Question Bank

<u>Sem VI</u>

Paper II (Code: USST 602)

Sr.					
No.	Question	Option 1	Option 2	Option 3	Option 4
	For a particular hypothesis test, α =0.05,				
1	and β =0.10. The power of this test is:	0.15	0.9	0.85	0.95
	The totality of all observations of a				
	statistical experiment or enquire is known				
2	as	population	sample	parameter	statistic
	Any statistical measure computed from				
3	population data is known as	population	sample	parameter	statistic
	If the hypothesis specifies the distribution	simple	composite		
4	completely then it is known as	hypothesis	hypothesis	null hypothesis	Alternate hypothesis
		Acceptance			
5	Rejection region is also known as	region	Type I error	Type II error	None of the above
	Probability of arriving at the correct				
6	decision is known as	Type I error	Type II error	Critical region	nower
Ū		Typerener		Chinear region	
7	The corresponding critical region while		Best Critical	Uniformly best	
1	obtaining Most powerful test is known as	Critical region	region	critical region	All of the above
	A part of the population selected for the				
8	study is called as	population	sample	parameter	statistic

	Any statistical measure computed from				
9	sample data is known as	population	sample	parameter	statistic
	If the hypothesis does not specify the	simple	composite		
10	distribution completely then it is known as	hypothesis	hypothesis	null hypothesis	Alternate hypothesis
11	If we reject H0 when H0 is true then it is	Type I error	Type II error	Size of the test	power
12	Statistical inference consists of	Estimation theory	power	Non parametric test	None of the above
13	The negation of null hypothesis is known as	simple hypothesis	composite hypothesis	null hypothesis	Alternate hypothesis
14	Critical Region is also known as	Rejection Region	Acceptance region	Alternate hypothesis	None of the above
15	If we accept H0 when H1 is true the it is	Type I error	Type II error	Size of the test	power

			~ .		
1.6	The maximum value of probability of type	Level of	Composite		
16	l error 1s called as	significance	hypothesis	Critical region	power
	For a certain coin we want to test whether				
	H0:p=1/2 vs $H1:p=1/3$ can be retained				
	where p is the probability of getting head				
	in a single toss of a coin to decide this				
	coin is tossed four times and H0 is				
17	rejected if number of heads observed is 0	0 4074	0.2125	0.27	Nous of the stress
1 /	or 1.obtain type 1 error	0.4074	0.3125	0.37	None of the above
	A random variable x follows uniform distribution even range $(0, 0)$ $U(0)=1.5$ va				
	1110-25 is tosted based on single				
	charged based on single				
18	region $x > 0.8$	0.3200	0.8000	0.4667	None of the above
10		0.3200	0.8000	0.4007	
		Uniformly			
10	If the most powerful test is same for all	most powerful	Most Powerful	Either of option 1	
19	the hypothesis then it is:	test	test	and option 2	None of the above
				Maximum	
		Bayes'	Moments	likelihood	
20	LRT is related to	estimates	estimates	estimates	All of the above
		Composite	Simple null		
		null hypothesis	hypothesis	composite null	
		against	against	hypothesis	Simple null
		composite	composite	against simple	hypothesis against
		alternate	alternate	alternate	simple alternate
21	LRT is same as NP lemma for testing	hypothesis	hypothesis	hypothesis	hypothesis

22	LRT is Not necessarily UMP test	TRUE	FALSE	Under certain conditions it may be either true or false	None of the above
23	The sample size is fixed in SPRT	TRUE	FALSE	Under certain conditions it may be either true or false	None of the above
24	test do not required assumption about parameter of population.	parametric	Non-parametric	Statistical	Probabilistic
25	If the data do not follow normal distribution then we go for	Non- parametric test	parametric test	t test	median test
26	The decision criteria in SPRT depend on the functions of	Type I error	Type II error	Both Type I error and Type II errors	neither Type I error nor Type II error
27	In SPRT 'n', the sample size is regarded as	Fixed constant	Random variable	It changes as per assumptions	Incomplete information provided
28	Probability of terminating SPRT is	zero	finite	infinity	one

