	P(A)
14	P (B / A) =	$P(A \cap B)$	$P(A \cap B)$	$P(A \cup B)$	$P(A \cup B)$
		P(B)	P(A)	P(B)	P(A)
15	The number of arrangements in which we can put 'r'	$\binom{n}{n}$	$\binom{n+r-1}{r}$	$\binom{n-1}{n}$	$\begin{pmatrix} n \end{pmatrix}$
	indistinguishable balls in 'n' different cells is given by	(_r)	(r)	(r)	(r-1)
16	The number of arrangements of putting 'r' (r>n)	$\binom{r-1}{r}$	$\binom{r-1}{r}$	$\binom{r-2}{r-2}$	$\begin{pmatrix} r \end{pmatrix}$
	indistinguishable balls in 'n' cells such that no cell is	(n-1)	(n-1)	(n-1)	(rn-1)
	empty is given by				
17	When we distribute 'r' balls at random to 'n' cells then	2	1	n^r	$2n^r$
	each arrangement has probability	n^r	n ^r		
18	If two events A and B are mutually independent then	P(A) + P(B)	P(A) - P(B)	$P(A) \times P(B)$	$P(A) \div P(B)$
	P(A∩B) =				
19	If A and B are two events, then probability of	$P(A \cap B)$	$P(A \cup B)$	P(A/B)	P(A+B)
	occurrence of atleast one event is represented as				
20	If A and B are two events, then probability of	$P(A \cap B)$	$P(A \cup B)$	P(A/B)	P(A+B)
	occurrence of both the events simultaneously is				
	represented as				
21	Probability lies between	-1 to 1	0 to 1	-1 to 0	0 to 2
22	Probability of the impossible event is	0	1	-1	0.5
23	$A \cup \overline{A} =$	1	0	S	S-1
24	$P(\bar{A} \cap B) =$	$P(B) - P(A \cap B)$	$P(B) - P(A \cup B)$	$P(A) - P(A \cap B)$	$P(A) - P(A \cup B)$
25	$P(A \cap \overline{B}) =$	$P(B) - P(A \cap B)$	$P(B) - P(A \cup B)$	$P(A) - P(A \cap B)$	$P(A) - P(A \cup B)$
26	$A \cap \overline{A} =$	0	S	ф	1
27	$A \cup \overline{A}$ are events	Mutually Exclusive	Certain	Mutually Exhaustive	Impossible

28	$P(A \cup B) =$	P(A) - P(B)	P(A) - P(B)	P(A) + P(B)	P(A) + P(B) + P(A)
		$-P(A \cap B)$	$+ P(A \cap B)$	$-P(A \cap B)$	$\cap B$)
SR.	QUESTION TEXT	OPTION 1	OPTION 2	OPTION 3	OPTION 4
No.					
1	If X is a non-negative variable, then for any a (a>0) then	$P(X \le a) \le \frac{E(X)}{a}$	$P(X \le a) = \frac{E(X)}{a}$	$P(X \le a) \ge \frac{E(X)}{a}$	$P(X \le a) \neq \frac{E(X)}{a}$
2	If X is a non-negative variable, then for any a (a>0) then	$P(X \ge a) \le \frac{E(X)}{a}$	$P(X \ge a) = \frac{E(X)}{a}$	$P(X \ge a) \ge \frac{E(X)}{a}$	$P(X \ge a) \neq \frac{E(X)}{a}$
3	If X is a non-negative variable, then for any a (a>0) then	$P(X \ge a^r) \le \frac{E(X)}{a^r}$	$P(X \ge a^r)$ $\ge \frac{E(X)}{a^r}$	$P(X \ge a^r) = \frac{E(X)}{a^r}$	$P(X \ge a^r) \neq \frac{E(X)}{a^r}$
4	If X is a random variable with mean μ and variance σ^2 , then for any positive number k, we have	$P\{ X - \mu \ge k\sigma\}$ $\ge \frac{1}{k^2}$	$P\{ X - \mu \\ \ge k\sigma\} \le \frac{1}{k^2}$	$P\{ X - \mu \ge k\sigma\}$ $\neq \frac{1}{k^2}$	$P\{ X - \mu \ge k\sigma\} = \frac{1}{k^2}$
5	If X is a random variable with mean μ and variance σ^2 , then for any positive number k, we have	$P\{ X - \mu < k\sigma\}$ $\ge 1 - \frac{1}{k^2}$	$P\{ X - \mu \\ < k\sigma\} \le \frac{1}{k^2}$	$P\{ X - \mu < k\sigma\} \\ \neq 1 - \frac{1}{k^2}$	$P\{ X - \mu < k\sigma\} = \frac{1}{k^2}$
6	Chebyshev's inequality states that	$P\{ X - \mu < C\}$ $\ge 1 - \frac{1}{C^2}$	$P\{ X - \mu < C\}$ $\leq \frac{1}{C^2}$	$P\{ X - \mu < C\}$ $\neq 1 - \frac{1}{C^2}$	$P\{ X - \mu < C\} = \frac{1}{C^2}$
7	Boole's inequality states that, for n events A_1, A_2, \dots, A_n	$P\left(\bigcup_{\substack{i=1\\n}}^{n} A_i\right)$	$P\left(\bigcup_{\substack{i=1\\n}}^{n} A_i\right)$	$P\left(\bigcup_{\substack{i=1\\n}}^{n} A_i\right)$	$P\left(\bigcup_{\substack{i=1\\n}}^{n}A_{i}\right)$
		$\geq \sum_{i=1}^{P(A_i)} P(A_i)$	$\neq \sum_{i=1}^{P(A_i)}$	$\leq \sum_{i=1} P(A_i)$	$=\sum_{i=1}^{N} P(A_i)$
8	Cauchy-Schwartz inequality states that, it X and Y are	$[E(XY)]^2$	$[E(XY)]^2$	$[E(XY)]^2$	$[E(XY)]^2$
	random variables having real values then	$\leq E(X^2)E(Y)$	$\leq E(X)E(Y^2)$	$\leq E(X)E(Y)$	$\leq E(X^2)E(Y^2)$
9	WLLN stands for	Weak Law of Linear	Weak Law of	Weak Law of Large	Weak Law of Log
		Numbers	Least Numbers	Numbers	Numbers

