23736

Y

Paper / Subject Code: 88607 / Statistics: Distribution Theory Stochastic Process

- Q.3 (a) In the usual notations, for Poisson birth process, list the postulates, state the expression $P_n(t)$, the probability of 'n' numbers in the system at time 't' and find its mean and variance.
 - Stating clearly postulates for the pure death process, with initially 'i' members in the system at time t=0. Derive the difference differential equation for $\mu_n = n\mu$ and find the expression for the probability of 'n' numbers in the system at time 't'.

OR

- (p) For linear growth model having birth rate $(n\lambda)$ and death rate $(n\mu)$ and initially (10) at time t=0, there are 'a' member in the system then
 - i. List the Postulates.
 - ii. Derive difference differential equation.
- (q) In usual notation for Poisson death process, list the postulates, state the expression for $P_n(t)$, probability that 'n' members in the system at time 't'. Find its mean and variance.
- Q.4 (a) Define the following terms;

(10)

- (i) Input Process
- (ii) Server and customer
- (iii) Reneging
- (iv) Jockeying
- (v) Balking
- (b) Show that for a single service station with Poisson arrival and exponential service (10) time the probability that exactly 'n' calling units are in the queue system is,

$$P_n = (1 - \rho)\rho^n \quad ; n \ge 0$$

Where, ρ is the traffic intensity.

OR

- (p) For $\{(M/M/I) : (N/FIFO)\}$ queueing model, derive the expression for P_n and find (10) E(n).
- (q) Discuss the classification of queuing model, and operating characteristics of queueing system. (10)

Q.5 Attempt Any Two sub questions

Paper / Subject Code: 88607 / Statistics: Distribution Theory Stochastic Process

- (a) Show that (X, Y) follows Bivariate Normal Distribution with parameters (10)
 (μ₁, μ₂, σ₁², σ₂², ρ) if and only if every linear combination of X and Y viz. ax+by, a≠0, b≠0, is a Normal Variate. Where a and b are constants.
- (b) Let X be a r.v. assuming values 0, 1, 2, with probabilities p₀, p₁, p₂, Let qj = P(X > j) and pj = P(X = j), j = 1, 1, 2, ... Assuming actual notations, show that $Q(S) = \frac{1 P(S)}{1 S}$ where $Q(S) = \sum_{j=0}^{\infty} q_j S^j$ and $P(S) = \sum_{j=0}^{\infty} p_j S^j$. Also obtain mean and variance of X in terms of Q.
- For pure birth process, if the growth rate λ_n is directly proportional to the number of individuals $(n \ge 1)$ say $\lambda_n \propto n$, assuming no death or removal and initially at time t=0, there are 'i' members in the system, then

i/ Obtain difference differential equation. ii. Find $P_n(t)$

What are the service disciplines? Describe some forms of common service

Disciplines and illustrate with examples.