20	Le SDDT : flee $D \leq \nabla T \leq lee D$		Continue	Deiest He	Incomplete
29	III SPRT II log $\mathbf{B} \ge 2$ $\mathbf{ZI} \ge \log \mathbf{B}$	Ассері по	sampling	Кејест по	information provided
	If $I(\Theta)$ is operating characteristic function				
30	of $K(\Theta)$ is power function then	$L(\Theta) = K(\Theta)$	$L(\Theta)=1+K(\Theta)$	$L(\Theta)=1+2K(\Theta)$	$L(\Theta)=1-K(\Theta)$
	The corresponding critical region while				
	obtaining Uniformly Most powerful test is		Best Critical	Uniformly best	
31	known as	Critical region	region	critical region	All of the above
	If the most powerful test is not same for			Under certain	
	all the hypothesis then we conclude that			conditions it may	
32	uniformly most powerful test does not	TRUE	FAISE	be either true or	None of the above
52		TROL	TALSE		
				conditions it may	
				be either true or	
33	The sample size is not fixed in SPRT	TRUE	FALSE	false	None of the above
		0 111		Both option 1 and	
34	Critical region is generally	One sided	two sided	option 2	None of the above
		there is enough	there is not		
		evidence to	enough	there is enough	the test is statistically
		infer that the	statistical	statistical	insignificant at
		alternative	evidence to	evidence to infer	whatever level of
	If we reject the null hypothesis, we	hypothesis is	infer that the	that the null	significance the test
35	conclude that:	true	alternative	hypothesis is true	was conducted at

			hypothesis is		
			true		
	Non nonometric distribution and	fuer from	damandam	independent of	
36	Non-parametric distribution are	distribution	distribution	narameter	depend of parameter
50	··	distribution	distribution	parameter	depend of parameter
				consistent under	
		Always		certain	
37	LRT is	consistent	Never consistent	assumptions	None of the above
	In Neyman pearson theory of testing of				
	hypothesis n the sample size is regarded		Random	It changes as per	Incomplete
38	as	Fixed constant	variable	assumptions	information provided
20		size of type I			number of
39	The area of critical region depends on the	error	size type II error	Value of statistic	observations
		Aggregated	A 1	A	A '1 1 1
40	Full form of 'ASN' with respect to SPR1	sample	Average sample	Asymptotic	Avoided sample
40	15	number	number	sample number	number
			Continuo		
41	In SPRT if Σ Zi > log A	Accept Ho	sampling	Reject Ho	None of the above

$\beta/(1+\alpha)$
$p/(1+\alpha)$
None of the above
None of the above
Cross tailed
None of the above
1.
median
Powerful test
-

10	The test corresponding to uniformly best	Most powerful		Uniformly most	Locally most
49	critical region is known as	test	Powerful test	powerful test	powerful test
50	LRT principle states that, reject Ho if and only if (where $\lambda 0$ is some number and λ is Likelihood ratio)	0<λ0<λ	λ<0<λ0	λ0<0<λ	0<λ<λ0
51	In SPRT both ' α ' and ' β ' are	Fixed constant	Random variable	It changes as per assumptions	Incomplete information provided
52	α' and ' β' are respectively	Type I error and Type II error	Type II error and Type I error	Probability of committing Type I and Type II error respectively	Probability of committing Type II and Type I error
53	In SPRT if $\Sigma Zi \leq \log B$	Accept Ho	Continue sampling	Reject Ho	Incomplete information provided
54	Under SPRT criteria the value of constant A is given by	β/(1-α)	(1-β)/α	β/α	β/(1+α)
55	While using Neyman pearson theory of hypothesis	α' and 'β' both are fixed constant	'α' is fixed and we minimise 'β'	α' and ' β' both are random variable	β' is fixed and we minimise 'α'