SR.	QUESTION TEXT	OPTION 1	OPTION 2	OPTION 3	OPTION 4
No.					
1	If X is a random variable having probability	$E(e^{tx})$	$E(e^{x})$	$E(e^t)$	$E(e^{tx}+1)$
	function function $f(x)$ then its M.G.F. is given by				
2	If X is a discrete random variable, its M.G.F. is	$\sum tr \mathbf{p}(x)$	$\sum tr \mathbf{p}(x) \mathbf{r}$	f the set of s	f the set of
_	given by	$\sum e^{ix} P(x)$	$\sum e^{ix} P(x) dx$	$\int e^{tx} f(x) dx$	$\int e^{tx} f(x)$
3	If X is a continuous random variable, its M G F.	$\frac{x}{\sum}$ tr p()	$\frac{x}{\sum}$ tr p()	f the set of the	
	is given by	$\sum e^{ix} P(x)$	$\sum e^{ix} P(x) dx$	$e^{\iota x} f(x) dx$	$e^{tx}f(x)$
1	MCE stands for	<u>x</u> Moon Concreting	<u>x</u> Mode Concreting	Madian Concreting	Moment Concreting
4	M.G.F. stands for	Function	Function	Function	Function
~				Function	
2	$M(t_1, t_2)$ represents	M.G.F. of X and Y	M.G.F. of X	M.G.F. Of Y	M.G.F. of t_1 and t_2
6	If X and Y are discrete random variables, then its	$\sum e^{t_1 x + t_{2y}} P(x, y)$	$\int e^{t_1 x + t_{2y}} f(x, y) dy$	$\sum e^{t_1x+t_{2y}} P(x,y)$	$\int e^{t_1 x + t_{2y}} f(x, y) dx d$
	joint M.G.F. is given by		$\int \int c = \int (x,y) dx$		$\int \int c = \int (x,y) dx dx$
7	If X and Y are continuous random variables,	$\sum \sum_{a} t_1 x + t_{2\nu} P(r)$	$\int \int dt_1 x + t_2 y f(x, y) dy$	$\sum \sum_{a} t_1 x + t_{2y} P(x, y)$	$\int \int dt_1 x + t_{2y} f(x, y) dx d$
	then its joint M.G.F. is given by		$\int \int e^{-\frac{x}{2}} f(x,y) dx$		$\int \int e^{-x} \int (x, y) dx d$
8	$M(t_1, 0)$ represents	M.G.F. of X and Y	M.G.F. of X	M.G.F. of Y	M.G.F. of t_1
9	$M(0, t_2)$ represents	M.G.F. of X and Y	M.G.F. of X	M.G.F. of Y	M.G.F. of t_2
10	The necessary and sufficient condition for the	$M(t_1, t_2)$	$M(t_1, t_2)$	$M(t_1, t_2)$	$M(t_1, t_2)$
	variables X and Y to be independent is	$= M(t_1, 0)$	$= M(t_1, 0)$	$= M(t_1, 0) + M(0, t_2)$	$= M(t_1, 0) \div M(0, t_2)$
		$\times M(0, t_2)$	$-M(0,t_2)$		
11	Trinomial distribution is an extension of	Poisson Distribution	Exponential Distribution	Binomial Distribution	Multinomial Distribution
12	Multinomial distribution is an extension of	Binomial Distribution	Normal Distribution	Poisson Distribution	Exponential Distribution
13	Trinomial distribution is	Discrete Distribution	Continuous Distribution	Random Distribution	Discrete continuous
					Distribution
14	If X and Y jointly follows Trinomial distribution then	$X \sim B(p_2, p_1)$	$X \sim B(q_1, p_1)$	$X \sim B(n, p_2)$	$X \sim B(n, p_1)$
	only X follows				
15	If X and Y jointly follows Trinomial distribution then	$Y \sim B(p_2, p_1)$	$Y \sim B(q_1, p_1)$	$Y \sim B(n, p_2)$	$Y \sim B(n, p_1)$
	only Y follows			·	
16	If	np_1	np_1q_1	np_2	np_1q_2

	(X,Y)~Trinomialthen E(X)is given by							
17	If	np_1	np_1q_1			np ₂		np_1q_2
	(X,Y)~Trinomialthen E(X)is given by							
18	For Trinomial distribution	$p_1 + p_2 = 1$	$p_1 + p_3 = 1$		$p_1 + 1$	$p_2 + p_3 = 1$		$p_2 + p_3 = 1$
19	For Trinomial distribution, the correlation coefficient	p_1q_2	q_1q_2	2		q_1p_2		p_1p_2
	15	$\rho = -\sqrt{q_1 p_2}$	$ \rho = -\sqrt{\frac{p_1 p_2}{p_1 p_2}} $	2	ρ =	$=-\sqrt{\frac{p_1q_2}{p_1q_2}}$		$\rho = -\sqrt{q_1 q_2}$
20	$M(t_1, t_2)$ represents joint M.G.F. of X and Y	$\left[\frac{d^2}{dt^2}M(t_1,t_2)\right]$ at	$\left[\frac{d^2}{dt^2}M(t_1,0)\right]$ at t	$t_1 =$	$\left[\frac{d^2}{dt^2}M(0)\right]$	$t_2)$ at $t_2 = 0$	$\left[\frac{d^2}{dt^2}\right]$	$M(t_1,t_2)$ at $t_2=0$
	then $E(X^2) =$	$t_1 = 0$	0		Lut ₂	L	Lutz	L
21	$M(t_1, t_2)$ represents joint M.G.F. of X and Y	$\left[\frac{d}{dt_2}M(t_1,t_2)\right]$ at	$\left[\frac{d}{dt_2}M(t_1,0)\right]$ at t	$t_2 =$	$\left[\frac{d}{dt_1}M(t_1)\right]$, t_2) at $t_1 = 0$	$\left[\frac{d}{dt_2}\right]$	$M(0, t_2)$ at $t_2 = 0$
	then $E(Y) =$	$t_2 = 0$	0		Lavi	-	Lavz	-
22	$M(t_1, t_2)$ represents joint M.G.F. of X and Y	$\left[\frac{d}{dt_1}\frac{d}{dt_2}M(t_1,t_2)\right]$ at	$\left[\frac{d}{dt_2}M(t_1,0)\right]$ at t	$t_2 =$	$\left[\frac{d}{dt_1}\frac{d}{dt_2}M\right]$	(t_1, t_2) at	$\left[\frac{d}{dt_1}\right]$	$\left[\frac{d}{dt_2}M(0,t_2)\right]$ at $t_2 =$
	then $E(XY) =$	$t_1 = 0, t_2 = 0$	0		$t_1 = 0$	-	0	
23	$M(t_1, t_2)$ represents joint M.G.F. of X and Y	$\left[\frac{d^2}{dt^2}\frac{d}{dt}M(t_1,t_2)\right]$ at	$\left[\frac{d^2}{dt^2}\frac{d}{dt}M(t_1,0)\right]$	at	$\left[\frac{d}{dt}, \frac{d}{dt}\right] M$	(t_1, t_2) at	$\left[\frac{d^2}{dt^2}\right]$	$\frac{d}{dt}M(0,t_2)$ at $t_2 =$
	then $E(X^2Y) =$	$t_1 = 0, t_2 = 0$	$t_{2} = 0$	1	$t_1 = 0$	1	$0^{1111111111$	
24	$M(t_1, t_2)$ represents joint M.G.F. of X and Y	$\left[\frac{d^2}{u^2}\frac{d}{u}M(t_1,t_2)\right]$ at	$\left[\frac{d^2}{u^2}\frac{d}{u}M(t_1,0)\right]$	at	$\left[\frac{d}{dt}\frac{d}{dt}M\right]$	$(0, t_2)$ at $t_1 =$	$\begin{bmatrix} d \\ d \end{bmatrix}$	$\frac{d^2}{dt^2} M(t_1, t_2)$ at $t_1 =$
	then $E(XY^2) =$	$t_1 = 0, t_2 = 0$	$t_{11} = 0$	J	0	J	$0, t_2$	= 0
25	$M(t_1, t_2)$ represents joint M.G.F. of X and Y	$\left[\frac{d^m}{dt_1}, \frac{d}{dt_2}M(t_1, t_2)\right]$ at	$\left[\frac{d^n}{dt_1} \frac{d}{dt_2} M(t_1, 0)\right]$	at	$\left[\frac{d}{dt},\frac{d}{dt},M\right]$	$(0, t_2)$ at $t_1 =$	$\begin{bmatrix} d^m \\ \vdots & m \end{bmatrix}$	$\frac{d^n}{d^n}M(t_1,t_2)$ at
	then $E(X^mY^n) =$	$\begin{bmatrix} at_1 & at_2 \\ t_1 & -0 \\ t_2 & -0 \end{bmatrix}$	$\begin{bmatrix} at_1 & at_2 \\ t_1 & - 0 \end{bmatrix}$	J	[<i>ai</i> ₁ <i>ai</i> ₂	· ·] –	$t_1 - t_1$	$\int dt_2 dt_2 dt_2 dt_2 dt_2 dt_2 dt_2 dt_2$
SR	OUESTION TEXT	$t_1 = 0, t_2 = 0$	$\frac{t_2 = 0}{\text{OPTION 1}}$	OPT	$\frac{0}{10N}$	OPTION 3	$\iota_1 -$	$0, t_2 = 0$
No	QUESTION IEXT					01 11010 5		01 11010 4
1	In order statistics, if X_1, X_2, \dots, X_r denote a rando	om sample of size 5, then	Order	First	order	Last order stati	stics	Largest order
-	$x_{(1)}$ is called as	in sumpre of size e, uten	statistics	statis	tics			statistics
-								
2	In order statistics, if X_1, X_2, \dots, X_7 denote a random	om sample of size 7, then	Order	First	order	Smallest order		Largest order
	$x_{(7)}$ is called as		Statistics	statis	tics	statistics		statistics
3	In order statistics, if X_1, X_2, \dots, X_{10} denote a rand	om sample of size $1\overline{0}$,	Order	First	order	Last order statis	stics	Largest order
	then $x_{(1)}$ is called as		statistics	statis	tics			statistics

