Paper / Subject Code: 88619 / Statistics: Testing of Hypothesis

TYB.SC

Duration: 3 Hours

Marks: 100

N.B. 1) All questions are compulsory.

- 2) Figures to the right indicate full marks.
- 3) Use of calculator is allowed.

[10]

Q.1] a) Define the following terms with suitable example

- Simple Hypothesis
- Null Hypothesis
- Critical region
- AV. Type I error

State and prove Neyman-Pearson Lemma for obtaining the best test for

testing simple Null hypothesis against simple alternative hypothesis.

[05] p) I) A Random variable X has the following p.d.f

 $f(x) = \begin{cases} \frac{1}{2}, & \theta - 1 \le x \le \theta + 1 \\ 0, & \text{otherwise} \end{cases}$

to test the hypothesis H_0 : $\theta = 4$ against H_1 : $\theta = 5$. Determine the value of 'c' if the critical region is given by x > c. $\alpha = 0.025$. Also calculate the power of test.

II) If $x \ge 1$ is the critical region for testing H_0 : $\theta = 2$ against H_1 : $\theta = 1$ based on a single observation from a population with p.d.f

 $f(x,\theta) = \begin{cases} \theta e^{-\theta x}; & x \ge 0, \theta > 0 \\ 0, & 0.W. \end{cases}$

Calculate size and power of the test.

[10]

(03)

q) Derive the Most powerful test of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ when a sample of size n is taken from Bernoulli (θ) for the following cases.

Case (i) $\theta_0 < \theta_1$

Case (ii) $\theta_0 > \theta_1$

a) Define Uniformly Most Powerful Test (UMPT). Obtain UMPT of size α [10] to test $H_0: \theta = \theta_0$ against $H_1: \theta \leq \theta_1$, where X_1, X_2, \ldots, X_n is a Q.2]

random sample of size n drawn from $N(0,\theta)$. b) Define Likelihood Ratio Test (LRT) and write down its procedure. (07)

(I) Comment: Level of significance is always equal to the probability of type I error.

- Obtain UMPT of size α to test $H_0 : \theta = \theta_0$ against $H_1 : \theta = \theta_1$, where X_1 , X_2, \ldots, X_n is a random sample of size n drawn from Exponential $(\text{mean} = \frac{1}{2}).$ Case I) $\theta_1 > \theta_0$ II) $\theta_1 < \theta_0$
- q) Let X_1, X_2, \ldots, X_n be a random sample drawn from $N(\mu, \sigma^2)$ [10] population where σ^2 is known. Derive LRT to test H_0 : $\mu = \mu_0$ against $H_1: \mu \neq \mu_0.$

			-107
Q.3]	\a)	Discuss the test procedure of Sequential Probability Ratio Test (SI Rev) for testing a simple null hypothesis against a simple alternative	[10]
		hypothesis.	
		Differentiate between Sequential test procedures with Neyman Pearson's test procedure.	r101
	by	Construct SPRT of strength (α, β) for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_0$ $(\theta_1 < \theta_0)$, when a random variable X follows Binomial distribution with	[10]
		parameters (k, θ) .	
	p)	A random variable X follows a Poisson distribution with parameter λ Derive SPRT of strength (α, β) to test the hypothesis H_0 : $\lambda = \lambda_0 \text{ v/s } H_1$: λ	[10]
		$=\lambda_1, (\lambda_0 > \lambda_1).$	[10]
	q)	Construct SPRT of strength (α, β) for testing $H_0: \mu = \mu_0$ against $H_1: \mu =$	[10]
		μ_1 , $(\mu_0 > \mu_1)$ from N(μ , σ^2), where σ^2 is known.	[12]
Q.4]	a)	Stating the assumption clearly; explain the Sign test for single sample.	[12]
		Also explain the Normal approximation for sign test.	[08]
	b)	Explain the median test for two independent samples.	[oo]
Е э		OR Discussion Williams and the discussion of the state for two related	(05)
		I) Explain Wilcoxon matched pair signed rank test for two related	(05)
		samples. II) Explain the Wold Welfowitz Bun test	(00)
		II) Explain the Wald-Wolfowitz Run test. Explain Versital Wallia and way ANOVA by Panks test stating all the	[10]
	_	Explain Kruskal Wallis one way ANOVA by Ranks test stating all the	[10]
0.51		assumptions.	
Q.5]		Attempt Any Two sub questions	[10]
a	1)]	Define the following terms with suitable example	[10]
		1. Alternative hypothesis	
		2. Type II error3. P-value	
		4. One sided test	
		5. Acceptance region	
(K)	L po	Let X_1, X_2, \ldots, X_n be a random sample drawn from $N(\mu, \sigma^2)$ opulation where μ is known. Derive LRT to test H_0 : $\sigma^2 = \sigma_0^2$ against $\sigma_1^2 : \sigma^2 \neq \sigma_0^2$.	[10]
2	Δ	random variable X follows an Exponential distribution with	F.4.5-
1	pa	random variable X follows an Exponential distribution with unknown trameter θ . Derive SPRT of strength (α, β) for testing $H_0: \theta = \theta_0$ ainst $H_1: \theta = \theta_1$ $(\theta_1 < \theta_0)$.	[10]
d) Evoloin Eviaduran Trus			
d)	ass	splain Friedman Two way ANOVA by ranks test stating th	e [10]