	In one sample sign test, sample is drawn				
56	from population with unknown	mean	median	mode	scale
57	In one sample sign test, if sample size is sufficiently large, then we can use	chi square distribution	normal approximation	t distribution	F distribution
58	In one sample wilcoxon sign rank test, the scale of measurement is at least	Ordinary scale	Nominal scale	Interval scale	Ratio scale
59	The data in the Run test can be classify in type	mutually exhaustive	consistency	equally likely	mutually exclusive
60	Friedman test analysis of data is meant for	one way classification	two way classification	non classified data	three way classification
61	In one sample wilcoxon sign rank test, the population from which sample is taken is	asymmetric	unique	symmetric	sequential
01	··	asymmetric	unique	Symmetric	sequentiai
62	Run test for testing of a sample.	sequence	uniqueness	type	randomness

	In Two sample sign test, measurement				
63	scale is at least	Nominal	Ordinal	Ratio	Interval
	In Two sample wilcoxon sign rank test,				
64	H0 :MX= My V/s H1 :MX < My then Reject H0 if	W <= d	W+ <= d	W- <= d	W->= d
	In median test, if the two population have				
	same median then each population				
65	probability P is same that an observed	10000	agual ta	avaaad	not ogual
0.5	value the grand median.	lesser	equal to	exceed	
	If n1 and n2 are very small it will be				
	always appropriate to use test procedure	chi square	Hypergeometric		
66	based on	distribution	distribution	t distribution	F distribution
	asymptotic chi-square distribution.				
67	(Where λ is likelihood ratio)	2logλ	- 2logλ	logλ	- logλ
68	on	Ordinary scale	Ratio scale	Nominal scale	Interval scale
	In one sample sign test, $H0 : M = M0 v/s$				
69	HI: M > M0 then Reject H0 iff	r + <= r0	r - <= r0	$r \leq r0$	r - <= r0

	In Two sample sign test, pairs of				
70	observations are	similar	unique	dependent	independent
	In Two sample sign test, calculating di, if				
71	that pair	Negative	Fraction value	Zero	One
/1					
	In Two sample wilcoxon sign rank test				
	the probability distribution d is symmetric				
72	about	median	mean	mode	independent
	Kruskal Wallis test with k treatments and				
	n blocks which is approximated to chi-				
73	square has d.f. is	(n-1)	(k-1)(n-1)	(k-1)	k(n-1)
	If tie observation are present in the				
	Kruskal Wallis example which are handle				
74	by method.	mid-range	mid-rank	median	parametric
	A random variable x follows uniform	0.3200	0.8000	0.4667	None of the above
	distribution over range $(0,\theta)$.H0: θ =1.5 vs				
	H1: θ =2.5 is tested based on single				
	observation x. Find type II error for				
75	critical region $x \ge 0.8$				

Question Bank

<u>Sem VI</u>

Paper IV (Code: USST 604A)

Sr.No.	Questions	Option 1	Option 2	Option 3	Option 4
1	$\frac{l_x - l_{x+1}}{l_x} =$	nP _x	q _x	nq _x	P _x
2	l_x gives the number of person living out of the l_0 person. It is non-increasing function of x, i.e. l_x is \l_{x+1} .	Less than	greater than	less than or equal to	greater than or equal to
3	Life table is used in the	Number of deaths	number of births	period of selection	measurement of population growth
4	The ratio of number of deaths in age group x to (x+1) to total number of	Force of mortality	stationary population	central death rate	complete expectation

	person in the age group x to				
	(x + 1) is				
5	What is the relationship between $e_x \& e_x^\circ$.	$e_x^\circ = 1 + e_x$	$e_x^\circ = \frac{1}{2} + e_x$	$e_x^\circ = 1 - e_x$	$e_x = \frac{1}{2} - e_x$
6	If $q_{90} = \frac{1}{3}$, $q_{91} = \frac{2}{5}$, $l_{90} = 3000$, then what is the value of $d_{90} = ?$	800	1000	2000	1200
7	$l_{\circ}e^{-\int_{\circ}^{x} \mu_{t}dt} = \underline{\qquad}$	q _x	P _x	. l _x	d_x
8	$\frac{a_{6n}}{a_{6n}} = ?$	$l + v^{3n}$	$. l - v^{3n}$	$l-(v^{3n})^2$	$l + (v^{3n})^2$
9	The population is closed for migration and the deaths are spread over the year uniformly is called as	Force of mortality	stationary population	curtate expectation	complete expectation