4	In order statistics, if X_1, X_2, \dots, X_{20} denote a random sample of size 20,	Order	First order	Smallest order	Largest order
	then $x_{(20)}$ is called as	Statistics	statistics	statistics	statistics
5	In order statistics, if X_1, X_2, \dots, X_n denote a random sample of size n, then	Occurrence	Sequence	Magnitude	Sample size
	their order statistics are arranged as per their				
6	Order statistics is applicable only for	Continuous	Discrete	Random	Probability
		distribution	distribution	distribution	distribution
7	When the range of variable depends on the parameter, then we introduce	Order	Probability	M.G.F	C.G.F
		statistics			
8	In order statistics, ordered variables are	Independent	Dependent	Random	Decreasing
9	If y_1, y_2, \dots, y_n represents order statistics, then the joint pdf of all 'n'	$\prod_{n=1}^{n} \alpha$	$\prod_{n=1}^{n}$	$\prod_{n=1}^{n} \alpha_{n}$	$\prod_{n=1}^{n} c$
	order statistics is given by	$n! \prod_{i=1}^{j} f(y_i)$	$\prod_{i=1}^{j} f(y_i)$	$n! \prod_{i=1}^{i} f(x_i)$	$\prod_{i=1}^{i} f(x_i)$
10	If y_1, y_2, \dots, y_n represents order statistics, then the range is defined as	$R = y_2 - y_1$	$R = y_1 - y_2$	$R = y_n - y_1$	$R = y_1 - y_n$
11	If y_1, y_2, \dots, y_{15} represents order statistics, then the range is defined as	$R = y_2 - y_1$	$R = y_1 - y_2$	$R = y_{15} - y_1$	$R = y_1 - y_{10}$
12	If $X \sim U(a, b)$, then distribution function F(X) is	1	$\frac{x-a}{a}$	x - b	x-a-b
		$\overline{b-a}$	b-a	$\overline{b-a}$	b-a
13	If $X \sim U(0, \theta)$, then distribution function F(X) is	1	x-a	<u>x</u>	$x - \theta$
		$\overline{\theta}$	20	θ	20
14	If $X \sim U(0,1)$, then distribution function F(X) is	x	<u>1</u>	<i>x</i> ²	1
15		lute costin c	χ	late method f(a, a)	χ^2
15	If $f(u, v)$ represents joint put of u and v , then marginal put of u can be obtained	f (a, a) w r t a	f(u, u) w r t u	integrating (u, v) w.	f (a, a) w r t a
16	If Y_{α} exp(nargmeter - A), then distribution function E(X) is given by	$\int (u, v) W. I. t u$	$\int (u, v) W.I.t. v$	$-\theta x$	$\int (u, v) w.r.t. u$
17	When sample size n is odd, median is the observation at mosilion	$\frac{\partial e}{\partial h}$	$1 - \theta e^{-th}$	e^{-th}	$1 - e^{-th}$
1/		$\left(\frac{\pi}{2}\right)$	$\left(\frac{n+2}{2}\right)$	$\left(\frac{n+1}{2}\right)$	$\left(\frac{n-1}{2}\right)$
18	When sample size n is even, median is the observation at position.	$\left(\frac{n}{2}\right)^{th}$	$\left(\frac{n+2}{2}\right)^{th}$	$\left(\frac{n+1}{2}\right)^{th}$	$\left(\frac{n-1}{n-1}\right)^{th}$
10		(2)			
19	Random variables U and V are said to be independent if and only if	f(u,v)	f(u,v)	$f(u,v) = f(u) \times f(w)$	f(u,v) = f(u) + f(w)
20	Let $u_{1} = u_{1}$ corresponds order statistics the marginal ref of u_{1} (r. (r. (r.))	= f(u+v)	= f(u - v)	$= f(u) \times f(v)$	= f(u) + f(v)
20	Let y_1, y_2, \dots, y_9 represents order statistics, the marginal put of y_2 (r < s) can be obtained using	p.u.i. 017	p.u.i. of r	p.u.i. of range	
			statistics		
			Statistics		

21	Let y_1, y_2, \dots, y_{15} represents order statistics, the joint pdf of y_5 and y_{10} (r	p.d.f. of range	p.d.f. of r^{th}	p.d.f. of median	p.d.f. of r^{th} and s^{th}
	< s) can be obtained using		order statistics		order statistics
22	If $X \sim U(0,1)$, then r^{th} order statistics follows	Beta	Normal	Beta distribution of	Gamma Distribution
		distribution of	distribution	type II	
		type I			

Question Bank

<u>Sem V (ATKT)</u>

Paper II (Code – USST502)

	Unit 1				
Sr. No	Question	Option A	Option <i>B</i>	Option C	Option D
•					
1.	Any observable function of a random variable which does not contain any unknown parameter is known as	Population	Statistic	Parameter	Sample
2.	Value taken by an estimator on the basis of selected sample is known as	Statistic	Sample	Estimate	Parameter
3.	If <i>T</i> is an unbiased estimator of θ , then	$E(T) = \theta$	E(T)=0	$E(T)-\theta=1$	$E(\theta) = T$
4.	If $X \to U(0, \theta)$, then an unbiased estimator of θ is	$ar{x}$	2x	$2\bar{x}$	x

5.	An estimator is consistent if its bias and variance both tends to zero as the sample size tends to	0	1	-1	œ
6.	If $X \sim N(\theta, 1)$, then which of the following is consistent but not unbiased?	<i>x</i> + 2	$\bar{x} + \frac{1}{n}$	$x + \frac{1}{n}$	2 <i>x</i>
7.	Cramer-Rao inequality is valid even if we deal with distribution.	Discrete	Probability	Unbiased	Consistent
8.	If $X \sim P(\lambda)$, then Cramer-Rao lower bound for λ is	λ^2	λ	$\frac{\lambda}{n}$	$\frac{n}{\lambda}$
9	A random variable X follows exponential distribution with mean θ . Based on a random sample of size <i>n</i> , MVUE of θ is	$2\bar{x}$	x	$\bar{x} + 1$	$2\bar{x} + 1$
10	equality gives lower bound for the variance of unbiased estimator.	Cramer-Rao	Fisher	Neyman	Pearson
11	Neyman's factorization theorem is related to	Unbiasedness	Consistency	Sufficiency	Efficiency
12	Which of the following is not the property of a good estimator?	Unbiasedness	Effectiveness	Sufficiency	Efficiency
13	If T is biased for θ , then the bias is given by	$E(T) - \theta$	$E(T) = \theta$	$E(T) = \theta + 1$	$E(\theta) - T$
14	If $X \sim P(\lambda)$, then $E(\bar{x}) = $	$\lambda - 1$	λ^2	λ	1-λ