10	$\frac{e^x}{e_{x+1}+1} = ?$	e_{χ}°	. <i>P_x</i>	q_x	nP_x
11	Which is the incorrect expression?	$\mu_x = \frac{-1}{l_x} \frac{d}{d_x} l_x$	$q_x = \int_0^1 \mu_{x+t} \cdot t P_x dt$	$l_x = \int_0^\infty \mu_{x+t} l_{x+t} dt$	$d_x = \int_0^\infty t P_x \cdot \mu_{x+t} dt$
12	L_x is denotes total number of individuals surviving between age group x to x + 1. Then what is he value of L_x ?	$\sum_{i=0}^{\infty} L_{x+i}$	$l_{x+\frac{1}{2}}$	$\frac{T_x}{l_x}$	$\frac{1}{2} + T_x$
13	$P_x.P_{x+2}P_{x+n-1} = ?$	nP_x	q_x	P_{x}	${}_{\mathrm{n}}q_{\chi}$
14	${}_{n}q_{x}$ denotes probability that a person aged x dies within next 'n' years. Then what is the expression for ${}_{n}q_{x}$?	$\frac{l_x + l_{x+1} + \dots + l_{x+n-1}}{l_x}$	$\frac{d_x + d_{x+1} + \dots + d_{x+n-1}}{l_x}$	$\frac{T_x}{l_x}$	$\cdot \frac{l_x + l_{x+1}}{2}$

15		0.03125	0.0662	0.1295	0.9970
	Find μ_{84} exactly.				

	$(l_x = 100\sqrt{100 - x})$				
16	Person A the age is 40. Find the probability person A dies between age 65 & 70. (Given: $l_{65} = 717436$, $l_{70} = 591285$, $l_{40} =$ 963206)	0.9130	0.1301	0.022	0.7821
17	The number of persons out of l_x persons who will completed age x but die reaching age $(x + 1)$. Then what is d_x ?	$l_{x+1} - l_x$	$\frac{l_x + l_{x+1}}{2}$	$l_x - l_{x+1}$	$\frac{1-l_x}{l_x}$
18	Which is the incorrect assumption of life table?	Radix or cohort is open for immigration & migration	Deaths are assumed to be uniformly disturbed in the interval x to $x + n$.	Deaths occur in a fixed pattern.	Radix are originated from standard no. of birth

19	$\mu_x = bC^x$ is known as	Makeham's law of	force of mortality	Makeham's second law of	Gompertz law of
	~	mortality		mortality	mortality
	·				
20	$e_x^0 = \frac{T_x}{l}$ then $\frac{de_x^0}{d} = ?$	$-d_x$	e_x	$1 + e_x^0$	$-1+\mu_x e_x^0$
	l_{χ} u_{χ}				

21	A life is subject to a	0.4512	0.6703	0.109	0.2312
	constant force of				
	mortality of 0.04. Find				
	the probability that it will				
	live for 10 years.				
 			-		
22	is donated	$m nq_x$	$m q_x$	nq_x	$m nP_x$
	probability that person				
	of age 'x' survive for 'm'				
	more year & dies within				
	next 'n' years.				
 				· · ·	
23	<i>l</i> ∘ persons are born at	Complete expectation	survivors	cohort	births
	the same time having				

	age 'O'. Such hypothetical group of persons is known as 				
24	It gives total number of years lived by <i>lx</i> individual beyond age <i>x</i>	L _x	T _x	l_x	P _x
25	If 't' is allowed tend to zero. The limiting value of nominal annual rate of mortality is called as	central death rate	stationary population	force of mortality	period of selection
26	It is probability that person dies in the age group $x + m$ to $x + m +$ 1. Therefore what is the expression for $m q_x=?$	$mP_x - m + nP_x$	$P_x + 2P_x + \dots$	$mP_x \cdot nq_{x+m}$	$mP_x \\ \cdot q_{x+m}$