15	If $X \sim N(\mu, 1)$, then is an unbiased estimator of μ .	X ²	2X	2X + 1	X
16	If $X \sim N(\theta, 1)$, then which of the following is unbiased but not consistent estimator of θ ?	2X	X	X ²	2 <i>X</i> + 1
17	If X follows exponential distribution with parameter θ , then sufficient estimator of θ is	$2\sum x_i$	$3\sum x_i^3$	$\sum x_i$	$\bar{x} + 1$
18	If MVUE exists, it is always	Consistent	Zero	Unity	Unique
19	If MVUE exists, then the necessary and sufficient condition for its existence is	$\frac{\partial \log L}{\partial \theta} = \frac{T - \theta}{K(\theta)}$	$\frac{\partial^2 \log L}{\partial \theta^2} = \frac{T - \theta}{K(\theta)}$	$\frac{\partial \log L}{\partial \theta} = \frac{T - \theta}{K^2(\theta)}$	$\frac{\partial^2 \log L}{\partial \theta^2} = \frac{T - \theta}{K^2(\theta)}$
20	If X follows exponential distribution with mean θ , then consistent estimator of θ is	x	$\frac{1}{\bar{x}}$	$\frac{1}{2}\bar{x}$	$\frac{1}{n}\bar{x}$
21	If $X \sim N(\theta, 1)$, then which of the following is neither unbiased nor consistent estimator of θ ?	x	$x-\frac{1}{n}$	$x + \frac{1}{n}$	$\frac{x}{n}$
22	If $X \sim P(2\lambda)$, then $E(\bar{x}) = $	λ	2λ	$\lambda - 1$	$\lambda + 1$
23	If $X \sim Bin(n, p)$, then X is an unbiased estimator of	npq	np^2	n(n-1)p	np
24	is a large sample property.	Consistency	Sufficiency	Efficiency	Unbiasedness

25	In which of the following case, T_2 is said to be more efficient than T_1 ?	$V(T_2) > V(T_1)$	$V(T_2) < V(T_1)$	$V(T_2) = V(T_1)$	$V(T_2) \ge V(T_1)$
26	If $X \sim N(\theta, 1)$ then which is consistent but not unbiased	$\bar{x} + \frac{1}{n}$	x	$2\bar{x} + 1$	$\bar{x} + 1$
27	If X~N(0, σ^2) then sufficient estimator of σ^2 is:	$ar{x}$	$2\bar{x}$	$\sum x_i^2$	$\sum x_i^2 + 1$
28	is a large sample property.	Consistency	Sufficiency	Efficiency	Unbiasedness
29	If $X \sim P(\lambda)$, then Cramer-Rao lower bound for λ is	λ^2	λ	$\frac{\lambda}{n}$	$\frac{n}{\lambda}$
30	Estimation is of two types	One sided and two sided	Type I and Type II	Point estimation and Interval Estimation	Biased and unbiased.
31	Neyman's factorization theorem is related to	Unbiasedness	Consistency	Sufficiency	Efficiency
32	If T is biased for θ , then the bias is given by	$E(T) - \theta$	$E(T) = \theta$	$E(T) = \theta + 1$	$E(\theta) - T$
33	Statistic defines characteristics of	Sample	Population	Parameter	Interval
34	Any observable function of a random variable which does not contain any unknown parameter is known as	Population	Statistic	Parameter	Sample
35	An estimator T_n based on a sample of size <i>n</i> is considered to be the best estimator of θ if:	$P\left\{ T_n-\theta <\varepsilon\right\}\geq P\left\{ T_n^*-\theta <\varepsilon\right\}$	$P\left\{ T_n-\theta >\varepsilon\right\}\geq P\left\{ T_n^*-\theta >\varepsilon\right\}$	$P\left\{\left T_{n}-\theta\right <\varepsilon\right\}=P\left\{\left T_{n}^{*}-\theta\right <\varepsilon\right\}$	none of the above

36	If $X_1, X_2,, X_n$ is a random sample from a population $N(0, \sigma^2)$, the sufficient statistic for σ^2 is:	ΣX_i	ΣX_i^2	$(\Sigma X_i)^2$	none of the above
37	If $X_1, X_2,, X_n$ be a random sample from an infinite population where $S^2 = \frac{1}{n} \sum_{i} (X_i - \vec{X})^2$, the unbiased estimator for the population variance σ^2 is:	$\frac{1}{n-1}S^2$	$\frac{1}{n}S^2$	$\frac{n-1}{n}S^2$	$\frac{n}{n-1}S^2$
38	If $X_1, X_2,, X_n$ is a random sample from an infinite population, an estimator for the population variance σ^2 such as:	$\frac{1}{n}\sum (X_i - \vec{X})^2 \text{ is an unbiased esti-}$ mator of σ^2	$\frac{1}{n}\sum_{i} (X_i - \overline{X})^2 \text{ is a biased estimator of } \sigma^2$	$\sum_{\substack{\sigma \in \sigma^2}} (X_i - \overline{X})^2 \text{ is an unbiased estimator}$	none of the above
39	The lower bound for the variance of an estimator T_n under amended regularity conditions of Crammer-Rao was given by:	R.A. Fisher	A. Bhattacharyya	Silverstone	all the above
40	If $x_1, x_2,, x_n$ be a random sample from a $N(\mu, \sigma^2)$ population, the sufficient statistic for μ is:	$\Sigma\left(x_{i}-\overline{x} ight)$	x/n	Σx_i	$\Sigma \left(x_i - \overline{x}\right)^2$
41	If the sample mean \bar{x} is an estimate of population mean μ , then \bar{x} is:	unbiased and efficient	unbiased and inefficient	biased and efficient	biased and inefficient
42	For the distribution, $f(x; \theta) = \frac{1}{\theta}; 0 \le x \le \theta$ a sufficient estimator for θ , based on a sample $X_1, X_2,, X_n$ is,	$\Sigma X_i/n$	$\sqrt{\Sigma X_i^2}$	$\max(X_1, X_2,, X_n)$	$\min(X_1, X_2,, X_n)$
	Unit 2				
1	If X follows exponential distribution with parameter θ , then MLE of θ is	\overline{x}	$\frac{1}{\overline{x}}$	$\frac{n}{\bar{x}}$	$2\bar{x}$

2	Given	1	<i>x</i> + 1	1	$\bar{x} + 1$
	$f(x) = \lambda (1 - \lambda)^x; x = 0, 1, 2, \dots$	x + 1		$\bar{x} + 1$	
	= 0 ; otherwise				
	MLE of λ is				
3	MLE may not be	Efficient	Consistent	Maximum	Minimum
4	If $X \sim N(\mu, \sigma^2)$, σ^2 is known, then	\overline{x}	$\bar{x} + 1$	$2\bar{x}$	<i>x</i> + 1
	MLE of μ is				
5	If $X \sim P(\theta)$, then MLE of θ is	$2\bar{x}$	\bar{x}	$\frac{1}{\bar{x}}$	\bar{x}^2
				2**	
6	MLE may or may not be	Zero	Unity	Unique	Variance
7	If X follows exponential distribution	1	\overline{x}	$2\bar{x}$	$3\bar{x}$
	with parameter θ , then estimate of θ using method of moments is	\overline{x}			
8	If $X \sim P(2\lambda)$, then estimate of λ using	$2\bar{x}$	$\frac{1}{-\bar{x}}$	$2\bar{x} + 1$	$3\bar{x}$
	method of moments is		2		
9	Method of moments can be used to	Regression estimate	Interval estimate	Point estimate	Ratio estimate
	find				
10	If MLE exists, then it is a function of	Efficient Statistic	Consistent Statistic	Sufficient Statistic	Unbiased Statistic
11	is less efficient estimator	Method of chi-square	Method of moment	Consistency	Efficiency
	than those obtained by MLE.				
12	MLE may not be	Efficient	Maximum	MVUE	Minimum

13	If X follows exponential distribution with parameter θ then MLE of θ is	\bar{x}	$\frac{1}{\bar{r}}$	$\frac{n}{\overline{x}}$	$2\bar{x}$
14	If MLE exists, then it is a function of	Efficient Statistic	Consistent Statistic	Sufficient Statistic	Unbiased Statistic
15	Method of minimum Chi-square is suggested by	Karl Pearson	Neyman Pearson	Cramer-Rao	Fisher
16	If $X \sim N(\mu, \sigma^2)$, σ^2 is known, then MLE of μ is	\bar{x}	$\bar{x} + 1$	$2\bar{x}$	x + 1
17	If $X \sim P(2\lambda)$, then estimate of λ using method of moments is	$2\bar{x}$	$\frac{1}{2}\bar{x}$	$2\bar{x} + 1$	3x
18	If $X_1, X_2,, X_n$ is a random sample from the population having the density function, $f(x; \theta) = \frac{1}{\sqrt{2\pi \theta}} e^{-\frac{1 x^2}{2 \theta}}$, then the maximum likelihood estimator for θ is:	$\sqrt{\sum X_i^2/n}$	$\Sigma X_i^2/n$	$\sqrt{\Sigma X_i^2/n}$	$\Sigma X_i^2/\sqrt{n}$
19	Minimum Chi-square estimators are:	Consistent	Asymptotically normal	efficient	All of the above
20	If $X_1, X_2,, X_n$ is a random sample from a population $\frac{1}{\theta \sqrt{2\pi}} e^{-x^2/2\theta^2},$ the maximum likelihood for θ is:	$\Sigma X_i/n$	$\Sigma X_i^2/n$	$\sqrt{\Sigma_i X_i^2}/n$	$\sqrt{\Sigma X_i^2/n}$

	Unit 3				
1	Estimation is of two types	One sided and two sided	Type I and Type II	Point estimation and Interval Estimation	Biased and unbiased.
2	If $X \sim P(\theta)$, then estimate of θ using method of moments is	\overline{x}	2 <i>x</i>	x ²	<i>x</i> + 1
3	Method of moments is less effective estimator than those obtained by	Consistency	Chi-square	MLE	Efficiency
4	Method of minimum Chi-square is suggested by	Karl Pearson	Neyman Pearson	Cramer-Rao	Fisher
5	In case of Absolute Error Loss Function, Baye's estimator is the of the posterior distribution of θ .	Mean	Mode	Variance	Median
6	Bayes estimator of θ as a function of y sample is :	$E(y/\theta)$	$E(\theta y)$	$E(\theta/y)$	$E(\theta^2 y)$
7	The that minimizes the risk is called Bayes decision function.	Decision function	Risk function	Prior function	Posterior function
8	estimate gives measure of accuracy of the point estimate by providing an interval that contain possible values.	Ratio	Regression	Point	Interval
9	In Bayes estimation, the parameters are not totally	Unknown	Known	Biased	Unbiased

10	is defined as an error committed in estimating parameters.	Decision function	Loss function	Prior distribution	Posterior distribution
11	is one based guessed of true value of parameter.	Point estimate	Statistic	Sample	Interval estimate
12	Interval estimate is determined in terms of	Sampling error	Error of estimation	Degrees of freedom	Confidence coefficient
13	If $k(\theta/y)$ is <i>p.d.f.</i> of θ after the observations of <i>y</i> , then $k(\theta/y)$ is called	Prior distribution	Posterior distribution	Mean of posterior distribution	Median of posterior distribution
14	The expected value of loss function is called	Decision function	Posterior distribution	Sample function	Risk function
15	Prior distribution of θ is to the observation.	Posterior	Prior	Sample	Risk
16	In case of SELF Baye's estimator is the of the posterior distribution.	Sample	Parameter	Median	Mean
17	If $L[W(Y),\theta] = [W(Y) - \theta]^2$ then it is called :	AELF	Risk	Decision	SELF
18	A function whose distribution is independent of parameter is called:	Biased	Unbiased	Pivot	Decision
19	The end point of a confidence interval are called :	Confidence coefficient	Confidence limits	Error of estimation	Parameters

20	The that minimizes the risk is called Bayes decision function.	Decision function	Risk function	Prior function	Posterior function
21	estimate gives measure of accuracy of the point estimate by providing an interval that contain possible values.	Ratio	Regression	Point	Interval
22	In case of Absolute Error Loss Function, Baye's estimator is the of the posterior distribution of θ .	Mean	Mode	Variance	Median
23	Bayes estimator of θ as a function of y sample is	$E(y/\theta)$	$E(\theta y)$	$E(\theta/y)$	$E(\theta^2 y)$
24	In Bayes estimation, the parameters are not totally	Unknown	Known	Biased	Unbiased
25	Formula for obtaining 95% confidence limits for the mean μ of a normal popula- tion N (μ , σ^2) with known σ are:	$-1.96 \le \frac{\overline{x} - \mu}{\sigma/\sqrt{n}} < 1.96$	$P\left(-Z_{\alpha/2} \le \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \le Z_{\alpha/2}\right) = 0.95$	$\bar{x} \neq 1.96 \frac{\sigma}{\sqrt{n}}$	All of the above
26	Formula for the confidence interval with $(1 - \alpha)$ confidence coefficient for the variance of the normal distribution N (μ , σ^2), when μ is known, is given as:	$-1.96 \le \frac{\overline{x} - \mu}{\sigma/\sqrt{n}} < 1.96$	$P\left[\frac{ns^2}{\chi^2_{\alpha/2}} \le \sigma^2 \le \frac{ns^2}{\chi^2_{1-\alpha/2}}\right] = 1 - \alpha$	$P\left[\frac{ns^2}{\chi^2_{\alpha/2}} \le \sigma^2 \le \frac{ns^2}{\chi^2_{1-\alpha/2}}\right] = 1 - \alpha$	None of the above
	Unit 4				

1	A general linear model can be expressed as	$Y = X\beta$	$Y = \beta + \epsilon$	$Y = X + \epsilon$	$Y = X\beta + \in$
2	For model $Y = X\beta + \epsilon$, an unbiased estimator of β is	Χβ	β	$\hat{eta} + e$	$E(\beta)$
3	For a model $Y = X\beta + \epsilon$, estimate of β using method of least squares is	$(X'X)(X'Y)^{-1}$	X(X'Y)	$(X'X)^{-1}(X'Y)$	(X'X)Y
4	In linear model $Y = X\beta + \epsilon$, $V(\hat{\beta}) =$	$(X'X)^{-1}\sigma^2$	$(X'X) \sigma^2$	σ^2	$(X'Y)^{-1}\sigma^2$
5	In linear model $Y = X\beta + \in$, $E(e) =$	1	0	-1	2
6	For estimating β , ESS is	Minimizes	Maximizes	Equated to zero	Equated to one
7	In a linear model $Y=X\beta+\epsilon$	σ^2	σ	$2\sigma^2$	$\frac{1}{\sigma^2}$
8	For a model Y=X β + ϵ ,rank of X_{nXp} is:	nk	р	n	np
9	In a interval estimation the level of confidence is denoted by:	α	β	1-α	1-β
10	The end point of a confidence interval are called :	Confidence coefficient	Confidence limits	Error of estimation	Parameters
11	For model $Y = X\beta + \epsilon$, an unbiased estimator of β is	Xβ	β	$\hat{eta} + e$	$E(\beta)$

12	In linear model $Y = X\beta + \in$, $E(e) =$	1	0	-1	2
	_				
13	For estimating β , ESS is	Minimizes	Maximizes	Equated to zero	Equated to one