27	is called as curtate expectation of life.	e _x °	. e _x	T _x	L _x
28	Makeham's law of mortality formula is 	$L_x = K. S^x W^{x^2} g^{c^x}$	$l_x = K \cdot g^{c^x}$	$l_x = K \cdot S^x g^{c^x}$	$l_x = K \cdot W^{x^2}$
29	The table constructed without distinguishing the select & ultimate lives are called as 	Ultimate mortality table	Aggregate mortality table	period of selection	select mortality table
30	Find the probability that ${}_{5}p_{10.}$ $l_{15} = 0.2345,$ $l_{5} = 9.3214,$ $l_{10} = 9.48683$	0.235	0.8848	0.9056	0.97182

31	Control dooth rate	$\frac{2q_x}{2+x}$	$\frac{2m_x}{2+m}$	$\frac{2-m_x}{2+m}$	$\frac{2-q_x}{2-q_x}$
		$2 + q_{\chi}$	$Z + m_{\chi}$	$2 + m_{\chi}$	$2 + q_x$
	$(m_x) = \frac{\alpha_x}{L_x}$ hence what is				
	the value of $P_{\chi} = ?$				
32		0.8011	0.6061	0.9705	0.1120
	Expectation of life at age				
	60 & 61 is 17 & 16.5,				
	findP ₆₀ using appropriate				
	formula.				
33	$u_{x} = bC^{x}$ is known as	Makeham's law of	force of mortality	Makeham's second law of	Gompertz
		mortality	,	mortality	law of
	·				mortality
34	principle + Interest =	Amount	Interest Rate	Nominal Rate	Effective
					Rate
35	method the unpaid	compound interest	effective rate	Nominal Rate	simple
	interest does not earn				interest
	periods.				
36	Accumulated value is	Past value	Present value	Future value	Simple
	referred as				Value
37	Obtain effective rate of	2 42%	8 24%	10%	5 23%
57	interest p.a.	2.72/0	0.2470		5.2570

	corresponding to nominal rate of interest 8% p.a. payable quarterly				
38	Formula of rates of interest	(1+i)	$\frac{1}{(1+i)}$	(1 + i) (1 + i)	$\frac{(1+i)}{2}$
39	present value of Immediate perpetuity is	$\frac{1}{(1+i)}$	$\frac{1}{i}$	i	1+i
40	The extra payment made is called as	principle	Interest	Amount	Interest Rate
41	method the unpaid interest for a previous period is also earn interest in subsequent period.	simple interest	effective rate	compound interest	nominal rate
42	If Rs. 1 /- invested @ i per unit p.a. then its accumulated value at the end of 1 year =	(1+i)	(1+i)xi	$(1+i)^2$	$(1+i)^n$
43	Nominal rate of interest p.a. payable m times a year denoted by	i ^(m)	$\frac{i^{(m)}}{m}$	mi ^(m)	mi
44	If payments of annuity are made for definite number of years	life annuity	immediate annuity	annuity certain	annuity due

	irrespective of any contingency like death is called as				
45	Accumulated value of Annuity due certain is 	$(1+i)^n$ -1	$\frac{(1+i)^n}{iv}$	$\frac{(1+i)}{iv}$	$\frac{(1+i)^n - 1}{iv}$
46	Obtain the present value of immediate annuity of 500 p.a. payable quarterly for 6 year rate of interest be 8% p.a.	5000	1500	2380	7352
47	The money required is borrowed from a bank or from a financial institute with a promise to return the same with extra payment after a specified period is called as	principle	Interest	Amount	Interest Rate
48	is defined as interest payable on 1 unit of capital for 1 unit of time period.	Nominal Rate	Interest Rate	Effective Rate	Varying Rate
49	If Rs. 10,000/- is invested for the period of 5 year	18501	17600	20320	16105