Question Bank

Sem V Paper III (ATKT) (Code - USST503)

Sr.	QUESTION	OPTION 1	OPTION 2	OPTION 3	OPTION 4
No.					
1	Contagious diseases are also	Infectious	Risky diseases	Harmful	Contact diseases
	called	diseases		diseases	
2	The person carrying the	Susceptible	Diseased	Infected person	Immune person
	infectious material is a		person		
3	The period from receipt of	Infectious	Incubation	Serial interval	Incubation period
	infection and appearance of	period	period		
	symptoms is				
4	The period of internal	Latent period	Infectious	Incubation	Serial interval
	development of a disease		period	period	

	without any emission of				
	infectious material is		-		
5	The period of passing of	Latent period	Infectious	Incubation	Serial interval
	infection from an infected		period	period	
	person to a susceptible is called				
6	The period from observation of	Infectious	Incubation	Serial interval	Incubation period
	symptoms in one case to the	period	period		
	observation of symptoms in				
	second case directly infected				
	from the first is called				
7	Simple epidemic model applies	Seriously fatal	Not fatal	Fatal for adults	Fatal for children
	to diseases which are				
8	The size of the population in	n +1	n	2n	n/2
	the Simple epidemic model				
	with 1 infective at the start is				
9	The size of the population in	n + 1	n + a	п	а
	the Simple epidemic model				
	with <i>a</i> infective at the start is				
10	In Simple epidemic model,	W = XY	W = X + Y	W = X/Y	W = dX/dY
	with X and Y as the No. of				
	susceptibles and infectives,				
	the rate of new infection wis				
	given by				
11	In Simple epidemic model,	An increasing	An decreasing	A exponential	A symmetric
	with X and Y as the No. of	curve	curve	curve	curve
	susceptibles and infectives,				
	the graph of the rate of new				
	infection <i>w</i> Vs time is				
12	Individuals who spread the	Susceptibles	hosts	Carriers	infectives
	infection but do not show anv				
	symptoms of the disease are				
	called				

13	The epidemic model in which infectious period is very small and the infection spreads only among family members is called	Simple epidemic model	Carrier model	Chain Binomial model	General epidemic model
14	Green Wood model is an example of	General epidemic model	Chain Binomial model	Simple epidemic model	Carrier model
15	Reed Frost model is an example of	Carrier model	General epidemic model	Simple epidemic model	Chain Binomial model
16	Number of chains in a household of size 2 with single introduction is	1	2	3	4
17	Number of chains in a household of size 3 with single introduction is	2	3	4	1
18	Number of chains in a household of size 3 with double introduction is	2	1	3	5
19	Number of chains in a household of size 4 with single introduction is	8	4	6	3
20	Number of chains in a household of size 4 with double introduction is	2	3	1	4
21	Number of chains in a household of size 4 with triple introduction is	1	2	5	4
22	Reed Frost probability of chain is given by	$r_t Cs_t (1 - q^{s_t})^{s_t}$ (q^{s_t}) r_t	$r_t C_{s_{t+1}} (1 - q^{s_t})^{s_{t+1}}$	$r_t Cs_{t+1} (1 - q^{s_t})^{s_t}$ (q^{s_t}) r_{t+1}	r _t Cs _{t +1} (1 - q st) ^{st+1} (q st) ^r t

			$(q^{s_t})^{r_{t+1}}$		
23	Green Wood probability of chain is given by	$r_{t+1}Cs_{t+1}p^{s_{t+1}}$ $q^{r_{t-s_{t+1}}}$	$r_t Cs_{t+1} p^{s_t}$ $q^{rt-st+1}$	$r_t Cs_{t+1} p^{s_t}$ $q^{rt-st+1}$	$r_{t+1}Cs_{t+1}p^{st}$ q^{rt}
24	Clinical Trials are conducted on	Animals	Humans	Both humans and animals	Insects
25	Total number of phases of clinical trials is	One	Four	Three	Two
26	The first phase of Clinical trials is carried on	Healthy volunteers	Patients	Both Healthy persons and patients	Healthy animals
27	In the first phase of Clinical trials, drugs are tested for	Efficacy	Safety	Potency	All three
28	Full form of MTD is	Minimum Treatable dose	Minimum Tolerated Dose	Maximum Tolerated dose	Maximum Treatable dose
29	Technique of performing a given experiment in a controlled environment is called	In vivo	In vitro	In voice	In visage
30	Technique of performing a given experiment inside an organism is called	In vivo	In vitro	In voice	In visage
31	Highest dose of a drug that can be tolerated with an acceptable or manageable level of toxicity is called	Minimum Treatable dose	Minimum Tolerated Dose	Maximum Tolerated dose	Maximum Treatable dose
32	Pharmakinetics is study of	What drugs are safe for the body	What the body does to the drug	What the drug does to the body	What both body and drug do to each other
33	Pharmacodynamics is study of	What drugs are safe for the body	What the body does to the drug	What the drug does to the body	What both body and drug do to each other

34	A document that describes the objectives, design, methodology, statistical	Periodical	Prognosis	Paper	Protocol
	clinical trial is called				
35	A document for collecting and recording patient information is called	Case record form	Case report form	Case recap form	Case return form
36	A pill indistinguishable from the active treatment but containing no active substance is	The perfect pill	The proper pill	The placebo pill	The chemical pill
37	Unblinded trial is also called	Open Label trial	Open window trial	Open door trial	Open access trial
38	A study in which a subject is randomly assigned to a treatment group and sticks with that treatment for the remainder of the trial is called	Cross over design	Random group design	Fixed group design	Parallel design
39	A study in which a subject receives a sequence of different treatments is called	Cross over design	Random group design	Fixed group design	Parallel design
40	Trials designed to demonstrate one treatment is more effective than another are called	Non Inferiority trials	Superiority trials	Equivalence trials	Non superiority trials
41	Trials designed to demonstrate one treatment is at least not appreciably worse than another are called	Non Inferiority trials	Superiority trials	Equivalence trials	Non superiority trials
42	Trials designed to demonstrate one treatment is as effective as another are called	Non Inferiority trials	Superiority trials	Equivalence trials	Non superiority trials

43	The medical and social	In – Out	Inclusion –	For – Against	Pro – Anti Criteria
_	standards determining	criteria	Exclusion	criteria	
	whether a person may or may		criteria		
	not be allowed to enter a				
	clinical trial are called				
44	The comparison of a generic	Bioequivalenc	Biosimilarity	Biosynthesis	Biochemistry
	drug and a branded drug with	е			
	respect to its strength and				
	efficacy is called				
45	Body processes of Absorption,	Pharma	Pharmacokine	Pharmacy	Pharmalogy
	Distribution, Metabolism,	dynamics	tics		
	Excretion are called as				
46	AUC,	Pharmacokine	Pharma	Pharma	Pharmacology
	AUC(0 - ∞), Cmax and Tmax	tic parameters	dynamic	parameters	parameters
	are called		parameters		
47	Full form of AUC is	Area under	Area under	Ares under the	Area under the
		the carrier	the cage	cup	curve
48	Elimination phase begins	At <u>Cmax</u>	Before Cmax	After <i>Cmax</i>	At <i>tmax</i>
49	AUC(0 - ∞) means	Presence of	Absence of	Presence of	Absence of drug
		drug in system	drug in system	drug in system	in system for for
		for a very long	for a very long	for a very short	a very short time
		time	time	time	
50	For calculation of <i>Kel</i> , the	Three or less	At least three	Two or more	At least one
	number of concentration		non zero		
	values must be				
51	Bioavailability studies are	Healthy as	Non human	patients	Healthy
	often conducted with	well as	volunteers		volunteers
		unhealthy			
		volunteers			
52	The two formulations	Test and	Test and	Total and	Test and readied
	compared in bioequivalence	Reference	Refereed	referred	
	are				

53	For drugs having long half life,	Cross Over	Parallel design	Two way design	Three way design
	design recommended is	design			
54	Parallel design is	Special drugs	drugs having	For drugs having	Standard drugs
	recommended for		long half life	short life	
55	The extent of a drug that	Bioavailability	Biopresence	Bioaccess	Biocare
	reaches the systemic				
	circulation and is available at				
	the site of action is called				
56	Retrospective studies employ	Odd's ratio	Relative risk	Related risk	Even Ratio
57	' Ethics' play an important role	Laboratory	Animal	Clinical trials	Study trials
_	in	experiments	Experiments		
58	Drug under study is compared	Phase III of	Phase I of	Phase II of	Phase IV of
	with currently available	clinical trials	clinical trials	clinical trials	clinical trials
	standard treatments in				
59	Phase IV of the clinical trials is	After	Before	At the time of	At the time of
	conducted	marketing the	marketing the	marketing the	licencing
		drug	drug	drug	
60	In Clinical trials, technique	Covering	Hiding	Masking	Blinding
	used to prevent bias is called				
61	Bioassay is an experiment	Reactions of a	Reactions of a	Readinessof a	Reaction of a
	where estimates are based on	material or	material or	material or	material or
		process after	process before	process after	process after
		their	their	their application	their application
		application to	application to		to non living
		living matter	living matter		objects
62	If response is measurable, the	Qualitative	Quantitative	Quotable	Questionable
	assay is said to be				
63	If response is observable, the	Qualitative	Quantitative	Quotable	Questionable
	assay is said to be				
64	If response is fixed and the	Delayed	Indirect	Depicted	Direct
	dose is variable, the bioassay is				
	said to be				

65	If dose is fixed and the response is variable, the	Delayed	Indirect	Decided	Direct
66	In Bioassay, a substance or process applied to living matter is called	Subject	Stimulus	Dose	Response
67	In Bioassay, the living being to which stimulus is applied is called	Subject	Patient	Volunteer	Responder
68	In Bioassay, the size or quantity of the stimulus is called	Amount	Measure	Dose	Prescription
69	In Bioassay, the reaction to the stimulus is called	Answer	Reply	Response	Giveback
70	The preparation which is recognized universally with respect to its potency is called	Specific preparation	Special preparation	Test preparation	Standard preparation
71	The preparation compared with standard preparation is called	Test preparation	Check preparation	Result preparation	Response preparation
72	In usual notations, relative potency is given by	$P = \frac{z_s}{z_t}$	$P = \frac{z_t}{z_s}$	$P = \frac{2z_s}{z_t}$	$P = \frac{4z_s}{z_t}$
73	In Bioassay, the theorem used in estimating relative potency is	Fieller's Theorem	Legrange's theorem	Fischer's theorem	Pascal's theorem
74	If lines representing test and standard preparations are having same slope, we have	Double line Assay	Perfect line Assay	Parallel line Assay	Same slope Assay
75	If lines representing test and standard preparations are having same y - intercept, we have	Parallel line Assay	Slope Ratio Assay	Slope turn Assay	Perfect line Assay

76	In Indirect assays, the assumption of monotonicity	If Zs < Z _t then	If Zs < Z _t then	If Zs < Z _t then	If Zs < Z _t then
	means	f(Zs) < f(Zt)	$f(Zs) > f(Z_t)$	$f(Zs) = f(Z_t)$	$f(Zs) / f(Z_t) = 1$
77	In Indirect assays, the	Doses are	Responses are	Subjects are	Preparations are
	assumption of similarity means	same	same	same	same
78	For parallel line Assay, Dose				
	metameter is	$X = \log z^2$	X = log z/2	$X = \log z^3$	X = log z/10
79	For Slope Ratio Assay, Dose				
	metameter is	$Xs = Zs^{\lambda+1}$	$Xs = Zs^{\lambda/2}$	$Xs = Zs^{\lambda - 1}$	$Xs = Zs^{\lambda}$
80	If 2 doses produce the same	Equal	Equivalent	Similar	Exact
	response, they are said to be				
81	In Simple epidemic model, Number of susceptibles at time is given by	$\frac{n(n+1)}{e^{(n+1)\tau}+n}$	$\frac{n(n+1)}{e^{(n+1)\tau}-n}$	$\frac{n(n-1)}{e^{(n+1)\tau}+n}$	$\frac{n(n+2)}{e^{(n+1)\tau}+n}$
82	In Simple epidemic model, Number of infectives at time is given by	$\frac{(n+1)e^{(n+1)\tau}}{e^{(n+1)\tau}+n}$	$\frac{(n)e^{(n+1)\tau}}{e^{(n+1)\tau}+n}$	$\frac{2(n+1)e^{(n+1)\tau}}{e^{(n+1)\tau}+n}$	$\frac{(n+1)e^{(n+1)\tau}}{e^{(n+1)\tau} - n}$

Question Bank

<u>Sem V (ATKT)</u>

Paper IV (Code – USST504A)

Sr.	Questions	Option 1	Option 2	Option 3	Option 4
No.					
1	is a logical	Beside	height	Xlab	main
	argument given while				
	plotting bar diagram.				
2	Use to explicitly	is.variabletype()	as.variabletype()	is.character()	as.character()
	covert the type of data.				
3	The variable whose value is to	Independent	Dependent	Explanatory	Input variable
	be predicted or estimated	variable	variable	variable	
	from the known values of				
	other variable is called				
4	A regression model or an	Parameter	Independent	Dependent	Input variable
	regression equation is said to		variable	variable	
	be linear it is linear in				
5	How many independent	0	1	2	More than 2
	variables does the simple				
	linear regression model				
	contain?				
6	The point where the	Slope	Regression point	Y-point	Intercept
	regression line touches the Y-				
	axis is called				
7	tells us how much Y	Intercept	Correlation	Slope	Estimator
	would increase, for every unit				
	increase in X.				

8	generate consecutive	Sequence	C function	Matrix function	Sort function
	numbers.	operator			
9	can have any number	C function	Array function	Sequence	Sequence Operator
	of dimensions.				
10	For simple linear Regression	S_{xy}	σ^2	σ^2	S_{xy}
	model, $V(\widehat{\beta_1})$ =		$\overline{S_{XX}}$	$\overline{S_{yy}}$	$\overline{S_{xx}}$
11	Which of the following is	\rightarrow	÷	=	<<-
	right assignment.				
12	The function used to know the	Which	What	Where	Why
	index of the element.				
13	The function used to obtain	variance()	deviation()	Var()	Variability()
	the variance of the data.				
14	Identify the data type of the	Numeric	Complex	Logical	Integer
	following example "TRUE" and				
	"FALSE".				
15	Coefficient of determination is	Non-decreasing	Non-increasing	Constant	Scatter
	function of number of				
	regressor.				
16	$Cov(\underline{X})$ is always matrix.	Asymmetric	Diagonal	Symmetric	Lower triangular
17	Which test is used for	Breusch-Pagan	Pairwise	Durbin-Watson	VIF
	detection of autocorrelation.	Godfrey test	correlation	test	
18	If correlation between two	Homoscedasticity	Heteroscedasticity	Autocorrelation	Multicollinearity
	explanatory variables is very				
	nign (> 0.8) then is				
10	present.	2	2	4	
19	$A = \begin{bmatrix} 5 & 2 & 5 \\ 4 & 2 \end{bmatrix}$ What is rank of	3	2		0
	this matrix.				
20	If r= 0.7 and n=8 then	1.83711	1.73711	0.83711	0.73711
	calculate test statistics for				
	Spearman's rank correlation.				