	at the rate of interest 10% per annum. Find Accumulated value?				
50	There is no loss no profit the value of payments to be made be equal to the value of benefits to be received is called as	Equation of values	Equality	Equal rates	similar values
51	Present value of Immediate Annuity certain is	$\frac{1-v^n}{i}$	1- <i>v</i> ⁿ	$(1+i)^n - 1$	$\frac{(1+i)^n - 1}{i}$
52	present value of perpetuity due is	iv	i+v	$\frac{1}{iv}$	$\frac{1}{i+v}$
53	Present Value of Deferred Temporary life annuity due is denoted by	t äx:nl	m äx	t ax:nl	(la)x
54	Relationship between ax and äx is	äx = ax	äx = 1 - ax	äx = ax(Dx)	äx = 1 + ax
55	What is the present value of Incresing Immediate Life Annuity (Ia)x in Dx form	Dx+1/Dx	(Dx+1 + Dx+2 +)/Dx	(Dx+ Dx+1 + Dx+2 +)/Dx	(Dx+1+ 2Dx+2 + 3Dx+3)/Dx
56	ax - n ax= ?	ax:nl	ах	(la)x	t ax:n1

57	The present value per Person (Nx- Nx+n)/Dx = ?	Increasing Temporary Life Annuity due	Life Annuity due	Temporary Life Annuity due	Temporary Life Annuity
58	How many persons will survive to receive nth payment of ₹ n in increasing temporary Immediate life annuity	I _{x+n-1}	I _X	I _{x+n+1}	I _{x+n}
59	Deferred temporary life annuity due denoted by	t ax:nl	t äx:nl	m äx	m ax
60	Immediate Life Annuity $(a_x) = ?$	$\frac{N_{x+m+1}}{Dx}$	$\frac{Nx}{Dx}$	$\frac{N_{x+m}}{Dx}$	$\frac{N_{x+1}}{Dx}$
61	Out of Ix persons all Ix persons will receive the first payment of 1 each to be made at present moment is	Life Annuity	Immediate life Annuity	Life Annuity Due	Temporary Life Annuity
62	$(I\ddot{a})x = \frac{S_x}{Dx}$	Deferred Life Annuity due	Increasing life Annuity due	Temporary Life Annuity due	Deferred temporary Life Annuity due
63	In Increasing immediate life Annuity, What is the	l _x	vlx	VIx+1	I _{x+1}

	Present value of first payment of ₹ 1.				
64	Relationship between äx:n1 and äx is	äx:nl = ax - n äx	äx:nl = äx - n äx	äx = 1+äx:nl	äx = ax:nl - äx:nl
65	In Increasing temporary life Annuity due, what is the present value of nth payment?	V ⁿ l _{x+n}	nV ⁿ l _{x+n}	nV ⁿ⁻¹ l _{x+n-1}	V ⁿ⁻¹ I _{x+n-1}
66	is an annuity in which the payments are received at regular interval of time so long as the person is alive.	Immediate life Annuity	Life Annuity Due	Life Annuity	Incresing Life Annuity
67	Commutation Function Nx is	Dx+1+2Dx+2+	$v^{x}l_{x}$	$\frac{S_x}{D_x}$	Dx+Dx+1+ Dx+2+
68	Which of the following option is true?	t äx:n1 = (Nx+t - Nx+t+n)/Dx	Dx+1 =V ^X I _X	Sx = Nx+1+ Nx+2 +	m ax = (Dx+m + Dx+m+1 +)/Dx
69	Show the relationship äx:n1 - ax:n1	1 - Ax:n]	a _x - _n a _x	Ax:nl	1 - ax
70	In Deferred Immediate life annuity, How many persons will survive to	I _{x+2}	I _x	I _{x+m+2}	I _{x+m+1}