21	If column vector of designed matrix is approximated linearly dependent then such matrix is called matrix.	diagonal	ill	poor	bad
22	The residuals (error) follow distribution.	Normal	Standard normal	Binomial	Poisson
23	For simple linear regression model $\hat{\sigma}^2$ =	$\frac{SSE}{n-2}$	$\frac{SSE}{n-1}$	$\frac{SST}{n-1}$	$\frac{SST}{n-2}$
24	The fitted regression line always passes through	$(\overline{x}, \overline{y})$	(x_i, y_i)	origin	$(\Sigma x_i, \Sigma y_i)$
25	function eliminates duplicate elements.	sort()	scan()	unique()	round()
26	R software environment for: (A) Statistical analysis (B) Graphics presentation	Only A	Only B	Both A and B	Neither A nor B
27	The command window appearing on starting R is called as	Text editor	Console	Graphics	Environment/History
28	allow you to save your program for later use	Console	Graphics	Text editors	Environment/History
29	If a command remains incomplete at the end of line R will show you a different symbol	{}	#	[]	+
30	will search all sources of documentation and return those that match the search string	?help	?help.search	?help	help
31	Use the function to load the packages stored in a library for use.	Packages()	library()	demo()	example()

32	seeks to find linear combination of predictor that capture maximum possible variance.	scaling	imputing	principle component analysis	combining
33	(A)Centering and scaling (B) Principle component analysis		ОШУВ	Only A and B	Neither A hor B
34	In regression analysis the variable whose value is predicted is called as	Regressor	Independent variable	Response	Control
35	Which of the following is NOT true in case of simple linear regression model?(A) The error terms ε_i and ε_j are uncorrelated (B) Variance of error term is known	Only A	Only B	Both A and B	Neither A nor B
36	Ordinary least square estimators of the parameters are (A) Efficient (B) Unbiased	Only A	Only B	Both A and B	Neither A nor B
37	The method of removing tuple is used to deal with missing values when (A) Missingness is related to predictor (B) Data set is large enough	Only A	Only B	Both A and B	Neither A nor B

38	 Which of the following is true in case of simple linear regression model? (A)The parameters of model are called as regression coefficients (B) The error component represents difference between true and observed value of Y 	Only A	Only B	Both A and B	Neither A nor B
39	A linear regression model which involves more than one variable is called as MLR model.	Dependent	Regressor	Response	Estimate
40	Following which model is MLR?	$Y = \beta_0 + \beta_1 X + \varepsilon$	$ \begin{array}{l} Y=\\ \beta_0+\beta_1X+\beta_2X^2+\\ \varepsilon \end{array} $	$ \begin{array}{c} Y = \\ \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \\ \varepsilon \end{array} $	$Y = \beta_0 + \varepsilon$
41	What is the value of the test	MESS MRSS	MESS MTSS	MRSS MESS	M Reg ss
42	If $H_0: \beta_1 = \beta_2 = \beta_3$ which meant	Regression coefficient are statistically significant	Regression coefficient are not statistically	At least one coefficient is statistically significant	Exactly two coefficient are not statistically significant
43	In Y= X β + ε , X is called.	Parameter matrix	Response matrix	Design matrix	Disturbance matrix
44	In MLR suppose 3 regression coefficient are used then what is degree of freedom for residual.	n-1	n-3	n-4	2
45	To check validity of the basic regression assumption we used analysis.	Principle	Cluster	Residual	Canonical
46	Define Residual <i>e_i</i> = (i=1,2,,n)	$Y_i - \bar{Y}$	$\overline{Y} - \widehat{Y}_l$	$Y_i - \overline{Y}_i$	$Y_i - \widehat{Y}_i$

47	Which method is used for stating residuals	Studentised	Normal	Forward	Backward
48	Standardized residual $(d_i) =$ (i=1,2,,n)	$\frac{e_i}{\sqrt{MRSS}}$	$\frac{e_i}{\sqrt{M \ Reg \ SS}}$	$\frac{e_i}{MRSS}$	e _i M Reg SS
49	In studentised residuals $e_i =$	Ι <u>Υ</u>	H <u>Y</u>	(І-Н) <u>Ү</u>	(I + H) <u>Y</u>
	(Where H is hat matrix)				
50	If value of ρ = 0.34569 then calculate Durbin-Watson test statistic	0.65431	0.426944	0.30862	1.30862
51	The operator assigns value to a variable. (A) = (B) ≤	Only A	Only B	Both A and B	Neither A nor B
52	specifies whether matrix values are filled row wise or column wise.	n row	n col	by row	data
53	Select the correct syntax to get the output as 111222333	>rep(1:3, times=3)	>rep(1:3, each=3)	>rep(1:3, 3)	>rep(1,3, each=3)
54	The command given to displays observations except 3 rd and 4 th values in vector X. (i) >X[C(3,4)] (ii) >X[C(-3, -4)]	Only (i)	Only (ii)	Both (i) and (ii)	Neither (i) nor (ii)
55	Select the appropriate function used for multiplication of two matrices A and B.	A*B	А% В	A%*%B	A\$B
56	A is a special type of object that can contain multiple types of data.	Matrix	List	Vector	Data frame
57	A vector of levels is called a	Factor	Array	List	Data frame

58	The most efficient base to identify outliers maybe	Scatter plot	polygon	Multiple bar diagram	Frequency curve
59	In data pre-processing instead of removing outlier an alternative way is to the data.	Reduce	Transform	Clean	Combining
60	Regression analysis is statistical technique for the relationship between two or more variable.	Modelling	Identifying	Predicting	Estimating
61	The variable used for prediction is called as	Response variable	Dependent variable	Independent variable	Outcome variable
62	Linear Regression Model with is called as simple linear regression model.	One explanatory variable	More than one explanatory variable	More than one regressor	One parameter
63	Random error ε_i 's are normally distributed random variables with parameters	(0, 1)	(μ, σ ²)	(0, σ ²)	(μ,0)
64	The ordinary least square estimators of (β_0 , β_1) are the combinations of Y.	Linear	Non-linear	Quadratic	Parabolic
65	$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 =$	Regression SS	Block SS	Total SS	Error SS
66	What is coefficient of determination in MLR?	TSS ESS	ESS TSS	Reg SS TSS	TSS Reg SS
67	If $E(\underline{X}) = \mu_{P X 1}$ and $cov(\underline{X}) = \Sigma_{P X P}$ then $cov(\underline{AX}) = ____$	Α΄ΣΑ	$A'\Sigma^{-1}A$	$A\Sigma^{-1}A'$	ΑΣΑ'

68	If $E(u_i)=0$ and $V(u_i) = \sigma^2$ (for all i=1,2,,n) then there is between all $u_i's$	Autocorrelation	No autocorrelation	Multicollinearity	No Multicollinearity
69	is an unbiased estimator of σ^2	Residual	Regressor	Mean square of residual	Mean square of regressor
70	If Residual SS = 349.51 and TSS = 1078.67 then calculate coefficient of determination.	0.3240	0.6759	0.4240	0.4759
71	If H is hat matrix then (I-H) is	Only idempotent	Only symmetric	Idempotent and symmetric	Neither idempotent nor symmetric
72	Correlation between member of series of observation ordered in time is called	Partial correlation	Autocorrelation	Homoscedasticity	Multicollinearity
73	What is the value of disturbance term (U_t) in 1^{st} order autoregressive scheme	$Y_t = \rho V_{t-1} + U_t$	$U_{t+1} = U_t - V_t$	$V_{t+1} = V_t - U_t$	$U_t = \rho U_{t-1} + V_t$
74	If variance (Y/X) is not same for all explanatory variable then it is called	Homoscedasticity	Heteroscedasticity	Autocorrelation	Multicollinearity
75	If heteroscedasticity is present, which estimator we used?	GLS	OLS	WLS	Unbiased