	receive the second payment of 1.				
71	In Temporary life annuity, what is the total present value of the annuity payable to lx persons.	$VI_{x}+V^{2}I_{x+1}++V^{n}I_{x+n-1}$	V ^m I _{x+m} + V ^{m+1} I _{x+m+1} +to limiting age	$VI_{x+1} + V^2I_{x+2} + + V^nI_{x+n}$	$I_x + 2VI_{x+1} + 3V^2I_{x+2} +t$ o limiting age.
72	Life annuity, imstead of being of uniform amount, can also be of varying amount every year is called	Increasing life Annuity	Variable life Annuity	Deferred temporary Life Annuity	Temporary Life Annuity
73	What is the formula of deferred life Annuity Due?	Nx/Dx	Nx+m/Dx	(Nx+1 - Nx+n+1)/Dx	(Nx+m+1)/Dx
74	Temporary Life Annuity (äx:n1) = ?	(Nx- Nx+n)/Dx	(Nx+t- Nx+t+n)/Dx	$(S_{x+1} - nN_{x+n+1} - S_{x+n+1})/D_x$	(Nx+1 - Nx+n+1)/Dx
75	What is the present value of Incresing temporary life annuity due?	(Sx- nNx+n-Sx+n)/Dx	Nx+m/Dx	(Nx+m+1)/Dx	(Sx+1 - nNx+n+1- Sx+n+1)/ Dx

76	The Present value (Sx+1	t ax:n]	(Ia)x:n1	$a_{x:n}$	m ax	
	- nNx+n+1-					
	$S_{x+n+1})/D_x$ denoted by					
77	what is the name of the annuity which present value denoted byt ax:n1	Temporary Life Annuity	Increasing Temporary Life Annuity due	Deferred Temporary Life Annuity due	Deferred T immedia Ann	emporary ite Life uity
78	what is the present value of deferred temporary Immediate life annuity	$(N_{x+t+1} - N_{x+t+n+1})/D_x$	(Sx- nNx+n-Sx+n)/Dx	(Nx+t- Nx+t+n)/Dx	Nx+m/D x	
79	In Deferred temporary life annuity due, what is the present value of 1st payment of ₹ 1?	Vl _{x+1}	V^2l_{x+2}	V ^t l _{x+t}	$\frac{V^{t+1}l_{x^+t^+}}{\iota}$	
80	This type of assurance the assured benefits are payable to the family of the life assured as & when he dies. This is called	Temporary Assurance	Endowment Assurance	Pure Endowment assurance	Whole Life Assurance	
81	Assured benefits are payable on the death of the life assured provided the death occurs in a specified period of time.	Endowment Assurance	Whole Life Assurance	Term Assurance	Pure Endowme nt assurance	1

	This period is called as				
	·				
82	Assurance is a	Double Endowment	Increasing Temporary	Whole Life Assurance	Endowme
	combination of	Assurance	Assurance		nt
	Temporary Assurance &				Assurance
	Pure Endowment				
	Assurance.				
83	In Increasing Temporary	V ⁿ d _{x+n-1}	V ⁿ d _{x+n}	nV ⁿ d _{x+n-1}	nV ⁿ d _{x+n}
	Assurance, the present				
	value of death benefits				
	payable at the end of n				
	years will be				
84	The present value of	Mx + t - Mx + t + n	Rx - nMx + n - Rx + n	Rx	Dx + n
	Whole Life Assurance is	Dx	Dx	\overline{Dx}	Dx
	·				
85	Level annual premium	Dx + n	$\frac{Mx - Mx + n + Dx + n}{Mx - Mx + n + Dx + n}$	Mx - Mx + n + 2Dx + n	Mx - Mx -
	under Temporary	$\overline{Nx - Nx + n}$	Nx - Nx + n	Nx - Nx + n	$\overline{Nx - Nx}$
	Assurance is				
86	Whole life assurance	A _x	M _x	D _x	N _x
	denoted by				
87	In Temporary Assurance,	V ⁿ d _{x+n}	V ⁿ⁺¹ d _{x+n+1}	V ⁿ d _{x+n-1}	V ⁿ⁺¹ d _{x+n}
	What is the present				
	value of death benefits				

	payable at the end of n years?				
88	The present value of Pure Endowment Assurance is	$\frac{Mx}{Dx}$	$\frac{Mx - Mx + n + Dx + n}{Dx}$	$\frac{Dx+n}{Dx}$	$\frac{Rx}{Dx}$
89	The present value of Double Endowment Assurance is	$\frac{Mx - Mx + n + Dx + n}{Dx}$	$\frac{Rx - nMx + n - Rx + n}{Dx}$	$\frac{Rx}{Dx}$	$\frac{Mx - Mx + n + 1}{Dx} + \frac{Dx}{Dx}$
90	In assurance for the first few years(deferment period) no benefits of any kind are payable.	Increasing Temporary	Deferred Temporary Assurance	Increasing Whole Life Assurance	Double Endowme nt Assurance
91	In Deferred Whole Life Assurance of 1 on a life age, x years deferment period is years.	t	t+1	m+1	m
92	Present value of benefits is also called	Life annuity	Cost of assurance	Net premium	Select life table
93	What is the present value of Temporary Assurance?	$\frac{Dx+n}{Dx}$	$\frac{Mx - Mx + n}{Dx}$	$\frac{Mx}{Dx}$	$\frac{Mx - Mx}{x}$

94	In which assurance, there are no death benefits payable?	Pure Endowment assurance	Temporary Assurance	Endowment Assurance	Double Endowme nt Assurance
95	In Assurance if the life assured dies within the term of assurance, his family received the basic sum assured, or if the life assured surviving to the term of assurance he will receive double the basic sum assured.	Endowment Assurance	Increasing Temporary Assurance	Double Endowment Assurance	Increasing Whole Life Assurance
96	Increasing Whole Life Assurance is denoted by 	(IA) _x	t A _x	A _x	A _{x:n}]
97	Deferment period & assurance period are	Overlapping	Equal	Non-overlapping	Not equal
98	Whole life assurance premium payments limited to t years denoted by	tPx	Px	tPx:n1	Р

99	Level Annual Premium of double Endowment assurance is	(Mx - Mx+n+Dx+n)/(Nx- Nx+n)	(Mx - Mx+n+2Dx+n)/(Nx-Nx+n)	Rx/Nx	(Mx+m-Mx+m+n) $/(Nx-Nx+m+n)$
100	Level Annual Premium of Increasing whole life Assurance is	(Mx+m- Mx+m+n)/(Nx- Nx+m+n)	(Mx - Mx+n)/(Nx- Nx+t)	Rx/Nx	$\frac{Dx+n}{(N - x - Nx+n)}$
101	Level Annual Premium of deferred Temporary Assurance is	(Mx+m- Mx+m+n)/(Nx- Nx+m+n)	Mx/(Nx- Nx+t)	Rx/Dx	(Mx - Mx+n)/(Nx- Nx+n)
102	Level Annual premium of Endowment assurance is	Mx/(Nx- Nx+t)	(Mx - Mx+n)/(Nx- Nx+n)	(Mx - Mx+n+Dx+n)/(Nx- Nx+n)	Mx+t/Dx
103	$A_{1/x::n} + Ax: \frac{1}{n} =$	A _{x:n}]	A _x	(IA) _x	t/A _x
104	The death benefits go on increasing uniformly every year until the completion of the form of assurance is called 	Increasing Whole Life Assurance	Increasing Temporary Assurance	Deferred Temporary Assurance	Pure Endowme nt Assurance

105	The assured benefits are	Increasing Temporary	Deferred Temporary	Increasing Whole Life	Double
	payable to the family of	Assurance	Assurance	Assurance	Endowme
	life assured as & when he				nt
	dies and death benefits				Assurance
	go on increasing is called				
	as				
106	Deferred Whole Life Assurance denoted by	(IA) _x	t/A _x	$t/A\frac{l}{x}:n$	(IA) <i>x</i> : <i>n</i>]
	·				